Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brief Bioinform ; 22(4)2021 07 20.
Article in English | MEDLINE | ID: mdl-33333548

ABSTRACT

Drugs are the imperial part of modern society, but along with their therapeutic effects, drugs can also cause adverse effects, which can be mild to morbid. Pharmacovigilance is the process of collection, detection, assessment, monitoring and prevention of adverse drug events in both clinical trials as well as in the post-marketing phase. The recent trends in increasing unknown adverse events, known as signals, have raised the need to develop an ideal system for monitoring and detecting the potential signals timely. The process of signal management comprises of techniques to identify individual case safety reports systematically. Automated signal detection is highly based upon the data mining of the spontaneous reporting system such as reports from health care professional, observational studies, medical literature or from social media. If a signal is not managed properly, it can become an identical risk associated with the drug which can be hazardous for the patient safety and may have fatal outcomes which may impact health care system adversely. Once a signal is detected quantitatively, it can be further processed by the signal management team for the qualitative analysis and further evaluations. The main components of automated signal detection are data extraction, data acquisition, data selection, and data analysis and data evaluation. This system must be developed in the correct format and context, which eventually emphasizes the quality of data collected and leads to the optimal decision-making based upon the scientific evaluation.


Subject(s)
Adverse Drug Reaction Reporting Systems , Data Mining , Databases, Factual , Electronic Data Processing , Pharmacovigilance , Humans
2.
Pharmaceutics ; 14(12)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36559215

ABSTRACT

Biologic-based medicines are used to treat a variety of diseases and account for around one-quarter of the worldwide pharmaceutical market. The use of biologic medications among cancer patients has resulted in substantial advancements in cancer treatment and supportive care. Biosimilar medications (or biosimilars) are very similar to the reference biologic drugs, although they are not identical. As patent protection for some of the most extensively used biologics begins to expire, biosimilars have the potential to enhance access and provide lower-cost options for cancer treatment. Initially, regulatory guidelines were set up in Europe in 2003, and the first biosimilar was approved in 2006 in Europe. Many countries, including the United States of America (USA), Canada, and Japan, have adopted Europe's worldwide regulatory framework. The use of numerous biosimilars in the treatment and supportive care of cancer has been approved and, indeed, the count is set to climb in the future around the world. However, there are many challenges associated with biosimilars, such as cost, immunogenicity, lack of awareness, extrapolation of indications, and interchangeability. The purpose of this review is to provide an insight into biosimilars, which include various options available for oncology, and the associated adverse events. We compare the regulatory guidelines for biosimilars across the world, and also present the latest trends and challenges in medical oncology both now and in the future, which will assist healthcare professionals, payers, and patients in making informed decisions, increasing the acceptance of biosimilars in clinical practice, increasing accessibility, and speeding up the health and economic benefits associated with biosimilars.

SELECTION OF CITATIONS
SEARCH DETAIL