Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Brachytherapy ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38853064

ABSTRACT

PURPOSE: To quantify changes in prostate size and seed movement over time after transperineal implantation of stranded 125I seeds, and to determine their impact on prostate dosimetry. METHODS: CT and MR (T2, balanced steady-state free precession) image triplets were acquired on days 0, 3, 10, and 30 for a cohort of 20 patients and registered automatically. Prostate contours were drawn on MR-T2 images; seeds were found and matched in successive CT images. Prostate volume and dimensions, seed movements, and prostate dose metrics V200, V150, V100 and D90 were calculated, and their dynamic behaviors quantified in an operationally defined prostate coordinate system. RESULTS: Cohort-averaged reductions in prostate A-P dimension (∼8%) and L-R dimension (∼5%) inferred from seed movements agreed with those obtained from contour measurements, whereas prostate volume and S-I dimension (implant direction) reductions inferred from seed movements were overestimated by about 30%. Average overall seed movement was 4.8 ± 3.0 mm, of which the only identifiable systematic component was resolution of prostate edema. Cohort-averaged ratios of prostate V200, V150, V100, and D90 on day 30 relative to day 0 were 1.67, 1.33, 1.02, and 1.08, respectively. CONCLUSIONS: Postimplant prostate size reduction in the SI (implant) direction cannot reliably be inferred from stranded seed movements. Apart from large-scale migration, residual seed movements relative to the prostate after accounting for edema resolution appear to be random. Prostate V100 and D90 changes 30 days post implant are modest, whereas those for V150 and V200 are substantial.

2.
Med Phys ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873942

ABSTRACT

BACKGROUND: The Alberta rotating biplanar linac-MR has a 0.5 T magnetic field parallel to the beamline. When developing a new linac-MR system, interactions of charged particles with the magnetic field necessitate careful consideration of skin dose and tissue interface effects. PURPOSE: To investigate the effect of the magnetic field on skin dose using measurements and Monte Carlo (MC) simulations. METHODS: We develop an MC model of our linac-MR, which we validate by comparison with ion chamber measurements in a water tank. Additionally, MC simulation results are compared with radiochromic film surface dose measurements on solid water. Variations in surface dose as a function of field size are measured using a parallel plate ion chamber in solid water. Using an anthropomorphic computational phantom with a 2 mm-thick skin layer, we investigate dose distributions resulting from three beam arrangements. Magnetic field on and off scenarios are considered for all measurements and simulations. RESULTS: For a 20 × 20 cm2 field size, D 0.2 c c ${D_{0.2cc}}$ (the minimum dose to the hottest contiguous 0.2 cc volume) for the top 2 mm of a simple water phantom is 72% when the magnetic field is on, compared to 34% with magnetic field off (values are normalized to the central axis dose maximum). Parallel plate ion chamber measurements demonstrate that the relative increase in surface dose due to the magnetic field decreases with increasing field size. For the anthropomorphic phantom, D ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ (minimum skin dose in the hottest 1 × 1 × 1 cm3 cube) shows relative increases of 20%-28% when the magnetic field is on compared to when it is off. With magnetic field off, skin D ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ is 71%, 56%, and 21% for medial-lateral tangents, anterior-posterior beams, and a five-field arrangement, respectively. For magnetic field on, the corresponding skin D ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ values are 91%, 67%, and 25%. CONCLUSIONS: Using a validated MC model of our linac-MR, surface doses are calculated in various scenarios. MC-calculated skin dose varies depending on field sizes, obliquity, and the number of beams. In general, the parallel linac-MR arrangement results in skin dose enhancement due to charged particles spiraling along magnetic field lines, which impedes lateral motion away from the central axis. Nonetheless, considering the results presented herein, treatment plans can be designed to minimize skin dose by, for example, avoiding oblique beams and using a larger number of fields.

SELECTION OF CITATIONS
SEARCH DETAIL