Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Proc Biol Sci ; 290(1995): 20222337, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36987637

ABSTRACT

Human-imposed selection can lead to adaptive changes in sensory traits. However, rapid evolution of the sensory system can interfere with other behaviours, and animals must overcome such sensory conflicts. In response to intense selection by insecticide baits that contain glucose, German cockroaches evolved glucose-aversion (GA), which confers behavioural resistance against baits. During courtship the male offers the female a nuptial gift that contains maltose, which expediates copulation. However, the female's saliva rapidly hydrolyses maltose into glucose, which causes GA females to dismount the courting male, thus reducing their mating success. Comparative analysis revealed two adaptive traits in GA males. They produce more maltotriose, which is more resilient to salivary glucosidases, and they initiate copulation faster than wild-type males, before GA females interrupt their nuptial feeding and dismount the male. Recombinant lines of the two strains showed that the two emergent traits of GA males were not genetically associated with the GA trait. Results suggest that the two courtship traits emerged in response to the altered sexual behaviour of GA females and independently of the male's GA trait. Although rapid adaptive evolution generates sexual mismatches that lower fitness, compensatory behavioural evolution can correct these sensory discrepancies.


Subject(s)
Courtship , Sexual Behavior, Animal , Animals , Humans , Female , Male , Sexual Behavior, Animal/physiology , Maltose , Copulation , Glucose
2.
Article in English | MEDLINE | ID: mdl-33956595

ABSTRACT

A Gram-stain-negative, rod-shaped, non-motile, non-spore-forming, aerobic bacterium, designated type strain SSI9T, was isolated from sand fly (Phlebotomus papatasi Scopoli; Diptera: Psychodidae) rearing substrate and subjected to polyphasic taxonomic analysis. Strain SSI9T contained phosphatidylethanolamine as a major polar lipid, MK-7 as the predominant quinone, and C16 : 1ω6c/C16 : 1ω7c, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 0 as the major cellular fatty acids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that SSI9T represents a member of the genus Sphingobacterium, of the family Sphingobacteriaceae sharing 96.5-88.0 % sequence similarity with other species of the genus Sphingobacterium. The results of multilocus sequence analysis using the concatenated sequences of the housekeeping genes recA, rplC and groL indicated that SSI9T formed a separate branch in the genus Sphingobacterium. The genome of SSI9T is 5 197 142 bp with a DNA G+C content of 41.8 mol% and encodes 4395 predicted coding sequences, 49 tRNAs, and three complete rRNAs and two partial rRNAs. SSI9T could be distinguished from other species of the genus Sphingobacterium with validly published names by several phenotypic, chemotaxonomic and genomic characteristics. On the basis of the results of this polyphasic taxonomic analysis, the bacterial isolate represents a novel species within the genus Sphingobacterium, for which the name Sphingobacterium phlebotomi sp. nov. is proposed. The type strain is SSI9T (=ATCC TSD-210T=LMG 31664T=NRRL B-65603T).


Subject(s)
Phlebotomus/microbiology , Sphingobacterium/classification , Sphingobacterium/isolation & purification , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fatty Acids/metabolism , Phosphatidylethanolamines/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sphingobacterium/genetics , Sphingobacterium/metabolism
3.
Proc Biol Sci ; 287(1921): 20192466, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32097587

ABSTRACT

Once emitted, semiochemicals are exposed to reactive environmental factors that may alter them, thus disrupting chemical communication. Some species, however, might have adapted to detect environmentally mediated breakdown products of their natural chemicals as semiochemicals. We demonstrate that air, water vapour and ultraviolet (UV) radiation break down unsaturated cuticular hydrocarbons (CHCs) of Periplaneta americana (American cockroach), resulting in the emission of volatile organic compounds (VOCs). In behavioural assays, nymphs strongly avoided aggregating in shelters exposed to the breakdown VOCs from cuticular alkenes. The three treatments (air, water vapour, UV) produced the same VOCs, but at different time-courses and ratios. Fourteen VOCs from UV-exposed CHCs elicited electrophysiological responses in nymph antennae; 10 were identified as 2-nonanone, 1-pentanol, 1-octanol, 1-nonanol, tetradecanal, acetic acid, propanoic acid, butanoic acid, pentanoic acid and hexanoic acid. When short-chain fatty acids were tested as a mix and a blend of the alcohols and aldehyde was tested as a second mix, nymphs exhibited no preference for control or treated shelters. However, nymphs avoided shelters that were exposed to VOCs from the complete 10-compound mix. Conditioned shelters (occupied by cockroaches with faeces and CHCs deposited on the shelters), which are normally highly attractive to nymphs, were also avoided after UV exposure, confirming that breakdown products from deposited metabolites, including CHCs, mediate this behaviour. Our results demonstrate that common environmental agents degrade CHCs into behaviourally active volatile compounds that potentially may serve as necromones or epideictic pheromones, mediating group dissolution.


Subject(s)
Alkenes/metabolism , Behavior, Animal/physiology , Periplaneta/physiology , Pheromones/metabolism , Animals , Hydrocarbons/metabolism , Social Behavior , Volatile Organic Compounds
4.
J Exp Zool B Mol Dev Evol ; 330(5): 265-278, 2018 07.
Article in English | MEDLINE | ID: mdl-29566459

ABSTRACT

The acquisition of genome sequences from a wide range of insects and other arthropods has revealed a broad positive correlation between the complexity of their chemical ecology and the size of their chemosensory gene repertoire. The German cockroach Blattella germanica is an extreme omnivore and has the largest chemosensory gene repertoire known for an arthropod, exceeding even the highly polyphagous spider mite Tetranychus urticae. While the Odorant Receptor family is not particularly large, with 123 genes potentially encoding 134 receptors (105 intact), the Gustatory Receptor family is greatly expanded to 431 genes potentially encoding 545 receptors (483 intact), the largest known for insects and second only to the spider mite. The Ionotropic Receptor family of olfactory and gustatory receptors is vastly expanded to at least 897 genes (604 intact), the largest size known in arthropods, far surpassing the 150 known from the dampwood termite Zootermopsis nevadensis. Commensurately, the Odorant Binding Protein family is expanded to the largest known for insects at 109 genes (all intact). Comparison with the far more specialized, but phylogenetically related termite, within the Dictyoptera, reveals considerable gene losses from the termite, and massive species-specific gene expansions in the cockroach. The cockroach has lost function of 11%-41% of these three chemoreceptor gene families to pseudogenization, and most of these are young events, implying rapid turnover of genes along with these major expansions, presumably in response to changes in its chemical ecology.


Subject(s)
Blattellidae/genetics , Insect Proteins/genetics , Receptors, Cell Surface/genetics , Animals , Evolution, Molecular , Feeding Behavior , Isoptera/genetics , Multigene Family/genetics , Phylogeny , Species Specificity , Taste
5.
Proc Natl Acad Sci U S A ; 112(51): 15678-83, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26644557

ABSTRACT

Aggregation of the German cockroach, Blattella germanica, is regulated by fecal aggregation agents (pheromones), including volatile carboxylic acids (VCAs). We demonstrate that the gut microbial community contributes to production of these semiochemicals. Chemical analysis of the fecal extract of B. germanica revealed 40 VCAs. Feces from axenic cockroaches (no microorganisms in the alimentary tract) lacked 12 major fecal VCAs, and 24 of the remaining compounds were represented at extremely low amounts. Olfactory and aggregation bioassays demonstrated that nymphs strongly preferred the extract of control feces over the fecal extract of axenic cockroaches. Additionally, nymphs preferred a synthetic blend of 6 fecal VCAs over a solvent control or a previously identified VCA blend. To test whether gut bacteria contribute to the production of fecal aggregation agents, fecal aerobic bacteria were cultured, isolated, and identified. Inoculation of axenic cockroaches with individual bacterial taxa significantly rescued the aggregation response to the fecal extract, and inoculation with a mix of six bacterial isolates was more effective than with single isolates. The results indicate that the commensal gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community. Our results highlight the pivotal role of gut bacteria in mediating insect-insect communication. Moreover, because the gut microbial community reflects the local environment, local plasticity in fecal aggregation pheromones enables colony-specific odors and fidelity to persistent aggregation sites.


Subject(s)
Blattellidae/physiology , Gastrointestinal Tract/microbiology , Pheromones/physiology , Animals , Communication , Feces/microbiology
6.
Proc Natl Acad Sci U S A ; 110(9): 3615-20, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23382193

ABSTRACT

Grooming, a common behavior in animals, serves the important function of removing foreign materials from body surfaces. When antennal grooming was prevented in the American cockroach, Periplaneta americana, field emission gun scanning electron microscopy images revealed that an unstructured substance accumulated on nongroomed antennae, covering sensillar pores, but not on groomed antennae of the same individuals. Gas chromatography analysis of antennal extracts showed that over a 24-h period nongroomed antennae accumulated three to four times more cuticular hydrocarbons than groomed antennae. Moreover, nongroomed antennae accumulated significantly more environmental contaminants from surfaces (stearic acid) and from air (geranyl acetate) than groomed antennae. We hypothesized that the accumulation of excess native cuticular hydrocarbons on the antennae would impair olfactory reception. Electroantennogram experiments and single-sensillum recordings supported this hypothesis: antennae that were prevented from being groomed were significantly less responsive than groomed antennae to the sex pheromone component periplanone-B, as well as to the general odorants geranyl acetate and hexanol. We therefore conclude that antennal grooming removes excess native cuticular lipids and foreign chemicals that physically and/or chemically interfere with olfaction, and thus maintains the olfactory acuity of the antennae. Similar experimental manipulations of the German cockroach (Blattella germanica), carpenter ant (Camponotus pennsylvanicus), and the housefly (Musca domestica), which use different modes of antennal grooming, support the hypothesis that antennal grooming serves a similar function in a wide range of insect taxa.


Subject(s)
Arthropod Antennae/physiology , Grooming/physiology , Insecta/physiology , Smell/physiology , Animals , Arthropod Antennae/ultrastructure , Environmental Pollutants , Hydrocarbons/metabolism , Insecta/ultrastructure , Integumentary System/physiology , Male , Sensilla/physiology , Sensilla/ultrastructure
7.
Curr Opin Insect Sci ; 63: 101182, 2024 06.
Article in English | MEDLINE | ID: mdl-38403065

ABSTRACT

The German cockroach is a valuable model for research on indoor pest management strategies and for understanding mechanisms of adaptive evolution under intense anthropogenic selection. Under the selection pressure of toxic baits, populations of the German cockroach have evolved a variety of physiological and behavioral resistance mechanisms. In this review, we focus on glucose aversion, an adaptive trait that underlies a behavioral resistance to baits. Taste polymorphism, a change in taste quality of glucose from sweet to bitter, causes cockroaches to avoid glucose-containing baits. We summarize recent findings, including the contribution of glucose aversion to olfactory learning-based avoidance of baits, aversion to other sugars, and assortative mating under sexual selection, which underscores the behavioral phenotype to all oligosaccharides that contain glucose. It is a remarkable example of how anthropogenic selection drove the evolution of an altered gustatory trait that reshapes the foraging ecology and sexual communication.


Subject(s)
Blattellidae , Glucose , Animals , Glucose/metabolism , Blattellidae/physiology , Taste/physiology , Avoidance Learning , Behavior, Animal/physiology
8.
J Econ Entomol ; 116(2): 529-537, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36734002

ABSTRACT

Gel bait formulations of insecticides have been shown to be highly effective in managing German cockroach (Blattella germanica L. [Blattodea: Ectobiidae]) populations. Three potential reasons for this are high palatability of baits, the use of slow-acting insecticides, and their horizontal transfer within aggregations, a phenomenon known as 'secondary mortality'. Our objective was to determine whether horizontal transfer can go beyond secondary, to tertiary and quaternary effects, and to compare various gel baits with different active ingredients. We fed adult females a bait and recorded their bait consumption, moribundity, and mortality. Groups of first instars were then exposed to the dead females and their feces, secondary mortality was quantified, and a new cohort of nymphs was then exposed to the feces and dead nymphs (for tertiary mortality); this process was repeated for quaternary mortality. This design did not distinguish among the major mechanisms of horizontal transfer of insecticides, namely coprophagy and contact with feces, exposure to regurgitated fluids, and cannibalism and necrophagy of nymphs. All the tested baits caused 100% mortality of the adult females that directly fed on the bait and high secondary mortality (average of >85%) within 48 hr. Baits containing either dinotefuran, emamectin benzoate, fipronil, or indoxacarb caused tertiary mortality (average of 15-70%), but only the fipronil and indoxacarb baits caused some quaternary mortality. The relative importance of secondary, tertiary, and quaternary transfer of the active ingredient remains to be determined in field populations of the German cockroach.


Subject(s)
Blattellidae , Cockroaches , Insecticides , Female , Animals , Nymph , Insect Control
9.
J Econ Entomol ; 116(2): 546-553, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36888567

ABSTRACT

Glucose aversion in the German cockroach, Blattella germanica (L.), results in behavioral resistance to insecticidal baits. Glucose-averse (GA) cockroaches reject foods containing glucose, even in relatively low concentrations, which protects the cockroaches from ingesting lethal amounts of toxic baits. Horizontal transfer of baits and the resulting secondary mortality have been documented in German cockroaches, including in insecticide resistant strains. However, the effects of the GA trait on secondary mortality have not been investigated. We hypothesized that ingestion of insecticide baits that contain glucose or glucose-containing disaccharides would result in behaviorally relevant glucose levels in the feces, possibly deterring coprophagy by GA nymphs. We fed adult female cockroaches hydramethylnon baits rich in either glucose, fructose, sucrose, or maltose and compared secondary mortality of GA and wild-type (WT) nymphs via coprophagy. When adult females were fed baits containing glucose, sucrose, or maltose and their feces offered to nymphs, secondary mortality was significantly lower in GA nymphs than in WT nymphs. However, survival of GA and WT nymphs was similar on feces generated by adult females fed fructose bait. Analysis of feces indicated that disaccharides in baits were hydrolyzed into glucose, some of which was excreted in the feces of females that ingested the bait. Based on these results, we caution that baits containing glucose or glucose-containing oligosaccharides may impede cockroach interventions; while GA adults and large nymphs avoid ingesting such baits, first instars reject the glucose-containing feces of any WT cockroaches that consumed the bait.


Subject(s)
Blattellidae , Cockroaches , Insecticides , Female , Animals , Glucose/pharmacology , Disaccharides/pharmacology , Maltose/pharmacology , Insecticides/pharmacology , Sucrose , Nymph , Fructose/pharmacology
10.
Pest Manag Sci ; 79(8): 2831-2839, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36935454

ABSTRACT

BACKGROUND: The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a global pest that feeds on >350 plant species and severely limits production of cultivated grasses, vegetable crops and cotton. An efficient way to detect new invasions at early stages, and monitor and quantify the status of established infestations of this pest is to deploy traps baited with species-specific synthetic sex pheromone lures. RESULTS: We re-examined the compounds in the sex pheromone glands of FAW females by gas chromatography-electroantennogram detector (GC-EAD), GC-mass spectrometry (MS), behavioral and field assays. A new bioactive compound from pheromone gland extracts was detected in low amounts (3.0% relative to (Z)-9-tetradecenyl acetate (Z9-14:OAc), the main pheromone component), and identified as nonanal. This aldehyde significantly increased attraction of male moths to a mix of Z9-14:OAc and (Z)-7-dodecenyl acetate in olfactometer assays. Adding nonanal to this two-component mix also doubled male trap catches relative to the two-component mix alone in cotton fields, whereas nonanal alone did not attract any moths. The addition of nonanal to each of three commercial pheromone lures also increased male catches by 53-135% in sorghum and cotton fields. CONCLUSION: The addition of nonanal to pheromone lures should improve surveillance, monitoring and control of FAW populations. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Moths , Sex Attractants , Animals , Female , Sex Attractants/pharmacology , Sex Attractants/chemistry , Spodoptera , Gas Chromatography-Mass Spectrometry , Pheromones , Aldehydes
11.
Curr Biol ; 33(16): 3529-3535.e4, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37531958

ABSTRACT

Insects rely on olfaction to guide a wide range of adaptive behaviors, including mate and food localization, mate choice, oviposition site selection, kin recognition, and predator avoidance.1 In nocturnal insects, such as moths2 and cockroaches,3 mate finding is stimulated predominantly by long-range species-specific sex pheromones, typically emitted by females. During courtship, at close range, males in most moth species emit a blend of pheromone compounds from an everted, often large, pheromone gland. While long-distance communication with sex pheromones has been remarkably well characterized in thousands of moth species,2,4 close-range chemosensory sexual communication remains poorly understood. We reveal that in the moth Chloridea virescens, the male pheromone consists of three distinct classes of compounds: de novo biosynthesized alcohols, aldehydes, acetates, and carboxylic acids that resemble the female's emissions; newly identified compounds that are unique to the male pheromone, such as aliphatic polyunsaturated hydrocarbons; and sequestered plant secondary compounds and hormone derivatives, including methyl salicylate (MeSA). Thus, males employ a mosaic pheromone blend of disparate origins that may serve multiple functions during courtship. We show that two olfactory receptors in female antennae are tuned to MeSA, which facilitates female acceptance of the male. Because MeSA is emitted by plants attacked by pathogens and herbivores,5 the chemosensory system of female moths was likely already tuned to this plant volatile, and males appear to exploit the female's preadapted sensory bias. Interestingly, while female moths (largely nocturnal) and butterflies (diurnal) diverged in their use of sensory modalities in sexual communication,6 MeSA is used by males of both lineages.


Subject(s)
Butterflies , Moths , Sex Attractants , Animals , Female , Male , Courtship , Pheromones , Sexual Behavior, Animal
12.
Commun Biol ; 5(1): 450, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551501

ABSTRACT

The evolution of adaptive behavior often requires changes in sensory systems. However, rapid adaptive changes in sensory traits can adversely affect other fitness-related behaviors. In the German cockroach, a gustatory polymorphism, 'glucose-aversion (GA)', supports greater survivorship under selection with glucose-containing insecticide baits and promotes the evolution of behavioral resistance. Yet, sugars are prominent components of the male's nuptial gift and play an essential role in courtship. Behavioral and chemical analyses revealed that the saliva of GA females rapidly degrades nuptial gift sugars into glucose, and the inversion of a tasty nuptial gift to an aversive stimulus often causes GA females to reject courting males. Thus, the rapid emergence of an adaptive change in the gustatory system supports foraging, but it interferes with courtship. The trade-off between natural and sexual selection under human-imposed selection can lead to directional selection on courtship behavior that favors the GA genotype.


Subject(s)
Courtship , Sexual Behavior, Animal , Animals , Female , Glucose , Humans , Male , Sugars , Taste
13.
PLoS One ; 17(8): e0271344, 2022.
Article in English | MEDLINE | ID: mdl-35921282

ABSTRACT

An integral part of the courtship sequence of the German cockroach (Blattella germanica) involves the male raising his wings to expose tergal glands on his dorsum. When a female cockroach feeds on the secretion of these glands, she is optimally positioned for mating. Core chemical components have been identified, but the effect of male diet on the quality of the tergal gland secretion remains unexplored. After validating the pivotal role of tergal feeding in mating, we starved or fed reproductively mature males for one week. We then paired each male with a sexually receptive female and observed their interactions through an infrared-sensitive camera. While starvation had no effect on male courtship behavior, it did influence the duration of female tergal feeding and mating outcomes. Females fed longer on the gland secretion of fed males, and fed males experienced greater mating success than starved males (73.9% vs. 48.3%, respectively). These results suggest that the quality of the tergal gland secretions, and by association mating success, are dependent on the nutritional condition of the male.


Subject(s)
Blattellidae , Courtship , Exocrine Glands , Nutritional Physiological Phenomena , Animals , Blattellidae/physiology , Exocrine Glands/physiology , Female , Male , Reproduction , Sexual Behavior, Animal , Wings, Animal
14.
Sci Rep ; 12(1): 14498, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008434

ABSTRACT

The importance of plant chemistry in the host specialization of phytophagous insects has been emphasized. However, only a few chemicals associated with host shifting have been characterized. Herein, we focus on the leaf-mining moth Acrocercops transecta (Gracillariidae) consisting of ancestral Juglans (Juglandaceae)- and derived Lyonia (Ericaceae)-associated host races. The females of the Lyonia race laid eggs on a cover glass treated with an L. ovalifolia leaf extract; the extract was fractionated using silica gel and ODS column chromatography to isolate the oviposition stimulants. From a separated fraction, two analogous Lyonia-specific triterpenoid glycosides were characterized as oviposition stimulants. Furthermore, we observed probable contact chemosensilla on the distal portion of the female antennae. Lyonia race females laid their eggs on the non-host Juglans after the leaves were treated with a Lyonia-specific oviposition stimulant, although they do not lay eggs on Juglans. These results suggest that Lyonia race females do not lay eggs on Juglans leaves because the leaves do not contain specific oviposition stimulant(s). Otherwise, the activity of the oviposition stimulants overcomes oviposition deterrents contained in Juglans leaves. This paper describes the roles of plant chemicals in the different preferences between host races associated with distantly related plant taxa.


Subject(s)
Ericaceae , Juglandaceae , Juglans , Moths , Animals , Female , Oviposition , Plant Leaves
15.
Chem Senses ; 36(7): 589-600, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21467150

ABSTRACT

Glucose is a universal phagostimulant in many animal species, including the cockroach Blattella germanica. However, some natural populations of B. germanica have been found that are behaviorally deterred from eating glucose. In dose-response studies, glucose was a powerful phagostimulant for wild-type cockroaches, but it strongly deterred feeding in a glucose-averse strain. Both strains, however, exhibited identical dose-response curves to other phagostimulants and deterrents. As a lead to electrophysiological and molecular genetics studies to investigate the mechanisms that underlie glucose-aversion, we used 2 assay paradigms to delineate which chemosensory appendages on the head contribute to the reception of various phagostimulatory and deterrent chemicals. Both simultaneous dual stimulation of the antenna and mouthparts of the insects and 2-choice preference tests in surgically manipulated insects showed that the glucose-averse behavior could be elicited through the gustatory systems of the antennae and mouthparts. The paraglossae alone were sufficient for maximum sensitivity to both phagostimulants and deterrents, including glucose as a deterrent in the glucose-averse strain. In addition to the paraglossae, the labial palps were more important than the maxillary palps in the reception of deterrents (caffeine in both strains and glucose in the glucose-averse strain). The maxillary palps, on the other hand, played a more important role in the reception of phagostimulants (fructose in both strains and glucose in the wild-type strain). Our results suggest that distinct inputs from the chemosensory system mediate opposite feeding responses to glucose in the wild-type and glucose-averse strains.


Subject(s)
Arthropod Antennae/drug effects , Arthropod Antennae/physiology , Blattellidae/anatomy & histology , Blattellidae/physiology , Feeding Behavior/drug effects , Feeding Behavior/physiology , Glucose/pharmacology , Animals , Blattellidae/drug effects , Dose-Response Relationship, Drug , Eating/drug effects , Eating/physiology
16.
J Exp Biol ; 214(Pt 10): 1707-13, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21525317

ABSTRACT

In ants, including Formica japonica, trophallaxis and grooming are typical social behaviors shared among nestmates. After depriving ants of either food or nestmates and then providing them with either food or nestmates, a behavioral change in type and frequency of social interactions was observed. We hypothesized that starvation and isolation affected levels of brain biogenic amines including dopamine (DA) and octopamine (OA) - neuromediators modifying various insect behaviors - and tested the relationship between brain biogenic amines and social behaviors of stressed ants. Ants starved for 7 days contained lower brain DA levels and they did not perform trophallaxis toward nestmates. Feeding starved ants sucrose solution re-established trophallaxis but not brain DA levels. The performance of trophallaxis induced recovery of brain DA content to the level of untreated ants. Ants that were isolated for 2 days displayed markedly increased OA levels, which following nestmate interactions, returned to levels similar to those of control (non-isolated) ants and ants isolated for 1 h. We conclude that: (1) starvation reduced brain DA level but had no significant effect on brain OA (trophallaxis recovered the brain DA levels), and (2) isolation increased brain OA level but had no effect on brain DA (trophallaxis and grooming events recovered the brain OA levels). We suggest that social interactions with nestmates influenced brain biogenic amine homeostasis in stressed F. japonica.


Subject(s)
Ants/metabolism , Brain/physiology , Dopamine/metabolism , Homeostasis/physiology , Octopamine/metabolism , Social Behavior , Starvation/metabolism , Analysis of Variance , Animals , Brain/metabolism , Chromatography, High Pressure Liquid , Japan , Observation , Statistics, Nonparametric
17.
Insects ; 12(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34442290

ABSTRACT

An association of food sources with odors prominently guides foraging behavior in animals. To understand the interaction of olfactory memory and food preferences, we used glucose-averse (GA) German cockroaches. Multiple populations of cockroaches evolved a gustatory polymorphism where glucose is perceived as a deterrent and enables GA cockroaches to avoid eating glucose-containing toxic baits. Comparative behavioral analysis using an operant conditioning paradigm revealed that learning and memory guide foraging decisions. Cockroaches learned to associate specific food odors with fructose (phagostimulant, reward) within only a 1 h conditioning session, and with caffeine (deterrent, punishment) after only three 1 h conditioning sessions. Glucose acted as reward in wild type (WT) cockroaches, but GA cockroaches learned to avoid an innately attractive odor that was associated with glucose. Olfactory memory was retained for at least 3 days after three 1 h conditioning sessions. Our results reveal that specific tastants can serve as potent reward or punishment in olfactory associative learning, which reinforces gustatory food preferences. Olfactory learning, therefore, reinforces behavioral resistance of GA cockroaches to sugar-containing toxic baits. Cockroaches may also generalize their olfactory learning to baits that contain the same or similar attractive odors even if they do not contain glucose.

18.
Insects ; 12(3)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801079

ABSTRACT

Saliva has diverse functions in feeding behavior of animals. However, the impact of salivary digestion of food on insect gustatory information processing is poorly documented. Glucose-aversion (GA) in the German cockroach, Blattella germanica, is a highly adaptive heritable behavioral resistance trait that protects the cockroach from ingesting glucose-containing-insecticide-baits. In this study, we confirmed that GA cockroaches rejected glucose, but they accepted oligosaccharides. However, whereas wild-type cockroaches that accepted glucose also satiated on oligosaccharides, GA cockroaches ceased ingesting the oligosaccharides within seconds, resulting in significantly lower consumption. We hypothesized that saliva might hydrolyze oligosaccharides, releasing glucose and terminating feeding. By mixing artificially collected cockroach saliva with various oligosaccharides, we demonstrated oligosaccharide-aversion in GA cockroaches. Acarbose, an alpha-glucosidase inhibitor, prevented the accumulation of glucose and rescued the phagostimulatory response and ingestion of oligosaccharides. Our results indicate that pre-oral and oral hydrolysis of oligosaccharides by salivary alpha-glucosidases released glucose, which was then processed by the gustatory system of GA cockroaches as a deterrent and caused the rejection of food. We suggest that the genetic mechanism of glucose-aversion support an extended aversion phenotype that includes glucose-containing oligosaccharides. Salivary digestion protects the cockroach from ingesting toxic chemicals and thus could support the rapid evolution of behavioral and physiological resistance in cockroach populations.

19.
Pest Manag Sci ; 77(2): 877-885, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32949086

ABSTRACT

BACKGROUND: Insect growth regulators disrupt insect development and reproduction. Chitin synthesis inhibitors (CSIs) allow the insect to grow normally, but because chitin is an essential component of the cuticle, formation of a new cuticle and ecdysis are prevented and the insect dies. CSIs can also kill embryos by disrupting their normal development. We evaluated the potential utility of novaluron in bait formulations against the German cockroach (Blattella germanica L.). RESULTS: The minimum novaluron intake that interfered with molting and reproduction was assessed by exposing nymphs and adult females to novaluron. Results showed that 1 day of feeding on 0.1% novaluron was sufficient to disrupt molting in nymphs and prevent adult females from developing viable oothecae. The long-term effects on gravid females were investigated by feeding females 0.1% novaluron for different 5-day intervals during successive stages of gestation. Results demonstrated that gravid females fed novaluron during any period of gestation were able to produce viable eggs. To determine if ingestion of novaluron affected mating success and fertility of adult males, males were fed novaluron and then allowed to mate with untreated virgin females. Males that fed on novaluron successfully mated, and the females produced viable oothecae. Finally, direct comparisons revealed that novaluron is equally effective by ingestion and topical application. CONCLUSIONS: Novaluron caused mortality in nymphs and interfered with ootheca production in adult females, but only before they formed an ootheca. It successfully reduced German cockroach populations in cages and has potential to be incorporated in cockroach baits.


Subject(s)
Blattellidae , Insecticides , Animals , Cockroaches , Eating , Female , Male , Phenylurea Compounds , Reproduction
20.
J Econ Entomol ; 114(5): 2189-2197, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34260722

ABSTRACT

The German cockroach, Blattella germanica (L.) (Blattodea: Ectobiidae), is a common pest of human-built structures worldwide. German cockroaches are generalist omnivores able to survive on a wide variety of foods. A number of studies have concluded that laboratory-reared B. germanica self-select diets with an approximate 1P:3C (protein-to-carbohydrate) ratio. We predicted that field-collected insects would exhibit more variable dietary preferences, related to the wide-ranging quality, quantity, and patchiness of foods available to them. We compared diet self-selection of B. germanica within apartments and in the laboratory by offering them a choice of two complementary diets with 1P:1C and 1P:11C ratios. We observed high variation in the population-level self-selection of these diets among individual apartment sites as well as among various life stages tested in laboratory-based assays. Significant differences between populations in various apartments as well as between populations maintained in the laboratory suggested that factors beyond temporary food scarcity influence diet choice. Nevertheless, we found significant correlations between the amounts of diets ingested by cockroaches in apartments and cockroaches from the same populations assayed in the laboratory, as well as between males, females, and nymphs from these populations. These findings suggest that females, males, and nymphs within apartments adapt to the local conditions and convergently prefer similar amounts of food of similar dietary protein content.


Subject(s)
Blattellidae , Animals , Diet , Female , Laboratories , Male , Nymph
SELECTION OF CITATIONS
SEARCH DETAIL