Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur Heart J ; 44(13): 1170-1185, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36734059

ABSTRACT

AIMS: Genetic hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere protein-encoding genes (i.e. genotype-positive HCM). In an increasing number of patients, HCM occurs in the absence of a mutation (i.e. genotype-negative HCM). Mitochondrial dysfunction is thought to be a key driver of pathological remodelling in HCM. Reports of mitochondrial respiratory function and specific disease-modifying treatment options in patients with HCM are scarce. METHODS AND RESULTS: Respirometry was performed on septal myectomy tissue from patients with HCM (n = 59) to evaluate oxidative phosphorylation and fatty acid oxidation. Mitochondrial dysfunction was most notably reflected by impaired NADH-linked respiration. In genotype-negative patients, but not genotype-positive patients, NADH-linked respiration was markedly depressed in patients with an indexed septal thickness ≥10 compared with <10. Mitochondrial dysfunction was not explained by reduced abundance or fragmentation of mitochondria, as evaluated by transmission electron microscopy. Rather, improper organization of mitochondria relative to myofibrils (expressed as a percentage of disorganized mitochondria) was strongly associated with mitochondrial dysfunction. Pre-incubation with the cardiolipin-stabilizing drug elamipretide and raising mitochondrial NAD+ levels both boosted NADH-linked respiration. CONCLUSION: Mitochondrial dysfunction is explained by cardiomyocyte architecture disruption and is linked to septal hypertrophy in genotype-negative HCM. Despite severe myocardial remodelling mitochondria were responsive to treatments aimed at restoring respiratory function, eliciting the mitochondria as a drug target to prevent and ameliorate cardiac disease in HCM. Mitochondria-targeting therapy may particularly benefit genotype-negative patients with HCM, given the tight link between mitochondrial impairment and septal thickening in this subpopulation.


Subject(s)
Cardiomyopathy, Hypertrophic , Myocytes, Cardiac , Humans , Myocytes, Cardiac/pathology , NAD/genetics , Cardiomyopathy, Hypertrophic/genetics , Mutation , Mitochondria, Heart/pathology , Respiration
2.
Hum Reprod ; 38(11): 2208-2220, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37671592

ABSTRACT

STUDY QUESTION: Are human ovarian aging and the age-related female fertility decline caused by oxidative stress and mitochondrial dysfunction in oocytes? SUMMARY ANSWER: We found oxidative damage in oocytes of advanced maternal age, even at the primordial follicle stage, and confirmed mitochondrial dysfunction in such oocytes, which likely resulted in the use of alternative energy sources. WHAT IS KNOWN ALREADY: Signs of reactive oxygen species-induced damage and mitochondrial dysfunction have been observed in maturing follicles, and even in early stages of embryogenesis. However, although recent evidence indicates that also primordial follicles have metabolically active mitochondria, it is still often assumed that these follicles avoid oxidative phosphorylation to prevent oxidative damage in dictyate arrested oocytes. Data on the influence of ovarian aging on oocyte metabolism and mitochondrial function are still limited. STUDY DESIGN, SIZE, DURATION: A set of 39 formalin-fixed and paraffin-embedded ovarian tissue biopsies were divided into different age groups and used for immunofluorescence analysis of oxidative phosphorylation activity and oxidative damage to proteins, lipids, and DNA. Additionally, 150 immature oocytes (90 germinal vesicle oocytes and 60 metaphase I oocytes) and 15 cumulus cell samples were divided into different age groups and used for targeted metabolomics and lipidomics analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovarian tissues used for immunofluorescence microscopy were collected through PALGA, the nationwide network, and registry of histo- and cytopathology in The Netherlands. Comprehensive metabolomics and lipidomics were performed by liquid-liquid extraction and full-scan mass spectrometry, using oocytes and cumulus cells of women undergoing ICSI treatment based on male or tubal factor infertility, or fertility preservation for non-medical reasons. MAIN RESULTS AND THE ROLE OF CHANCE: Immunofluorescence imaging on human ovarian tissue indicated oxidative damage by protein and lipid (per)oxidation already at the primordial follicle stage. Metabolomics and lipidomics analysis of oocytes and cumulus cells in advanced maternal-age groups demonstrated a shift in the glutathione-to-oxiglutathione ratio and depletion of phospholipids. Age-related changes in polar metabolites suggested a decrease in mitochondrial function, as demonstrated by NAD+, purine, and pyrimidine depletion, while glycolysis substrates and glutamine accumulated, with age. Oocytes from women of advanced maternal age appeared to use alternative energy sources like glycolysis and the adenosine salvage pathway, and possibly ATP which showed increased production in cumulus cells. LIMITATIONS, REASONS FOR CAUTION: The immature oocytes used in this study were all subjected to ovarian stimulation with high doses of follicle-stimulating hormones, which might have concealed some age-related differences. WIDER IMPLICATIONS OF THE FINDINGS: Further studies on how to improve mitochondrial function, or lower oxidative damage, in oocytes from women of advanced maternal age, for instance by supplementation of NAD+ precursors to promote mitochondrial biogenesis, are warranted. In addition, supplementing the embryo medium of advanced maternal-age embryos with such compounds could be a treatment option worth exploring. STUDY FUNDING/COMPETING INTEREST(S): The study was funded by the Amsterdam UMC. The authors declare to have no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
NAD , Oocytes , Humans , Female , Male , NAD/metabolism , Oocytes/metabolism , Oxidative Stress , Mitochondria/metabolism , Aging
3.
FASEB J ; 36(2): e22133, 2022 02.
Article in English | MEDLINE | ID: mdl-35032416

ABSTRACT

Shift-workers show an increased incidence of type 2 diabetes mellitus (T2DM). A possible mechanism is the disruption of the circadian timing of glucose homeostasis. Skeletal muscle mitochondrial function is modulated by the molecular clock. We used time-restricted feeding (TRF) during the inactive phase to investigate how mistimed feeding affects muscle mitochondrial metabolism. Rats on an ad libitum (AL) diet were compared to those that could eat only during the light (inactive) or dark (active) phase. Mitochondrial respiration, metabolic gene expressions, and metabolite concentrations were determined in the soleus muscle. Rats on AL feeding or dark-fed TRF showed a clear daily rhythm in muscle mitochondrial respiration. This rhythm in mitochondrial oxidative phosphorylation capacity was abolished in light-fed TRF animals and overall 24h respiration was lower. The expression of several genes involved in mitochondrial biogenesis and the fission/fusion machinery was altered in light-fed animals. Metabolomics analysis indicated that light-fed animals had lost rhythmic levels of α-ketoglutarate and citric acid. Contrastingly, lipidomics showed that light-fed animals abundantly gained rhythmicity in levels of triglycerides. Furthermore, while the RER shifted entirely with the food intake in the light-fed animals, many measured metabolic parameters (e.g., activity and mitochondrial respiration) did not strictly align with the shifted timing of food intake, resulting in a mismatch between expected metabolic supply/demand (as dictated by the circadian timing system and light/dark-cycle) and the actual metabolic supply/demand (as dictated by the timing of food intake). These data suggest that shift-work impairs mitochondrial metabolism and causes metabolic inflexibility, which can predispose to T2DM.


Subject(s)
Cell Respiration/physiology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Fasting/physiology , Mitochondria/physiology , Muscle, Skeletal/physiology , Animals , Diabetes Mellitus, Type 2/physiopathology , Diet/methods , Eating/physiology , Energy Metabolism/physiology , Feeding Behavior/physiology , Gene Expression/physiology , Male , Organelle Biogenesis , Oxidative Phosphorylation , Photoperiod , Rats , Rats, Wistar
4.
BMC Geriatr ; 23(1): 220, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024827

ABSTRACT

BACKGROUND: Mobility is a key determinant and outcome of healthy ageing but its definition, conceptual framework and underlying constructs within the physical domain may need clarification for data comparison and sharing in ageing research. This study aimed to (1) review definitions and conceptual frameworks of mobility, (2) explore agreement on the definition of mobility, conceptual frameworks, constructs and measures of mobility, and (3) define, classify and identify constructs. METHODS: A three-step approach was adopted: a literature review and two rounds of expert questionnaires (n = 64, n = 31, respectively). Agreement on statements was assessed using a five-point Likert scale; the answer options 'strongly agree' or 'agree' were combined. The percentage of respondents was subsequently used to classify agreements for each statement as: strong (≥ 80%), moderate (≥ 70% and < 80%) and low (< 70%). RESULTS: A variety of definitions of mobility, conceptual frameworks and constructs were found in the literature and among respondents. Strong agreement was found on defining mobility as the ability to move, including the use of assistive devices. Multiple constructs and measures were identified, but low agreements and variability were found on definitions, classifications and identification of constructs. Strong agreements were found on defining physical capacity (what a person is maximally capable of, 'can do') and performance (what a person actually does in their daily life, 'do') as key constructs of mobility. CONCLUSION: Agreements on definitions of mobility, physical capacity and performance were found, but constructs of mobility need to be further identified, defined and classified appropriately. Clear terminology and definitions are essential to facilitate communication and interpretation in operationalising the physical domain of mobility as a prerequisite for standardisation of mobility measures.


Subject(s)
Physical Examination , Humans , Surveys and Questionnaires
5.
Am J Transplant ; 22(2): 344-370, 2022 02.
Article in English | MEDLINE | ID: mdl-34657378

ABSTRACT

Despite decennia of research and numerous successful interventions in the preclinical setting, renal ischemia reperfusion (IR) injury remains a major problem in clinical practice, pointing toward a translational gap. Recently, two clinical studies on renal IR injury (manifested either as acute kidney injury or as delayed graft function) identified metabolic derailment as a key driver of renal IR injury. It was reasoned that these unambiguous metabolic findings enable direct alignment of clinical with preclinical data, thereby providing the opportunity to elaborate potential translational hurdles between preclinical research and the clinical context. A systematic review of studies that reported metabolic data in the context of renal IR was performed according to the PRISMA guidelines. The search (December 2020) identified 35 heterogeneous preclinical studies. The applied methodologies were compared, and metabolic outcomes were semi-quantified and aligned with the clinical data. This review identifies profound methodological challenges, such as the definition of IR injury, the follow-up time, and sampling techniques, as well as shortcomings in the reported metabolic information. In light of these findings, recommendations are provided in order to improve the translatability of preclinical models of renal IR injury.


Subject(s)
Acute Kidney Injury , Kidney Transplantation , Reperfusion Injury , Acute Kidney Injury/etiology , Humans , Kidney/metabolism , Reperfusion Injury/metabolism
6.
Biochem Biophys Res Commun ; 547: 176-182, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33618224

ABSTRACT

Skeletal muscle fibrosis and regeneration are modulated by transforming growth factor ß (TGF-ß) superfamily. Amongst them, TGF-ß1 is a highly potent pro-fibrotic factor, while TGF-ß3 has been implicated to reduce scar formation and collagen production in skin and vocal mucosa. However, little is known about the individual and combined short- and long-term effects of TGF-ß1 and TGF-ß3 on collagen expression in myoblasts and myotubes. Here we show that in C2C12 myoblasts TGF-ß1 and/or TGF-ß3 increased mRNA expression of Ctgf and Fgf-2 persistently after 3 h and of Col1A1 after 24 h, while TGF-ß1+TGF-ß3 mitigated these effects after 48 h incubation. Gene expression of Tgf-ß1 was enhanced by TGF-ß1 and/or TGF-ß3 after 24 h and 48 h. However, Tgfbr1 mRNA expression was reduced at 48 h. After 48 h incubation with TGF-ß1 and/or TGF-ß3, Col3A1 and Col4A1 mRNA expression levels were decreased. Myoblasts produced collagen after three days incubation with TGF-ß1 and/or TGF-ß3 in a dose independent manner. Collagen deposition was doubled when myoblasts differentiated into myotubes and TGF-ß1 and/or TGF-ß3 did not stimulate collagen production any further. TGF-ß type I receptor (TGFBR1) inhibitor, LY364947, suppressed TGF-ßs-induced collagen production. Collagen I expression was higher in myotubes than in myoblasts. TGF-ß1 and/or TGF-ß3 inhibited myotube differentiation which was antagonized by LY364947. These results indicate that both C2C12 myoblasts and myotubes produce collagen. Whereas TGF-ß1 and TGF-ß3 individually and simultaneously stimulate collagen production in C2C12 differentiating myoblasts, in myotubes these effects are less prominent. In muscle cells, TGF-ß3 is ineffective to antagonize TGF-ß1-induced collagen production.


Subject(s)
Collagen/biosynthesis , Muscle Fibers, Skeletal/drug effects , Myoblasts/drug effects , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta3/pharmacology , Animals , Cell Differentiation/drug effects , Cell Line , Collagen/metabolism , Drug Synergism , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism
7.
Nicotine Tob Res ; 23(1): 143-151, 2021 01 07.
Article in English | MEDLINE | ID: mdl-31965191

ABSTRACT

INTRODUCTION: Apart from its adverse effects on the respiratory system, cigarette smoking also induces skeletal muscle atrophy and dysfunction. Whether short-term smoking cessation can restore muscle mass and function is unknown. We, therefore, studied the impact of 1- and 2-week smoking cessation on skeletal muscles in a mouse model. METHODS: Male mice were divided into four groups: Air-exposed (14 weeks); cigarette smoke (CS)-exposed (14 weeks); CS-exposed (13 weeks) followed by 1-week cessation; CS-exposed (12 weeks) followed by 2 weeks cessation to examine exercise capacity, physical activity levels, body composition, muscle function, capillarization, mitochondrial function and protein expression in the soleus, plantaris, and diaphragm muscles. RESULTS: CS-induced loss of body and muscle mass was significantly improved within 1 week of cessation due to increased lean and fat mass. Mitochondrial respiration and protein levels of the respiratory complexes in the soleus were lower in CS-exposed mice, but similar to control values after 2 weeks of cessation. Exposing isolated soleus muscles to CS extracts reduced mitochondrial respiration that was reversed after removing the extract. While physical activity was reduced in all groups, exercise capacity, limb muscle force, fatigue resistance, fiber size and capillarization, and diaphragm cytoplasmic HIF-1α were unaltered by CS-exposure. However, CS-induced diaphragm atrophy and increased capillary density were not seen after 2 weeks of smoking cessation. CONCLUSION: In male mice, 2 weeks of smoking cessation reversed smoking-induced mitochondrial dysfunction, limb muscle mass loss, and diaphragm muscle atrophy, highlighting immediate benefits of cessation on skeletal muscles. IMPLICATIONS: Our study demonstrates that CS-induced skeletal muscle mitochondrial dysfunction and atrophy are significantly improved by 2 weeks of cessation in male mice. We show for the first time that smoking cessation as short as 1 to 2 weeks is associated with immediate beneficial effects on skeletal muscle structure and function with the diaphragm being particularly sensitive to CS-exposure and cessation. This could help motivate smokers to quit smoking as early as possible. The knowledge that smoking cessation has potential positive extrapulmonary effects is particularly relevant for patients referred to rehabilitation programs and those admitted to hospitals suffering from acute or chronic muscle deterioration yet struggling with smoking cessation.


Subject(s)
Mitochondria/drug effects , Muscle, Skeletal/drug effects , Muscular Atrophy/prevention & control , Smoking Cessation/methods , Smoking/adverse effects , Animals , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/pathology , Muscle, Skeletal/pathology , Muscular Atrophy/chemically induced , Muscular Atrophy/pathology , Physical Conditioning, Animal
8.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921053

ABSTRACT

Tetracycline antibiotics act by inhibiting bacterial protein translation. Given the bacterial ancestry of mitochondria, we tested the hypothesis that doxycycline-which belongs to the tetracycline class-reduces mitochondrial function, and results in cardiac contractile dysfunction in cultured H9C2 cardiomyoblasts, adult rat cardiomyocytes, in Drosophila and in mice. Ampicillin and carbenicillin were used as control antibiotics since these do not interfere with mitochondrial translation. In line with its specific inhibitory effect on mitochondrial translation, doxycycline caused a mitonuclear protein imbalance in doxycycline-treated H9C2 cells, reduced maximal mitochondrial respiration, particularly with complex I substrates, and mitochondria appeared fragmented. Flux measurements using stable isotope tracers showed a shift away from OXPHOS towards glycolysis after doxycycline exposure. Cardiac contractility measurements in adult cardiomyocytes and Drosophila melanogaster hearts showed an increased diastolic calcium concentration, and a higher arrhythmicity index. Systolic and diastolic dysfunction were observed after exposure to doxycycline. Mice treated with doxycycline showed mitochondrial complex I dysfunction, reduced OXPHOS capacity and impaired diastolic function. Doxycycline exacerbated diastolic dysfunction and reduced ejection fraction in a diabetes mouse model vulnerable for metabolic derangements. We therefore conclude that doxycycline impairs mitochondrial function and causes cardiac dysfunction.


Subject(s)
Anti-Bacterial Agents/pharmacology , Doxycycline/pharmacology , Mitochondria, Heart/metabolism , Myocardial Contraction/drug effects , Aging/metabolism , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Cell Respiration/drug effects , Cytosol/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/physiopathology , Diastole/drug effects , Drosophila melanogaster/drug effects , Drosophila melanogaster/physiology , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , Glucose/metabolism , Glycolysis/drug effects , Male , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Oxidative Phosphorylation/drug effects , Rats
9.
Magn Reson Med ; 83(1): 228-239, 2020 01.
Article in English | MEDLINE | ID: mdl-31441541

ABSTRACT

PURPOSE: 19 F-MRI is gaining widespread interest for cell tracking and quantification of immune and inflammatory cells in vivo. Different fluorinated compounds can be discriminated based on their characteristic MR spectra, allowing in vivo imaging of multiple 19 F compounds simultaneously, so-called multicolor 19 F-MRI. We introduce a method for multicolor 19 F-MRI using an iterative sparse deconvolution method to separate different 19 F compounds and remove chemical shift artifacts arising from multiple resonances. METHODS: The method employs cycling of the readout gradient direction to alternate the spatial orientation of the off-resonance chemical shift artifacts, which are subsequently removed by iterative sparse deconvolution. Noise robustness and separation was investigated by numerical simulations. Mixtures of fluorinated oils (PFCE and PFOB) were measured on a 7T MR scanner to identify the relation between 19 F signal intensity and compound concentration. The method was validated in a mouse model after intramuscular injection of fluorine probes, as well as after intravascular injection. RESULTS: Numerical simulations show efficient separation of 19 F compounds, even at low signal-to-noise ratio. Reliable chemical shift artifact removal and separation of PFCE and PFOB signals was achieved in phantoms and in vivo. Signal intensities correlated excellently to the relative 19 F compound concentrations (r-2 = 0.966/0.990 for PFOB/PFCE). CONCLUSIONS: The method requires minimal sequence adaptation and is therefore easily implemented on different MRI systems. Simulations, phantom experiments, and in-vivo measurements in mice showed effective separation and removal of chemical shift artifacts below noise level. We foresee applicability for simultaneous in-vivo imaging of 19 F-containing fluorine probes or for detection of 19 F-labeled cell populations.


Subject(s)
Contrast Media/chemistry , Fluorine-19 Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , Liver/drug effects , Nanoparticles/chemistry , Spleen/drug effects , Algorithms , Animals , Artifacts , Cell Tracking/methods , Computer Simulation , Crown Ethers/chemistry , Fluorine , Fluorocarbons/chemistry , Hydrocarbons, Brominated , Injections, Intramuscular , Male , Mice , Phantoms, Imaging
10.
J Inherit Metab Dis ; 43(4): 787-799, 2020 07.
Article in English | MEDLINE | ID: mdl-31955429

ABSTRACT

A maladaptive shift from fat to carbohydrate (CHO) oxidation during exercise is thought to underlie myopathy and exercise-induced rhabdomyolysis in patients with fatty acid oxidation (FAO) disorders. We hypothesised that ingestion of a ketone ester (KE) drink prior to exercise could serve as an alternative oxidative substrate supply to boost muscular ATP homeostasis. To establish a rational basis for therapeutic use of KE supplementation in FAO, we tested this hypothesis in patients deficient in Very Long-Chain acyl-CoA Dehydrogenase (VLCAD). Five patients (range 17-45 y; 4 M/1F) patients were included in an investigator-initiated, randomised, blinded, placebo-controlled, 2-way cross-over study. Patients drank either a KE + CHO mix or an isocaloric CHO equivalent and performed 35 minutes upright cycling followed by 10 minutes supine cycling inside a Magnetic Resonance scanner at individual maximal FAO work rate (fatmax; approximately 40% VO2 max). The protocol was repeated after a 1-week interval with the alternate drink. Primary outcome measures were quadriceps phosphocreatine (PCr), Pi and pH dynamics during exercise and recovery assayed by in vivo 31 P-MR spectroscopy. Secondary outcomes included plasma and muscle metabolites and respiratory gas exchange recordings. Ingestion of KE rapidly induced mild ketosis and increased muscle BHB content. During exercise at FATMAX, VLCADD-specific plasma acylcarnitine levels, quadriceps glycolytic intermediate levels and in vivo Pi/PCr ratio were all lower in KE + CHO than CHO. These results provide a rational basis for future clinical trials of synthetic ketone ester supplementation therapy in patients with FAO disorders. Trial registration: ClinicalTrials.gov. Protocol ID: NCT03531554; METC2014.492; ABR51222.042.14.


Subject(s)
Beverages , Congenital Bone Marrow Failure Syndromes/diet therapy , Endurance Training , Ketosis/chemically induced , Lipid Metabolism, Inborn Errors/diet therapy , Mitochondrial Diseases/diet therapy , Muscular Diseases/diet therapy , Adolescent , Adult , Blood Glucose/analysis , Carnitine/analogs & derivatives , Carnitine/blood , Congenital Bone Marrow Failure Syndromes/metabolism , Cross-Over Studies , Diet, Ketogenic , Esters/administration & dosage , Exercise Test , Female , Humans , Ketones/administration & dosage , Lipid Metabolism, Inborn Errors/metabolism , Magnetic Resonance Spectroscopy , Male , Middle Aged , Mitochondrial Diseases/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/metabolism , Netherlands , Pulmonary Gas Exchange , Young Adult
11.
Arterioscler Thromb Vasc Biol ; 39(5): 841-849, 2019 05.
Article in English | MEDLINE | ID: mdl-30917678

ABSTRACT

Atherosclerosis is a prevalent disease affecting a large portion of the population at one point in their lives. There is an unmet need for noninvasive diagnostics to identify and characterize at-risk plaque phenotypes noninvasively and in vivo, to improve the stratification of patients with cardiovascular disease, and for treatment evaluation. Magnetic resonance imaging is uniquely positioned to address these diagnostic needs. However, currently available magnetic resonance imaging methods for vessel wall imaging lack sufficient discriminative and predictive power to guide the individual patient needs. To address this challenge, physicists are pushing the boundaries of magnetic resonance atherosclerosis imaging to increase image resolution, provide improved quantitative evaluation of plaque constituents, and obtain readouts of disease activity such as inflammation. Here, we review some of these important developments, with specific focus on emerging applications using high-field magnetic resonance imaging, the use of quantitative relaxation parameter mapping for improved plaque characterization, and novel 19F magnetic resonance imaging technology to image plaque inflammation.


Subject(s)
Atherosclerosis/diagnostic imaging , Contrast Media , Image Interpretation, Computer-Assisted , Magnetic Resonance Angiography/methods , Plaque, Atherosclerotic/diagnostic imaging , Atherosclerosis/pathology , Fluorine , Humans , Magnetic Resonance Imaging/methods , Sensitivity and Specificity
12.
Int J Mol Sci ; 21(7)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276429

ABSTRACT

Patients with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) can present with life-threatening cardiac arrhythmias. The pathophysiological mechanism is unknown. We reprogrammed fibroblasts from one mildly and one severely affected VLCADD patient, into human induced pluripotent stem cells (hiPSCs) and differentiated these into cardiomyocytes (VLCADD-CMs). VLCADD-CMs displayed shorter action potentials (APs), more delayed afterdepolarizations (DADs) and higher systolic and diastolic intracellular Ca2+ concentration ([Ca2+]i) than control CMs. The mitochondrial booster resveratrol mitigated the biochemical, electrophysiological and [Ca2+]i changes in the mild but not in the severe VLCADD-CMs. Accumulation of potentially toxic intermediates of fatty acid oxidation was blocked by substrate reduction with etomoxir. Incubation with etomoxir led to marked prolongation of AP duration and reduced DADs and [Ca2+]i in both VLCADD-CMs. These results provide compelling evidence that reduced accumulation of fatty acid oxidation intermediates, either by enhanced fatty acid oxidation flux through increased mitochondria biogenesis (resveratrol) or by inhibition of fatty acid transport into the mitochondria (etomoxir), rescues pro-arrhythmia defects in VLCADD-CMs and open doors for new treatments.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Arrhythmias, Cardiac/prevention & control , Congenital Bone Marrow Failure Syndromes/physiopathology , Epoxy Compounds/pharmacology , Fatty Acids/chemistry , Lipid Metabolism, Inborn Errors/physiopathology , Mitochondria/physiology , Mitochondrial Diseases/physiopathology , Muscular Diseases/physiopathology , Myocytes, Cardiac/physiology , Resveratrol/pharmacology , Action Potentials , Arrhythmias, Cardiac/etiology , Cardiac Electrophysiology , Congenital Bone Marrow Failure Syndromes/complications , Fatty Acids/metabolism , Humans , Induced Pluripotent Stem Cells , Lipid Metabolism, Inborn Errors/complications , Mitochondrial Diseases/complications , Muscular Diseases/complications , Myocytes, Cardiac/drug effects , Oxidation-Reduction
13.
Rev Endocr Metab Disord ; 19(1): 93-106, 2018 03.
Article in English | MEDLINE | ID: mdl-29926323

ABSTRACT

Mitochondrial fatty acid oxidation is an essential pathway for energy production, especially during prolonged fasting and sub-maximal exercise. Long-chain fatty acids are the most abundant fatty acids in the human diet and in body stores, and more than 15 enzymes are involved in long-chain fatty acid oxidation. Pathogenic mutations in genes encoding these enzymes result in a long-chain fatty acid oxidation disorder in which the energy homeostasis is compromised and long-chain acylcarnitines accumulate. Symptoms arise or exacerbate during catabolic situations, such as fasting, illness and (endurance) exercise. The clinical spectrum is very heterogeneous, ranging from hypoketotic hypoglycemia, liver dysfunction, rhabdomyolysis, cardiomyopathy and early demise. With the introduction of several of the long-chain fatty acid oxidation disorders (lcFAOD) in newborn screening panels, also asymptomatic individuals with a lcFAOD are identified. However, despite early diagnosis and dietary therapy, a significant number of patients still develop symptoms emphasizing the need for individualized treatment strategies. This review aims to function as a comprehensive reference for clinical and laboratory findings for clinicians who are confronted with pediatric and adult patients with a possible diagnosis of a lcFAOD.


Subject(s)
Carnitine/metabolism , Fatty Acids/metabolism , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/metabolism , Mitochondria/metabolism , Animals , Humans , Metabolism, Inborn Errors/therapy
14.
Am J Respir Crit Care Med ; 196(12): 1544-1558, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28787181

ABSTRACT

RATIONALE: The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency and increases morbidity, duration of hospital stay, and health care costs. The mechanisms underlying diaphragm weakness are unknown, but might include mitochondrial dysfunction and oxidative stress. OBJECTIVES: We hypothesized that weakness of diaphragm muscle fibers in critically ill patients is accompanied by impaired mitochondrial function and structure, and by increased markers of oxidative stress. METHODS: To test these hypotheses, we studied contractile force, mitochondrial function, and mitochondrial structure in diaphragm muscle fibers. Fibers were isolated from diaphragm biopsies of 36 mechanically ventilated critically ill patients and compared with those isolated from biopsies of 27 patients with suspected early-stage lung malignancy (control subjects). MEASUREMENTS AND MAIN RESULTS: Diaphragm muscle fibers from critically ill patients displayed significant atrophy and contractile weakness, but lacked impaired mitochondrial respiration and increased levels of oxidative stress markers. Mitochondrial energy status and morphology were not altered, despite a lower content of fusion proteins. CONCLUSIONS: Critically ill patients have manifest diaphragm muscle fiber atrophy and weakness in the absence of mitochondrial dysfunction and oxidative stress. Thus, mitochondrial dysfunction and oxidative stress do not play a causative role in the development of atrophy and contractile weakness of the diaphragm in critically ill patients.


Subject(s)
Diaphragm/physiopathology , Mitochondria , Muscle Weakness/physiopathology , Muscular Atrophy/physiopathology , Oxidative Stress , Adult , Aged , Biopsy , Critical Illness , Female , Humans , Lung/pathology , Male , Middle Aged , Respiration, Artificial , Young Adult
15.
Diabetologia ; 60(3): 568-573, 2017 03.
Article in English | MEDLINE | ID: mdl-27752710

ABSTRACT

AIMS/HYPOTHESIS: Empagliflozin (EMPA), an inhibitor of the renal sodium-glucose cotransporter (SGLT) 2, reduces the risk of cardiovascular death in patients with type 2 diabetes. The underlying mechanism of this effect is unknown. Elevated cardiac cytoplasmic Na+ ([Na+]c) and Ca2+ ([Ca2+]c) concentrations and decreased mitochondrial Ca2+ concentration ([Ca2+]m) are drivers of heart failure and cardiac death. We therefore hypothesised that EMPA would directly modify [Na+]c, [Ca2+]c and [Ca2+]m in cardiomyocytes. METHODS: [Na+]c, [Ca2+]c, [Ca 2+]m and Na+/H+ exchanger (NHE) activity were measured fluorometrically in isolated ventricular myocytes from rabbits and rats. RESULTS: An increase in extracellular glucose, from 5.5 mmol/l to 11 mmol/l, resulted in increased [Na+]c and [Ca2+]c levels. EMPA treatment directly inhibited NHE flux, caused a reduction in [Na+]c and [Ca2+]c and increased [Ca2+]m. After pretreatment with the NHE inhibitor, Cariporide, these effects of EMPA were strongly reduced. EMPA also affected [Na+]c and NHE flux in the absence of extracellular glucose. CONCLUSIONS/INTERPRETATION: The glucose lowering kidney-targeted agent, EMPA, demonstrates direct cardiac effects by lowering myocardial [Na+]c and [Ca2+]c and enhancing [Ca2+]m, through impairment of myocardial NHE flux, independent of SGLT2 activity.


Subject(s)
Benzhydryl Compounds/therapeutic use , Glucosides/therapeutic use , Hypoglycemic Agents/therapeutic use , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Sodium-Hydrogen Exchangers/metabolism , Sodium/metabolism , Animals , Calcium/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Myocytes, Cardiac/drug effects , Rabbits , Rats
16.
J Physiol ; 595(6): 2001-2019, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28028811

ABSTRACT

KEY POINTS: Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown. Rapid stimulation frequency-dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency. These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. ABSTRACT: Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)-based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+ ]m ) was measured at different stimulation frequencies (0.1-4 Hz) and external calcium concentrations (1.8-3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura-4AM. The increases in [Ca2+ ]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+ ]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+ ]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium-calcium exchanger (mNCE) resulted in a rise in [Ca2+ ]m at baseline and, paradoxically, in an acceleration of Ca2+ release. IN CONCLUSION: rapid increases in [Ca2+ ]m allow for fast adjustment of mitochondrial ATP production to increases in myocardial demand on a beat-to-beat basis and mitochondrial calcium release depends on mNCE activity and mitochondrial calcium buffering.


Subject(s)
Calcium/physiology , Mitochondria, Heart/physiology , Myocytes, Cardiac/physiology , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Cytosol/metabolism , Electric Stimulation , Rats, Wistar , Sodium-Calcium Exchanger/physiology
17.
Kidney Int ; 90(1): 181-91, 2016 07.
Article in English | MEDLINE | ID: mdl-27188504

ABSTRACT

Delayed graft function (DGF) following kidney transplantation affects long-term graft function and survival and is considered a manifestation of ischemia reperfusion injury. Preclinical studies characterize metabolic defects resulting from mitochondrial damage as primary driver of ischemia reperfusion injury. In a comprehensive approach that included sequential establishment of postreperfusion arteriovenous concentration differences over the human graft, metabolomic and genomic analysis in tissue biopsies taken before and after reperfusion, we tested whether the preclinical observations translate to the context of clinical DGF. This report is based on sequential studies of 66 eligible patients of which 22 experienced DGF. Grafts with no DGF immediately recovered aerobic respiration as indicated by prompt cessation of lactate release following reperfusion. In contrast, grafts with DGF failed to recover aerobic respiration and showed persistent adenosine triphosphate catabolism indicated by a significant persistently low post reperfusion tissue glucose-lactate ratio and continued significant post-reperfusion lactate and hypoxanthine release (net arteriovenous difference for lactate and hypoxanthine at 30 minutes). The metabolic data for the group with DGF point to a persistent post reperfusion mitochondrial defect, confirmed by functional (respirometry) and morphological analyses. The archetypical mitochondrial stabilizing peptide SS-31 significantly preserved mitochondrial function in human kidney biopsies following simulated ischemia reperfusion. Thus, development of DGF is preceded by a profound post-reperfusion metabolic deficit resulting from severe mitochondrial damage. Strategies aimed at preventing DGF should be focused on safeguarding a minimally required post-reperfusion metabolic competence.


Subject(s)
Allografts/pathology , Delayed Graft Function/metabolism , Graft Survival , Kidney Transplantation/adverse effects , Mitochondria/pathology , Reperfusion Injury/complications , Allografts/metabolism , Biopsy , Cohort Studies , Delayed Graft Function/epidemiology , Delayed Graft Function/etiology , Delayed Graft Function/pathology , Female , Humans , Incidence , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Oligopeptides/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
18.
J Mol Cell Cardiol ; 86: 1-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26116865

ABSTRACT

Our objective was to investigate the role of creatine kinase in the contractile dysfunction of right ventricular failure caused by pulmonary artery hypertension. Pulmonary artery hypertension and right ventricular failure were induced in rats by monocrotaline and compared to saline-injected control animals. In vivo right ventricular diastolic pressure-volume relationships were measured in anesthetized animals; diastolic force-length relationships in single enzymatically dissociated myocytes and myocardial creatine kinase levels by Western blot. We observed diastolic dysfunction in right ventricular failure indicated by significantly steeper diastolic pressure-volume relationships in vivo and diastolic force-length relationships in single myocytes. There was a significant reduction in creatine kinase protein expression in failing right ventricle. Dysfunction also manifested as a shorter diastolic sarcomere length in failing myocytes. This was associated with a Ca(2+)-independent mechanism that was sensitive to cross-bridge cycling inhibition. In saponin-skinned failing myocytes, addition of exogenous creatine kinase significantly lengthened sarcomeres, while in intact healthy myocytes, inhibition of creatine kinase significantly shortened sarcomeres. Creatine kinase inhibition also changed the relatively flat contraction amplitude-stimulation frequency relationship of healthy myocytes into a steeply negative, failing phenotype. Decreased creatine kinase expression leads to diastolic dysfunction. We propose that this is via local reduction in ATP:ADP ratio and thus to Ca(2+)-independent force production and diastolic sarcomere shortening. Creatine kinase inhibition also mimics a definitive characteristic of heart failure, the inability to respond to increased demand. Novel therapies for pulmonary artery hypertension are needed. Our data suggest that cardiac energetics would be a potential ventricular therapeutic target.


Subject(s)
Creatine Kinase/metabolism , Heart Failure/enzymology , Hypertension, Pulmonary/enzymology , Ventricular Dysfunction, Right/enzymology , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Creatine Kinase/biosynthesis , Diastole , Heart Failure/pathology , Humans , Hypertension, Pulmonary/pathology , Myocardium/enzymology , Myocardium/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Pulmonary Artery/enzymology , Pulmonary Artery/pathology , Rats , Sarcomeres/enzymology , Sarcomeres/pathology , Ventricular Dysfunction, Right/pathology
20.
J Physiol ; 593(8): 1829-40, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25640645

ABSTRACT

KEY POINTS: A photometry-based technique was developed to measure nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) autofluorescence and contractile properties simultaneously in intact rat trabeculae at a high time resolution. This provides insight into the function of mitochondrial complex I and II. Maximal complex I and complex II activities were determined in saponin-permeabilized right ventricular tissue by respirometry. In trabeculae, complex II function was considerably smaller than the maximal complex II activity, suggesting large complex II reserve capacity. Up-down asymmetry in NADH and FAD kinetics suggests a complex interaction between mitochondrial and contractile function. These data show that simultaneous measurement of contractile properties and NADH and FAD kinetics in cardiac trabeculae provides a mean to study the differences in complex I and II function in intact preparations in health and disease. ABSTRACT: The functional properties of cardiac mitochondria in intact preparations have been mainly studied by measurements of nicotinamide adenine dinucleotide (NADH) autofluorescence, which reflects mitochondrial complex I function. To assess complex II function, we extended this method by measuring flavin adenine dinucleotide (FAD)-related autofluorescence in electrically stimulated cardiac trabeculae isolated from the right ventricle from the rat at 27°C. NADH and FAD autofluorescence and tension responses were measured when stimulation frequency was increased from 0.5 Hz to 1, 2 or 3 Hz for 3 min, and thereafter decreased to 0.5 Hz. Maximal complex I and complex II activity in vitro were determined in saponin-permeabilized right ventricular tissue by respirometry. NADH responses upon an increase in stimulation frequency showed a rapid decline, followed by a slow recovery towards the initial level. FAD responses followed a similar time course, but in the opposite direction. The amplitudes of early rapid changes in the NADH and FAD concentration correlated well with the change in tension time integral per second (R(2)  = 0.833 and 0.660 for NADH and FAD, respectively), but with different slopes for the up and down transient. Maximal velocity of the increase in FAD concentration (16 ± 4 µm s(-1) ), measured upon an increase in stimulation frequency from 0.5 to 3 Hz was considerably smaller than that of the decrease in NADH (78 ± 13 µm s(-1) ). The respiration measurements indicated that the maximal velocity of NADH utilization (143 ± 14 µm s(-1) ) was 2 times smaller than that of FADH2 (291 ± 19 µm s(-1) ). This indicates that in cardiac mitochondria considerable complex II activity reserve is present.


Subject(s)
Electron Transport Complex II/metabolism , Flavins/metabolism , Mitochondria, Heart/metabolism , Myocardium/metabolism , NAD/metabolism , Animals , Rats
SELECTION OF CITATIONS
SEARCH DETAIL