Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Inorg Chem ; 62(43): 17870-17882, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37831503

ABSTRACT

Complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts. Cp2Ti(C2Ph)2 (where C2Ph = phenylethynyl) was reported to be weakly emissive in room-temperature (RT) fluid solution from its phenylethynyl-to-Ti 3LMCT state but readily photodecomposes. Coordination of CuX between the alkyne ligands to give Cp2Ti(C2Ph)2CuX (X = Cl, Br) has been shown to significantly increase the photostability, but such complexes are not emissive in RT solution. Herein, we investigate whether inhibition of alkyne-Ti-alkyne bond compression might be responsible for the increased photostability of the CuX complexes by investigating the decomposition of a structurally constrained analogue, Cp2Ti(OBET) (OBET = o-bis(ethynyl)tolane). To investigate the mechanism of nonradiative decay from the 3LMCT states in Cp2Ti(C2Ph)2CuX, the photophysical properties were investigated both upon deuteration and upon rigidifying in a poly(methyl methacrylate) film. These investigations suggested that inhibition of structural rearrangement may play a dominant role in increasing emission lifetimes and quantum yields. The bulkier Cp*2Ti(C2Ph)2CuBr was prepared and is emissive at 693 nm in RT THF solution with a photoluminescent quantum yield of 1.3 × 10-3 (τ = 0.18 µs). Time-dependent density functional theory (TDDFT) calculations suggest that emission occurs from a 3LMCT state dominated by Cp*-to-Ti charge transfer.

2.
Inorg Chem ; 61(29): 11366-11376, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35820113

ABSTRACT

Square-planar PtII complexes are of interest as dopants for the emissive layer of organic light-emitting diodes. Herein, the photophysics of three Pt bipyridyl complexes with the strongly e- withdrawing, high-field, 3,3,3-trifluoropropynyl ligand has been investigated. One complex, (phbpy)PtC2CF3 (phbpy = 6-phenyl-2,2'-dipyridyl), has also been characterized by single-crystal X-ray diffraction. All complexes reported are emissive in both RT CH2Cl2 solution (ΦPL = 0.007 to 0.027) and PMMA film (ΦPL = 0.25 to 0.42). The trifluoropropynyl ligand elevates the energy of the MLCT and LL'CT states above that of the IL π-π* state, resulting in IL emission in all cases. The emission energies of the trifluoropropynyl compounds are also blue-shifted relative to the analogous pentafluorophenylethynyl compounds, suggesting that the trifluoropropynyl ligand is one of the most electron-withdrawing alkynyl ligands. Rate constants for radiative and nonradiative deactivation were determined from experimentally determined values of ΦPL and excited-state lifetimes in both solution and PMMA films. The increase in ΦPL upon incorporation into PMMA film (rigidoluminescence) results from a decrease in the rate constant for non-radiative relaxation. Experimental activation energies for excited-state decay in combination with TDDFT are consistent with the rigidoluminescence resulting from an increase in the energy of the non-emissive triplet metal-centered state. Two of the complexes investigated, (Ph2bpy)Pt(C2CF3)2 and (t-Bu2bpy)Pt(C2CF3)2, where t-Bu2bpy = 4,4'-di-tert-butyl-2,2'-dipyridyl and Ph2bpy = 4,4'-diphenyl-2,2'-dipyridyl, exhibit concentration-dependent excimer emission (orange) along with monomer emission (blue), enabling fine-tuning of the emission color. However, excimer emission was absent in cured PMMA films up to the solubility limit for solution processing of (Ph2bpy)Pt(C2CF3)2 in CH2Cl2, demonstrating the diffusional nature of excimer formation.

3.
Inorg Chem ; 61(28): 10986-10998, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35786924

ABSTRACT

Transition-metal complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts due to the lack of deactivating d-d states. Herein, the synthesis and characterization of nine titanocene complexes of the formula Cp2Ti(C2Ar)2·MX (where Ar = phenyl, dimethylaniline, or triphenylamine; and MX = CuCl, CuBr, or AgCl) are presented. Solid-state structural characterization demonstrates that MX coordinates to the alkyne tweezers and CuX coordination has a greater structural impact than AgCl. All complexes, including the parent complexes without coordinated MX, are brightly emissive at 77 K (emission max between 575 and 767 nm), with the coordination of MX redshifting the emission in all cases except for the coordination of AgCl into Cp2Ti(C2Ph)2. TDDFT investigations suggest that emission is dominated by arylalkynyl-to-titanium 3LMCT in all cases except Cp2Ti(C2Ph)2·CuBr, which is dominated by CuBr-to-Ti charge transfer. In room-temperature fluid solution, only Cp2Ti(C2Ph)2 and Cp2Ti(C2Ph)2·AgCl are emissive, albeit with photoluminescent quantum yields ≤2 × 10-4. The parent complexes photodecompose in room-temperature solution with quantum yields, Φrxn, between 0.25 and 0.99. The coordination of MX decreases Φrxn by two to three orders of magnitude. There is a clear trend that Φrxn increases as the emission energy increases. This trend is consistent with a competition between energy-gap-law controlled nonradiative decay and thermally activated intersystem crossing between the 3LMCT state and the singlet transition state for decomposition.

4.
Inorg Chem ; 60(18): 14399-14409, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34495657

ABSTRACT

Complexes with ligand-to-metal charge-transfer (LMCT) excited states involving d0 metals represent a new design for photocatalysts. Herein, the photochemistry and photophysics of d0 titanocenes of the type Cp2Ti(C2R)2, where C2R = ethynylphenyl (C2Ph), 4-ethynyldimethylaniline (C2DMA), or 4-ethynyltriphenylamine (C2TPA), have been investigated. Cp2Ti(C2Ph)2 and Cp2Ti(C2DMA)2 have also been characterized by single-crystal X-ray diffraction. The two aryl rings in Cp2Ti(C2DMA)2 are nearly face-to-face in the solid state, whereas they are mutually perpendicular for Cp2Ti(C2Ph)2. All three complexes are brightly emissive at 77 K but photodecompose at room temperature when irradiated into their lowest-energy absorption band. The emission wavelengths and photodecomposition quantum yields are as follows: Cp2Ti(C2Ph)2, 575 nm and 0.65; Cp2Ti(C2TPA)2, 642 nm and 0.42; Cp2Ti(C2DMA)2, 672 nm and 0.25. Extensive benchmarking of the density functional theory (DFT) model against the structural data and of the time-dependent DFT (TDDFT) model against the absorption and emission data was performed using combinations of 13 different functionals and 4 basis sets. The model that predicted the absorption and emission data with the greatest fidelity utilized MN15/LANL2DZ for both the DFT optimization and the TDDFT. Computational analysis shows that absorption involves a transition to a 1LMCT state. Whereas the spectroscopic data for Cp2Ti(C2TPA)2 and Cp2Ti(C2DMA)2 are well modeled using the optimized structure of these complexes, Cp2Ti(C2Ph)2 required averaging of the spectra from multiple rotamers involving rotation of the Ph rings. Consistent with this finding, an energy scan of all rotamers showed a very flat energetic surface, with less than 1.3 kcal/mol separating the minimum and maximum. The computational data suggest that emission occurs from a 3LMCT state. Optimization of the 3LMCT state demonstrates compression of the C-Ti-C bond angle, consistent with the known products of photodecomposition.

5.
Inorg Chem ; 58(22): 15320-15329, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31686500

ABSTRACT

Time-resolved transient absorption spectroscopy and computational analysis of D-π-A complexes comprising FeII donors and TiIV acceptors with the general formula RCp2Ti(C2Fc)2 (where RCp = Cp*, Cp, and MeOOCCp) and TMSCp2Ti(C2Fc)(C2R) (where R = Ph or CF3) are reported. The transient absorption spectra are consistent with an FeIII/TiIII metal-to-metal charge-transfer (MMCT) excited state for all complexes. Thus, excited-state decay is assigned to back-electron transfer (BET), the lifetime of which ranges from 18.8 to 41 ps. Though spectroscopic analysis suggests BET should fall into the Marcus inverted regime, the observed kinetics are not consistent with this assertion. TDDFT calculations reveal that the singlet metal-to-metal charge-transfer (1MMCT) excited state for the FeII/TiIV complexes is not purely MMCT in nature but is contaminated with the higher-energy 1Fc (d-d) state. For the diferrocenyl complexes, RCp2Ti(C2Fc)2, the ratio of MMCT to Fc centered character ranges from 57:43 for the Cp* complex to 85:15 for the MeOOCCp complex. For the diferrocenyl and monoferrocenyl complexes investigated herein, the excited-state lifetimes decrease with increased 1Fc character. The effect of CuI coordination was also analyzed by time-resolved transient absorption spectroscopy and reveals the elongation of the excited-state lifetime by 3 orders of magnitude to 63 ns. The transient spectra and TDDFT analysis suggest that the long-lived excited state in Cp2Ti(C2Fc)2·CuX (where X is Cl or Br) is a triplet iron species with an electron arrangement of TiIV-3FeII-CuI.

6.
Inorg Chem ; 55(5): 2200-11, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26881903

ABSTRACT

Iron(II)-to-titanium(IV) metal-to-metal-charge transfer (MMCT) is important in the photosensitization of TiO2 by ferrocyanide, charge transfer in solid-state metal-oxide photocatalysts, and has been invoked to explain the blue color of sapphire, blue kyanite, and some lunar material. Herein, a series of complexes with alkynyl linkages between ferrocene (Fc) and Ti(IV) has been prepared and characterized by UV-vis spectroscopy and electrochemistry. Complexes with two ferrocene substituents include Cp2Ti(C2Fc)2, Cp*2Ti(C2Fc)2, and Cp2Ti(C4Fc)2. Complexes with a single ferrocene utilize a titanocene with a trimethylsilyl derivatized Cp ring, (TMS)Cp, and comprise the complexes (TMS)Cp2Ti(C2Fc)(C2R), where R = C6H5, p-C6H4CF3, and CF3. The complexes are compared to Cp2Ti(C2Ph)2, which lacks the second metal. Cyclic voltammetry for all complexes reveals a reversible Ti(IV/III) reduction wave and an Fe(II/III) oxidation that is irreversible for all complexes except (TMS)Cp2Ti(C2Fc)(C2CF3). All of the complexes with both Fc and Ti show an intense absorption (4000 M(-1)cm(-1) < ε < 8000 M(-1)cm(-1)) between 540 and 630 nm that is absent in complexes lacking a ferrocene donor. The energy of the absorption tracks with the difference between the Ti(IV/III) and Fe(III/II) reduction potentials, shifting to lower energy as the difference in potentials decreases. Reorganization energies, λ, have been determined using band shape analysis (2600 cm(-1) < λ < 5300 cm(-1)) and are in the range observed for other donor-acceptor complexes that have a ferrocene donor. Marcus-Hush-type analysis of the electrochemical and spectroscopic data are consistent with the assignment of the low-energy absorption as a MMCT band. TD-DFT analysis also supports this assignment. Solvatochromism is apparent for the MMCT band of all complexes, there being a bathochromic shift upon increasing polarizability of the solvent. The magnitude of the shift is dependent on both the electron density at Ti(IV) and the identity of the linker between the titanocene and the Fc. Complexes with a MMCT are photochemically stable, whereas Cp2Ti(C2Ph)2 rapidly decomposes upon photolysis.


Subject(s)
Ferrous Compounds/chemistry , Models, Chemical , Titanium/chemistry , Electrochemical Techniques/methods , Metallocenes , Oxidation-Reduction , Spectrophotometry, Ultraviolet , Thermodynamics
7.
J Am Chem Soc ; 134(32): 13266-75, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22808899

ABSTRACT

Reported are quantitative studies of the energy transfer from water-soluble CdSe/ZnS and CdSeS/ZnS core/shell quantum dots (QDs) to the Cr(III) complexes trans-Cr(N(4))(X)(2)(+) (N(4) is a tetraazamacrocycle ligand, X(-) is CN(-), Cl(-), or ONO(-)) in aqueous solution. Variation of N(4), of X(-), and of the QD size and composition allows one to probe the relationship between the emission/absorption overlap integral parameter and the efficiency of the quenching of the QD photoluminescence (PL) by the chromium(III) complexes. Steady-state studies of the QD PL in the presence of different concentrations of trans-Cr(N(4))(X)(2)(+) indicate a clear correlation between quenching efficiency and the overlap integral largely consistent with the predicted behavior of a Förster resonance energy transfer (FRET)-type mechanism. PL lifetimes show analogous correlations, and these results demonstrate that spectral overlap is an important consideration when designing supramolecular systems that incorporate QDs as photosensitizers. In the latter context, we extend earlier studies demonstrating that the water-soluble CdSe/ZnS and CdSeS/ZnS QDs photosensitize nitric oxide release from the trans-Cr(cyclam)(ONO)(2)(+) cation (cyclam = 1,4,8,11-tetraazacyclotetradecane) and report the efficiency (quantum yield) for this process. An improved synthesis of ternary CdSeS core/shell QDs is also described.


Subject(s)
Chromium/chemistry , Organometallic Compounds/chemistry , Photosensitizing Agents/chemistry , Quantum Dots , Energy Transfer , Fluorescence Resonance Energy Transfer
8.
Inorg Chem ; 51(20): 10477-9, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23013542

ABSTRACT

The trifluoropropynyl ligand -C≡CCF(3) was studied as a possible surrogate for the cyano ligand. Complexes of the type trans-[M(cyclam)(C≡CCF(3))(2)]OTf (where M = Cr(3+), Co(3+), and Rh(3+); OTf = trifluoromethanesulfonate) were prepared and then characterized by electronic spectroscopy and by cyclic voltammetry for the Co(3+) complex. The UV-vis spectra for all three bear a remarkable similarity to that of the trans-M(cyclam)(CN)(2)(+) cations. The trifluoropropynyl complex of Co(3+) shows electrochemical behavior nearly identical with that of its dicyano analogue. Metal-centered phosphorescence from the Rh(III) complex in room-temperature aqueous solution has a quantum yield of 0.12 and a lifetime of 73 µs, nearly 10 times higher than those of its dicyano analogue.

9.
Inorg Chem ; 50(19): 9354-64, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-21888339

ABSTRACT

Alkynyl complexes of the type [M(cyclam)(CCR)(2)]OTf (where cyclam = 1,4,8,11-tetraazacyclotetradecane; M = Rh(III) or Cr(III); and R = phenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-fluorophenyl, 1-naphthalenyl, 9-phenanthrenyl, and cyclohexyl) were prepared in 49% to 93% yield using a one-pot synthesis involving the addition of 2 equiv of RCCH and 4 equiv of BuLi to the appropriate [M(cyclam)(OTf)(2)]OTf complex in THF. The cis and trans isomers of the alkynyl complexes were separated using solubility differences, and the stereochemistry was characterized using infrared spectroscopy of the CH(2) rocking and NH bending region. All of the trans-[M(cyclam)(CCR)(2)]OTf complexes exhibit strong Raman bands between 2071 and 2109 cm(-1), ascribed to ν(s)(C≡C). The stretching frequencies for the Cr(III) complexes are 21-28 cm(-1) lower than for the analogous Rh(III) complexes, a result that can be interpreted in terms of the alkynyl ligands acting as π-donors. UV-vis spectra of the Cr(III) and Rh(III) complexes are dominated by strong charge transfer (CT) transitions. In the case of the Rh(III) complexes, these CT transitions obscure the metal centered (MC) transitions, but in the case of the Cr(III) complexes the MC transitions are unobscured and appear between 320 and 500 nm, with extinction coefficients (170-700 L mol(-1) cm(-1)) indicative of intensity stealing from the proximal CT bands. The Cr(III) complexes show long-lived (240-327 µs), structureless, MC emission centered between 731 and 748 nm in degassed room temperature aqueous solution. Emission characteristics are also consistent with the arylalkynyl ligands acting as π-donors. The Rh(III) complexes also display long-lived (4-21 µs), structureless, metal centered emission centered between 524 and 548 nm in degassed room temperature solution (CH(3)CN).

10.
Dalton Trans ; 50(6): 2233-2242, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33502417

ABSTRACT

A series of complexes with low-energy FeII to TiIV metal-to-metal charge-transfer (MMCT) transitions, Cp2Ti(C2Fc)2, Cp*2Ti(C2Fc)2, and MeOOCCp2Ti(C2Fc)2, was investigated using solvatochromism and resonance Raman spectroscopy (RRS) augmented with time-dependent density functional theory (TDDFT) calculations in order to interrogate the nature of the CT transitions. Computational models were benchmarked against the experimental UV-Vis spectra and B3LYP/6-31G(d) was found to most faithfully represent the spectra. The energy of the MMCT transition was measured in 15 different solvents and a multivariate fit to the Catalán solvent parameters - solvent polarizability (SP), solvent dipolarity (SdP), solvent basicity (SB), and solvent acidity (SA) - was performed. The effect of SP indicates a greater degree of electron delocalization in the excited state (ES) than the ground state (GS). The small negative solvatochromism with respect to SdP indicates a smaller dipole moment in the ES than the GS. The effect of SB is consistent with charge-transfer to Ti. Upon excitation into the MMCT absorption band, the RRS data show enhancement of the alkyne stretching modes and of the out-of-plane bending modes of the cyclopentadienyl ring connected to Fe and the alkyne bridge. This is consistent with changes in the oxidation states of Ti and Fe, respectively. The higher-energy transitions (350-450 nm) show enhancement of vibrational modes consistent with ethnylcyclopentadienyl to Ti ligand-to-metal charge transfer (LMCT). The RRS data is consistent with the TDDFT predicted character of these transitions. TDDFT suggests that the lowest-energy transition in Cp2Ti(C2Fc)2CuI, where CuI is coordinated between the alkynes, retains its FeII to TiIV MMCT character, in agreement with the RRS data, but that the lowest-energy transitions have significant CuI to Ti character. For Cp2Ti(C2Fc)2CuI, excitation into the low-energy MMCT absorption band results in selective enhancement of the symmetric alkynyl stretching mode.

11.
Inorg Chem ; 49(3): 833-8, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20038123

ABSTRACT

Electronic energy transfer can fall into two limiting cases. When the rate of the energy transfer back reaction is much faster than relaxation of the acceptor excited state, equilibrium between the donor and acceptor excited states is achieved and only the equilibrium constant for the energy transfer can be measured. When the rate of the back reaction is much slower than relaxation of the acceptor, the energy transfer is irreversible and only the forward rate constant can be measured. Herein, we demonstrate that with trans-[Cr(d(4)-cyclam)(CN)(2)](+) as the donor and either trans-[Cr([15]ane-ane-N(4))(CN)(2)](+) or trans-[Cr(cyclam)(CN)(2)](+) as the acceptor, both limits can be obtained by control of the donor concentration. The equilibrium constant and rate constant for the case in which trans-[Cr([15]ane-ane-N(4))(CN)(2)](+) is the acceptor are 0.66 and 1.7 x 10(7) M(-1) s(-1), respectively. The equilibrium constant is in good agreement with the value of 0.60 determined using the excited state energy gap between the donor and acceptor species. For the thermoneutral case in which trans-[Cr(cyclam)(CN)(2)](+) is the acceptor, an experimental equilibrium constant of 0.99 was reported previously, and the rate constant has now been measured as 4.0 x 10(7) M(-1) s(-1).

12.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 10): 1562-1565, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33117564

ABSTRACT

Bis[η5-(tert-butoxyca-rbonyl)-cyclo-penta-dien-yl]di-chlorido-titanium(IV), [Ti(C10H13O2)2Cl2], was synthesized from LiCpCOOt-Bu using TiCl4, and was characterized by single-crystal X-ray diffraction and 1H NMR spectroscopy. The distorted tetra-hedral geometry about the central titanium atom is relatively unchanged compared to Cp2TiCl2. The complex exhibits elongation of the titanium-cyclo-penta-dienyl centroid distances [2.074 (3) and 2.070 (3) Å] and a contraction of the titanium-chlorine bond lengths [2.3222 (10) Šand 2.3423 (10) Å] relative to Cp2TiCl2. The dihedral angle formed by the planes of the Cp rings [52.56 (13)°] is smaller than seen in Cp2TiCl2. Both ester groups extend from the same side of the Cp rings, and occur on the same side of the complex as the chlorido ligands. The complex may serve as a convenient synthon for titanocene complexes with carboxyl-ate anchoring groups for binding to metal oxide substrates.

13.
Inorg Chem ; 47(24): 11452-4, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18998626

ABSTRACT

Arylethynylchromium(III) complexes of the form trans-[Cr(cyclam)(CCC(6)H(4)R)(2)]OTf (where cyclam = 1,4,8,11-tetraazacyclotetradecane, R = H, CH(3), or CF(3) in the para position, and OTf = trifluoromethanesulfonate) have been prepared and characterized by IR spectroscopy and X-ray diffraction. The complexes are emissive with excited-state lifetimes in a deoxygenated fluid solution between 200 and 300 micros.

14.
Dalton Trans ; 47(32): 10953-10964, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30019726

ABSTRACT

The synthesis, spectroscopic, and electrochemical characterization of oxidatively stable D-π-A compounds of the form (Me2CpC2Fc)2TiCl2 and RCp2Ti(C2Fc)2CuX (where Fc = ferrocenyl) are reported. Oxidative stability enabled by the addition of CuX is evidenced by voltammagrams of the RCp2Ti(C2Fc)2CuX compounds which all display two chemically-reversible 1e- FeIII/II couples, indicative of electronic communication between the Fc- termini. Differential pulse voltammetry (DPV) in CH2Cl2/[n-Bu4N][PF6], demonstrated that the redox potential difference between the two 1e- FeIII/II couples (ΔE1/2) is between 112 mV and 146 mV, being most pronounced with the electron rich Cp*2Ti(C2Fc)2CuBr. The ΔE1/2 values were unaffected by solvent (THF) and displayed only a small dependence on the identity of the counterion, either PF6- or B(C6F5)4-. For each complex with a measurable ΔE1/2 value, spectroelectrochemical experiments were performed in CH2Cl2/[n-Bu4N][PF6] and gave clear evidence of both the one-electron oxidized mixed-valent (MV) state and the two-electron oxidized state, each with distinct spectroscopic signatures. The MV states of these complexes showed absorbance between 820 and 940 nm which were replaced with a higher energy feature following a second oxidation. A very similar absorption band was also observed in the one-electron oxidized state of an analogue with only a single Fc substituent, namely TMSCp2Ti(C2Fc)(C2Ph)CuBr, suggesting this feature is not an FeII/FeIII intravalence charge-transfer (IVCT) band. Despite DFT calculations suggesting a pathway exists for electronic coupling, NIR spectroscopy on the MV states gave no evidence of an FeII/FeIII IVCT. Possible contributions to ΔE1/2 from inductive effects and a superexchange mechanism are discussed.

15.
Dalton Trans ; 46(44): 15195-15199, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29068451

ABSTRACT

A titanocene based metalloligand, Cp*2Ti(C22-py)2, was synthesized and coordinated to either Cu(i) or Pd(ii). The metalloligand binds Cu(i) between its alkynes and Pd(ii) between its pyridinyl rings, acting as a trans-bidentate ligand. In order to bind Pd(ii), significant structural rearrangements were necessary, which required the flexibility of the C-Ti-C hinge on the titanocene metalloligand.

16.
Inorg Chem ; 35(23): 6746-6754, 1996 Nov 06.
Article in English | MEDLINE | ID: mdl-11666838

ABSTRACT

The Ru(2) and RuNi derivatives of 1,8-bis(10,15,20-trimesityl-5-porphyrinato)anthracene-a recently reported cofacial diporphyrin ligand comprising two hindered porphyrins spanned by an anthracene bridge-have been synthesized. Both Ru(2)(DPAHM) and RuNi(DPAHM) are extremely reactive species that apparently contain 14-electron Ru(II) centers and, as is the case for their monoporphyrin analog, (5,10,15,20-tetramesitylporphyrinato)ruthenium [Ru(TMP)], must be rigorously protected from oxygen, nitrogen, and other ligating agents. In addition, these electron-deficient Ru(II) porphyrins all appear to bind aromatic solvents such as benzene and toluene, the weakest ligating solvents in which these Ru(II) porphyrins have been found soluble. Ru(TMP) and its metallodiporphyrin analogs, Ru(2)(DPAHM) and RuNi(DPAHM), catalyze H(2)/D(2) exchange in benzene solution and as solids. When adsorbed on a particularly nonpolar carbon support, these Ru(II) porphyrins all manifest significant activity with respect to catalytic H(2)/D(2) exchange [approximately 40 turnovers s(-)(1), when normalized for Ru(II) content]. In addition, these molecules slowly catalyze the exchange of H(2) into deuterated aromatic hydrocarbons and, in the absence of solvent, the exchange of D(2) into CH(4). Kinetic studies of H(2)/D(2) exchange catalyzed by these Ru(II) porphyrins on carbon supports indicate that exchange is likely to be effected by one face of a single Ru(TMP) moiety. The activity of each supported catalyst was suppressed by the presence of ligands, either exogenous (CO irreversibly and N(2) reversibly) or from polar functionalities on the surface of the supporting matrix.

17.
Inorg Chem ; 45(9): 3789-93, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16634615

ABSTRACT

Macrocyclic complexes of the type trans-[Cr(N4)(CN)2]+, where N4 = cyclam, 1,11-C3-cyclam, and 1,4-C2-cyclam demonstrate significant variation in their room-temperature excited-state behavior; namely, the lifetimes of the 2Eg (Oh) excited states are 335, 23, and 0.24 micros, respectively. The lifetimes of these complexes have been measured in acidified H2O/dimethyl sulfoxide over the temperature range between -30 and +95 degrees C. Arrhenius activation parameters were calculated from these data. There was very little variation in the values of the Arrhenius preexponential factor between these three complexes, whereas the value of Ea is 40.6 kJ/mol for the cyclam complex, 35.5 kJ/mol for the 1,11-C3-cyclam complex, and 22.3 kJ/mol for the 1,4-C2-cyclam complex. Thus, differences in the room-temperature excited-state lifetimes can be rationalized based on the competition between thermally independent nonradiative relaxation and a thermally activated channel. To test whether a photodissociation mechanism involving Cr-macrocyclic N bond cleavage is a plausible explanation for the thermally activated relaxation pathway, samples of the cyclam complex were photolyzed in acidified D(2)O. A marked increase in the lifetime after photolysis demonstrated the occurrence of photodeuteration and thus a likely photodissociation of a macrocyclic N.

18.
Inorg Chem ; 44(25): 9518-26, 2005 Dec 12.
Article in English | MEDLINE | ID: mdl-16323939

ABSTRACT

The synthesis and characterization of several Cr(III) complexes of the constrained macrocyclic ligand 1,11-C3-cyclam (1,4,8,11-tetraazabicyclo[9.3.3]heptadecane) is reported. Only trans complexes are formed, and the structure of trans-[Cr(1,11-C3-cyclam)Cl2]PF6 is presented. The chemical and photophysical behavior of the 1,11-C3-cyclam complexes are compared with those of the corresponding cyclam (1,4,8,11 tetraazacyclotetradecane) and 1,4-C2-cyclam (1,4,8,11-tetraazabicyclo[10.2.2]hexadecane) complexes. The aquation rate of trans-[Cr(1,11-C3-cyclam)Cl2]+ is similar to that of the corresponding 1,4-C2-cyclam complex and is more than 5 orders of magnitude faster than the cyclam counterpart. A monotonic increase in the extinction coefficient is observed on going from the cyclam complexes to the 1,11-C3-cyclam complexes to the 1,4-C2-cyclam complexes, and this is related to the degree of centrosymmetry in each complex. The trans-[Cr(1,11-C3-cyclam)(CN)2]+ complex is a weak emitter in aqueous solution with a room-temperature emission maximum at 724 nm (tau=23 micros). Like the corresponding 1,4-C2-cyclam complex (tau=0.24 micros), the 1,11-C3-cyclam complex shows no deuterium-isotope effect in room-temperature solution. This is in marked contrast to the corresponding cyclam complex which has an emission lifetime of 335 micros and a significant deuterium isotope effect in room-temperature solution. Low temperature (77K) data are also presented in an attempt to understand the differences in photophysical behavior.


Subject(s)
Aza Compounds/chemistry , Chromium/chemistry , Lactams, Macrocyclic/chemistry , Organometallic Compounds/chemistry , Crystallography, X-Ray , Kinetics , Lactams, Macrocyclic/chemical synthesis , Ligands , Models, Molecular , Organometallic Compounds/chemical synthesis , Photochemistry , Sensitivity and Specificity , Spectrophotometry, Ultraviolet/methods , Stereoisomerism
19.
Inorg Chem ; 41(5): 1229-35, 2002 Mar 11.
Article in English | MEDLINE | ID: mdl-11874360

ABSTRACT

The luminescence lifetimes of N-deuterated Cr(III) complexes of macrocyclic tetraamine ligands, trans-CrN(4)X(2)(n)()(+), are substantially longer than those of their undeuterated counterparts in room temperature solution. Thus, excited-state emission quenching of the longer lived species by the shorter lived species may be studied by analyzing the decay profile following pulsed excitation. Flash photolysis experiments were carried out for three deuterated/undeuterated pairs of trans-CrN(4)X(2)(n)()(+) complexes (where X = CN-, NH(3), and F-). For the trans-Cr(cyclam)(CN)(2)(+) system in H(2)O, it was determined that energy transfer was occurring between the deuterated and undeuterated species. Although the rate constant of energy transfer was too fast to measure explicitly, it could be bracketed as k(et) >>7 x 10(6) M(-1) s(-1). For this reaction it was possible to measure an equilibrium constant which was very near 1.0. For trans-Cr(cyclam)(NH(3))(2)(3+) in DMSO, it was also established that energy transfer was occurring and rate constants of 2.4 x 10(6) M(-1) s(-1) (mu = 0.1) and 9.7 x 10(6) M(-1) s(-1) (mu = 1.0) were determined by a Stern-Volmer analysis. For trans-Cr(tet a)F(2+) in H(2)O, no energy transfer was observed, which implies that the rate constant is <<3 x 10(5) M(-1) s(-1). Because these energy-transfer reactions represent self-exchange energy transfer and are thus thermoneutral, we are able to analyze the results using Marcus theory and draw some conclusions about the relative importance of nuclear reorganization and electronic factors in the overall rate.


Subject(s)
Chromium/chemistry , Organometallic Compounds/chemistry , Algorithms , Electrochemistry , Energy Transfer , Kinetics , Solutions , Stereoisomerism
20.
Inorg Chem ; 42(3): 742-9, 2003 Feb 10.
Article in English | MEDLINE | ID: mdl-12562188

ABSTRACT

The synthesis and characterization of a new constrained tetraazamacrocyclic ligand, 1,4,8,11-tetraazabicyclo[9.3.3]heptadecane (1,11-C(3)-cyclam), is reported. Because of its basicity, this ligand (pK(a) of the protonated form >13.5) requires aprotic solvents for its metalation reactions. Two complexes of this ligand, [Ni(1,11-C(3)-cyclam](OTf)(2) and [Co(1,11-C(3)-cyclam)(NCS)(2)](OTf), have been characterized by single-crystal X-ray crystallography. For the Ni(II) complex, the 1,5-diazacyclooctane (daco) subunit of the ligand is in the chair-boat conformation, whereas that same subunit in the Co(III) complex is in the chair-chair conformation. For the Ni(II) complex, C(12) and H(12a) block one of the coordination sites. The (1)H and (13)C NMR spectra of the Ni(II) complex in D(2)O have very sharp resonances, indicative of low-spin Ni(II). The resonance for H(12a) appears at 4.5 ppm, suggesting an interaction with Ni(II). In acetonitrile, the (1)H and (13)C spectra are broadened, indicative of a low-spin/high-spin equilibrium due to axial coordination by acetonitrile. C(12) experiences the greatest degree of broadening in the (13)C NMR spectrum. Variable-temperature NMR spectroscopy from -70 to +80 degrees C shows no significant change as a function of temperature. The electronic spectrum of the Ni(II) complex (lambda(max) = 449.9 nm) is consistent with steric and electronic factors for this complex.


Subject(s)
Alkanes/chemical synthesis , Heterocyclic Compounds, 2-Ring/chemical synthesis , Nickel/chemistry , Organometallic Compounds/chemical synthesis , Crystallography, X-Ray , Heterocyclic Compounds/chemical synthesis , Ligands , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Structure , Solvents , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL