Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 150(2): 251-63, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22817889

ABSTRACT

Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.


Subject(s)
Genome-Wide Association Study , Melanoma/genetics , Mutagenesis , Ultraviolet Rays , Amino Acid Sequence , Cells, Cultured , Exome , Humans , Melanocytes/metabolism , Models, Molecular , Molecular Sequence Data , Proto-Oncogene Proteins B-raf/genetics , Sequence Alignment , rac1 GTP-Binding Protein/genetics
2.
Plant J ; 118(5): 1455-1474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38394181

ABSTRACT

Class I glutaredoxins (GRXs) are catalytically active oxidoreductases and considered key proteins mediating reversible glutathionylation and deglutathionylation of protein thiols during development and stress responses. To narrow in on putative target proteins, it is mandatory to know the subcellular localization of the respective GRXs and to understand their catalytic activities and putative redundancy between isoforms in the same compartment. We show that in Arabidopsis thaliana, GRXC1 and GRXC2 are cytosolic proteins with GRXC1 being attached to membranes through myristoylation. GRXC3 and GRXC4 are identified as type II membrane proteins along the early secretory pathway with their enzymatic function on the luminal side. Unexpectedly, neither single nor double mutants lacking both GRXs isoforms in the cytosol or the ER show phenotypes that differ from wild-type controls. Analysis of electrostatic surface potentials and clustering of GRXs based on their electrostatic interaction with roGFP2 mirrors the phylogenetic classification of class I GRXs, which clearly separates the cytosolic GRXC1 and GRXC2 from the luminal GRXC3 and GRXC4. Comparison of all four studied GRXs for their oxidoreductase function highlights biochemical diversification with GRXC3 and GRXC4 being better catalysts than GRXC1 and GRXC2 for the reduction of bis(2-hydroxyethyl) disulfide. With oxidized roGFP2 as an alternative substrate, GRXC1 and GRXC2 catalyze the reduction faster than GRXC3 and GRXC4, which suggests that catalytic efficiency of GRXs in reductive reactions depends on the respective substrate. Vice versa, GRXC3 and GRXC4 are faster than GRXC1 and GRXC2 in catalyzing the oxidation of pre-reduced roGFP2 in the reverse reaction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytosol , Glutaredoxins , Glutaredoxins/metabolism , Glutaredoxins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/enzymology , Cytosol/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Secretory Pathway , Phylogeny
3.
Plant Cell ; 34(4): 1375-1395, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35078237

ABSTRACT

Redox processes are at the heart of universal life processes, such as metabolism, signaling, or folding of secreted proteins. Redox landscapes differ between cell compartments and are strictly controlled to tolerate changing conditions and to avoid cell dysfunction. While a sophisticated antioxidant network counteracts oxidative stress, our understanding of reductive stress responses remains fragmentary. Here, we observed root growth impairment in Arabidopsis thaliana mutants of mitochondrial alternative oxidase 1a (aox1a) in response to the model thiol reductant dithiothreitol (DTT). Mutants of mitochondrial uncoupling protein 1 (ucp1) displayed a similar phenotype indicating that impaired respiratory flexibility led to hypersensitivity. Endoplasmic reticulum (ER) stress was enhanced in the mitochondrial mutants and limiting ER oxidoreductin capacity in the aox1a background led to synergistic root growth impairment by DTT, indicating that mitochondrial respiration alleviates reductive ER stress. The observations that DTT triggered nicotinamide adenine dinucleotide (NAD) reduction in vivo and that the presence of thiols led to electron transport chain activity in isolated mitochondria offer a biochemical framework of mitochondrion-mediated alleviation of thiol-mediated reductive stress. Ablation of transcription factor Arabidopsis NAC domain-containing protein17 (ANAC017) impaired the induction of AOX1a expression by DTT and led to DTT hypersensitivity, revealing that reductive stress tolerance is achieved by adjusting mitochondrial respiratory capacity via retrograde signaling. Our data reveal an unexpected role for mitochondrial respiratory flexibility and retrograde signaling in reductive stress tolerance involving inter-organelle redox crosstalk.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Signal Transduction/physiology , Sulfhydryl Compounds/metabolism , Transcription Factors/metabolism
4.
Plant Cell ; 34(11): 4428-4452, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35938694

ABSTRACT

Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.


Subject(s)
Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Mammals/metabolism
5.
Chem Res Toxicol ; 37(2): 292-301, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38189788

ABSTRACT

This study aims to enhance the understanding of the environmental risks associated with nanomaterials, particularly nanofibers. Previous research suggested that silver fibers exhibit higher toxicity (EC50/48h 1.6-8.5 µg/L) compared to spherical silver particles (EC50/48h 43 µg/L). To investigate the hypothesis that toxicity is influenced by the morphology and size of nanomaterials, various silver nanofibers with different dimensions (length and diameter) were selected. The study assessed their toxicity toward Daphnia magna using the 48 h immobilization assay. The EC50 values for the different fibers ranged from 122 to 614 µg/L. Subsequently, the study quantified the uptake and distribution of two representative nanofibers in D. magna neonates by employing digestion and imaging mass spectrometry in the form of laser-ablation-ICP-MS. A novel sample preparation method was utilized, allowing the analysis of whole, intact daphnids, which facilitated the localization of silver material and prevented artifacts. The results revealed that, despite the similar ecotoxicity of the silver fibers, the amount of silver associated with the neonates differed by a factor of 2-3. However, both types of nanofibers were primarily found in the gut of the organisms. In conclusion, the findings of this study do not support the expectation that the morphology or size of silver materials affect their toxicity to D. magna.


Subject(s)
Metal Nanoparticles , Water Pollutants, Chemical , Animals , Daphnia magna , Silver/toxicity , Silver/chemistry , Daphnia , Water Pollutants, Chemical/toxicity , Metal Nanoparticles/chemistry
6.
Environ Sci Technol ; 58(9): 4302-4313, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38394333

ABSTRACT

The pollution of the marine environment with plastic debris is expected to increase, where ocean currents and winds cause their accumulation in convergence zones like the North Pacific Subtropical Gyre (NPSG). Surface-floating plastic (>330 µm) was collected in the North Pacific Ocean between Vancouver (Canada) and Singapore using a neuston catamaran and identified by Fourier-transform infrared spectroscopy (FT-IR). Baseline concentrations of 41,600-102,700 items km-2 were found, dominated by polyethylene and polypropylene. Higher concentrations (factors 4-10) of plastic items occurred not only in the NPSG (452,800 items km-2) but also in a second area, the Papaha̅naumokua̅kea Marine National Monument (PMNM, 285,200 items km-2). This second maximum was neither reported previously nor predicted by the applied ocean current model. Visual observations of floating debris (>5 cm; 8-2565 items km-2 and 34-4941 items km-2 including smaller "white bits") yielded similar patterns of baseline pollution (34-3265 items km-2) and elevated concentrations of plastic debris in the NPSG (67-4941 items km-2) and the PMNM (295-3748 items km-2). These findings suggest that ocean currents are not the only factor provoking plastic debris accumulation in the ocean. Visual observations may be useful to increase our knowledge of large-scale (micro)plastic pollution in the global oceans.


Subject(s)
Environmental Monitoring , Plastics , Environmental Monitoring/methods , Oceans and Seas , Pacific Ocean , Spectroscopy, Fourier Transform Infrared , Waste Products/analysis , Canada
7.
Plant Cell ; 32(10): 3324-3345, 2020 10.
Article in English | MEDLINE | ID: mdl-32796121

ABSTRACT

NADH and NAD+ are a ubiquitous cellular redox couple. Although the central role of NAD in plant metabolism and its regulatory role have been investigated extensively at the biochemical level, analyzing the subcellular redox dynamics of NAD in living plant tissues has been challenging. Here, we established live monitoring of NADH/NAD+ in plants using the genetically encoded fluorescent biosensor Peredox-mCherry. We established Peredox-mCherry lines of Arabidopsis (Arabidopsis thaliana) and validated the biophysical and biochemical properties of the sensor that are critical for in planta measurements, including specificity, pH stability, and reversibility. We generated an NAD redox atlas of the cytosol of living Arabidopsis seedlings that revealed pronounced differences in NAD redox status between different organs and tissues. Manipulating the metabolic status through dark-to-light transitions, respiratory inhibition, sugar supplementation, and elicitor exposure revealed a remarkable degree of plasticity of the cytosolic NAD redox status and demonstrated metabolic redox coupling between cell compartments in leaves. Finally, we used protein engineering to generate a sensor variant that expands the resolvable NAD redox range. In summary, we established a technique for in planta NAD redox monitoring to deliver important insight into the in vivo dynamics of plant cytosolic redox metabolism.


Subject(s)
Arabidopsis/metabolism , Biosensing Techniques/methods , Cytosol/metabolism , Luminescent Proteins/genetics , NAD/metabolism , Arabidopsis/genetics , Carbon/metabolism , Fluorometry/methods , Hydrogen-Ion Concentration , Luminescent Proteins/metabolism , Malates/metabolism , Mitochondria/metabolism , NAD/analysis , Oxidation-Reduction , Plants, Genetically Modified , Seedlings/genetics , Seedlings/metabolism , Red Fluorescent Protein
8.
Arch Phys Med Rehabil ; 104(12): 2035-2042, 2023 12.
Article in English | MEDLINE | ID: mdl-37329968

ABSTRACT

OBJECTIVE: To quantify therapy-attributable effects of a comprehensive inpatient rehabilitation program for lower limb lymphedema (LLL) and to compare the levels of health-related quality of life (HRQL) to population-based norms. DESIGN: Naturalistic prospective cohort study with intra-individual control of effects. SETTING: Rehabilitation hospital. PARTICIPANTS: Patients with LLL (N=67; 46 women). INTERVENTIONS: Comprehensive, multidisciplinary inpatient rehabilitation with 45-60 hours of therapy. MAIN OUTCOME MEASURES: Short Form 36 (SF-36) for HRQL, lymphedema-specific Freiburg Quality of Life Assessment for lymphatic disorders, Short Version (FLQA-lk), knee-specific Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), and Symptom Checklist-90Standard (SCL-90S). Observed pre/post rehabilitation effects were individually corrected by subtracting the home waiting-time effects and expressed as standardized effect sizes (ESs) and standardized response means (SRMs). Score differences to norms were quantified by standardized mean differences (SMDs). RESULTS: Participants were on average aged 60.5 years, not yet obese, and had 3 comorbidities (n=67). The greatest improvement was in HRQL on the FLQA-lk with ES=0.767/SRM=0.718, followed by improvements in pain and function with ES/SRM=0.430-0.495 on the SF-36, FLQA-lk, and KOS-ADL (all P<.001). Vitality, mental health, emotional well-being, and interpersonal sensitivity improved most by ES/SRM=0.341-0.456 on all 4 measures (all P≤.003). Post rehabilitation scores were significantly higher than population norms on SF-36 bodily pain (SMD=1.140), vitality (SMD=0.886), mental health (SMD=0.815), and general health (SMD=0.444) (all P<.001), and comparable on the other scales. CONCLUSIONS: Those affected by LLL stages II and III benefited substantially from the intervention, attaining equal or higher levels of HRQL than expected compared with the general population norms. Multidisciplinary, inpatient rehabilitation should be recommended for LLL management.


Subject(s)
Lymphedema , Quality of Life , Humans , Female , Activities of Daily Living , Leg , Inpatients , Prospective Studies , Pain
9.
Proc Natl Acad Sci U S A ; 117(1): 741-751, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871212

ABSTRACT

Seeds preserve a far developed plant embryo in a quiescent state. Seed metabolism relies on stored resources and is reactivated to drive germination when the external conditions are favorable. Since the switchover from quiescence to reactivation provides a remarkable case of a cell physiological transition we investigated the earliest events in energy and redox metabolism of Arabidopsis seeds at imbibition. By developing fluorescent protein biosensing in intact seeds, we observed ATP accumulation and oxygen uptake within minutes, indicating rapid activation of mitochondrial respiration, which coincided with a sharp transition from an oxidizing to a more reducing thiol redox environment in the mitochondrial matrix. To identify individual operational protein thiol switches, we captured the fast release of metabolic quiescence in organello and devised quantitative iodoacetyl tandem mass tag (iodoTMT)-based thiol redox proteomics. The redox state across all Cys peptides was shifted toward reduction from 27.1% down to 13.0% oxidized thiol. A large number of Cys peptides (412) were redox switched, representing central pathways of mitochondrial energy metabolism, including the respiratory chain and each enzymatic step of the tricarboxylic acid (TCA) cycle. Active site Cys peptides of glutathione reductase 2, NADPH-thioredoxin reductase a/b, and thioredoxin-o1 showed the strongest responses. Germination of seeds lacking those redox proteins was associated with markedly enhanced respiration and deregulated TCA cycle dynamics suggesting decreased resource efficiency of energy metabolism. Germination in aged seeds was strongly impaired. We identify a global operation of thiol redox switches that is required for optimal usage of energy stores by the mitochondria to drive efficient germination.


Subject(s)
Arabidopsis/physiology , Citric Acid Cycle/physiology , Germination/physiology , Mitochondria/metabolism , Seeds/metabolism , Adenosine Triphosphate/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Glutathione Reductase/genetics , Glutathione Reductase/metabolism , Oxidation-Reduction , Oxygen/metabolism , Plants, Genetically Modified , Proteomics/methods , Seeds/cytology , Seeds/growth & development , Thioredoxin h/genetics , Thioredoxin h/metabolism , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism
10.
Wien Med Wochenschr ; 173(11-12): 256-259, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35595936

ABSTRACT

Immediate-type hypersensitivity reactions (IHRs) to carboplatin (CA) are most commonly reported in ovarian cancer patients. A 54-year-old woman with stage IV melanoma suffering from metastasis in the entire right lower extremity was presented to our allergy outpatient clinic for diagnostic work-up due to an anaphylactic reaction with palmoplantar erythema, conjunctivitis along with facial erythema, and an incipient decrease in blood pressure during a chemotherapy regimen with dacarbazine and carboplatin upon re-administration. A subsequently carried out allergological work-up with skin testing (ST) revealed CA to be the culprit drug, whereas cisplatin (CI) was confirmed to be a safe alternative for the patient for following treatments. Here, we report a case of an IHR to carboplatin in a melanoma patient, with CI serving as a safe alternative diagnosed by skin testing.


Subject(s)
Anaphylaxis , Antineoplastic Agents , Drug Hypersensitivity , Melanoma , Ovarian Neoplasms , Female , Humans , Middle Aged , Carboplatin/adverse effects , Antineoplastic Agents/therapeutic use , Anaphylaxis/chemically induced , Anaphylaxis/diagnosis , Anaphylaxis/drug therapy , Platinum/therapeutic use , Drug Hypersensitivity/diagnosis , Drug Hypersensitivity/etiology , Drug Hypersensitivity/drug therapy , Cisplatin/therapeutic use , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/drug therapy , Erythema , Melanoma/drug therapy
11.
J Bus Res ; 158: 113664, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36685011

ABSTRACT

The COVID-19 pandemic requires firms to adequately respond. In this study, we first explore in our empirical data how firms responded to the COVID-19 crisis and identify five tactical response types, operational, digitalization, financial, supportive, and organizational responses. Furthermore, our findings indicate that responses vary in scope; Some firms act on their own, while others engage in collaborations. Finally, we find that the response angle is different across firms, as some firms leverage potential and others primarily mitigate risk. Second, we follow an event study design to measure the financial implications of these responses. We find that responses to the COVID-19 pandemic generally entail a positive stock market reaction. Financial and digitalization responses, as well as risk mitigation responses, are consistently evaluated positively. We discuss our findings in context of different theoretical lenses, substantiating the emerging literature on the COVID-19 crisis, and the established literature on crisis response management.

12.
J Am Chem Soc ; 144(37): 16827-16840, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36036727

ABSTRACT

For large-scale utilization of fuel cells in a future hydrogen-based energy economy, affordable and environmentally benign catalysts are needed. Pyrolytically obtained metal- and nitrogen-doped carbon (MNC) catalysts are key contenders for this task. Their systematic improvement requires detailed knowledge of the active site composition and degradation mechanisms. In FeNC catalysts, the active site is an iron ion coordinated by nitrogen atoms embedded in an extended graphene sheet. Herein, we build an active site model from in situ and operando 57Fe Mössbauer spectroscopy and quantum chemistry. A Mössbauer signal newly emerging under operando conditions, D4, is correlated with the loss of other Mössbauer signatures (D2, D3a, D3b), implying a direct structural correspondence. Pyrrolic N-coordination, i.e., FeN4C12, is found as a spectroscopically and thermodynamically consistent model for the entire catalytic cycle, in contrast to pyridinic nitrogen coordination. These findings thus overcome the previously conflicting structural assignments for the active site and, moreover, identify and structurally assign a previously unknown intermediate in the oxygen reduction reaction at FeNC catalysts.

13.
J Am Chem Soc ; 144(30): 13487-13498, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35862859

ABSTRACT

The experimental development of catalytically ever-more active platinum group metal (PGM)-free materials for the oxygen reduction reaction (ORR) at fuel cell cathodes has been until recently a rather empirical iteration of synthesis and testing. Here, we present how kinetic reactivity maps based on kinetic descriptors of PGM-free single-metal-site ORR electrocatalysts can help to better understand the origin of catalytic reactivity and help to derive rational synthetic guidelines toward improved catalysts. Key in our analysis are the catalytic surface site density (SD) and the catalytic turnover frequency (TOF) in their role as controlling kinetic parameters for the ORR reactivity of PGM-free nitrogen-coordinated single-metal M-site carbon (MNC) catalysts. SD-TOF plots establish two-dimensional reactivity maps. We also consider the ratio between SD and the total number of single-metal sites in the bulk, referred to as the site utilization factor, which we propose as another guiding parameter for optimizing the synthesis of MNC catalysts. Exemplified by two sets of FeNC, CoNC, and SnNC catalysts prepared using two distinctly different N- and C-precursor material classes (Zn-based zeolitic imidazolate frameworks and covalent polyaniline), we comparatively diagnose the intrinsic kinetic ORR parameters as well as structural, morphological, and chemical properties. From there, we derive and discuss possible synthetic guidelines for further improvements. Our approach can be extended to other families of catalysts and may involve kinetic performance data of idealized liquid-electrolyte cells as well as gas diffusion layer-type flow cells.

14.
Plant Physiol ; 186(3): 1507-1525, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33856472

ABSTRACT

Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Dihydrolipoamide Dehydrogenase/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Iron-Sulfur Proteins/metabolism , Mitochondria/metabolism , Dihydrolipoamide Dehydrogenase/genetics , Genes, Plant , Genetic Variation , Genotype , Iron-Sulfur Proteins/genetics
15.
Chem Res Toxicol ; 35(2): 315-325, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34990119

ABSTRACT

Toxicokinetics (TK) of ionic compounds in the toxico-/pharmacological model zebrafish embryo (Danio rerio) depend on absorption, distribution, metabolism, and elimination (ADME) processes. Previous research indicated involvement of transport proteins in the TK of the anionic pesticide bromoxynil in zebrafish embryos. We here explored the interaction of bromoxynil with the organic anion-transporting polypeptide zebrafish Oatp1d1. Mass spectrometry imaging revealed accumulation of bromoxynil in the gastrointestinal tract of zebrafish embryos, a tissue known to express Oatp1d1. In contrast to the Oatp1d1 reference substrate bromosulfophthalein (BSP), which is actively taken up by transfected HEK293 cells overexpressing zebrafish Oatp1d1, those cells accumulated less bromoxynil than empty vector-transfected control cells. This indicates cellular efflux of bromoxynil by Oatp1d1. This was also seen for diclofenac but not for carbamazepine, examined for comparison. Correspondingly, internal concentrations of bromoxynil and diclofenac in the zebrafish embryo were increased when coexposed with BSP, inhibiting the activities of various transporter proteins, including Oatp1d1. The effect of BSP on accumulation of bromoxynil and diclofenac was enhanced in further advanced embryo stages, indicating increased efflux activity in those stages. An action of Oatp1d1 as an efflux transporter of ionic environmental compounds in zebrafish embryos should be considered in future TK assessments.


Subject(s)
Herbicides/metabolism , Nitriles/metabolism , Organic Anion Transporters/metabolism , Zebrafish Proteins/metabolism , Animals , HEK293 Cells , Humans , Molecular Structure , Nitriles/chemistry , Organic Anion Transporters/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics
16.
Chembiochem ; 22(9): 1676-1685, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33368947

ABSTRACT

Real-time quantification of reactive nitrogen and oxygen species (ROS) in cells is of paramount importance as they are essential for cellular functions. Their excessive formation contributes to the dysfunction of cells and organisms, ultimately leading to cell death. As ROS are mostly produced in the mitochondria, we have synthesized a fluorescent probe able to reach this organelle to detect and quantify, in real time, the variation of ROS by time-resolved microfluorimetry. The new probes are based on the long fluorescence lifetime of pyrene butyric acid (PBA). Two PBA isomers, attached at their 1- or 2-positions to a peptide vector to target mitochondria, were compared and were shown to allow the measurement of free radical species and oxygen, but not non-radical species such as H2 O2 .


Subject(s)
Free Radicals/analysis , Microscopy, Fluorescence/methods , Mitochondria/metabolism , Peptides/chemistry , Pyrenes/chemistry , Animals , Cell Line , Cytosol/chemistry , Cytosol/metabolism , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Mitochondria/chemistry , Pyrenes/chemical synthesis , Rats
17.
Nat Mater ; 19(11): 1215-1223, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32661387

ABSTRACT

This contribution reports the discovery and analysis of a p-block Sn-based catalyst for the electroreduction of molecular oxygen in acidic conditions at fuel cell cathodes; the catalyst is free of platinum-group metals and contains single-metal-atom actives sites coordinated by nitrogen. The prepared SnNC catalysts meet and exceed state-of-the-art FeNC catalysts in terms of intrinsic catalytic turn-over frequency and hydrogen-air fuel cell power density. The SnNC-NH3 catalysts displayed a 40-50% higher current density than FeNC-NH3 at cell voltages below 0.7 V. Additional benefits include a highly favourable selectivity for the four-electron reduction pathway and a Fenton-inactive character of Sn. A range of analytical techniques combined with density functional theory calculations indicate that stannic Sn(IV)Nx single-metal sites with moderate oxygen chemisorption properties and low pyridinic N coordination numbers act as catalytically active moieties. The superior proton-exchange membrane fuel cell performance of SnNC cathode catalysts under realistic, hydrogen-air fuel cell conditions, particularly after NH3 activation treatment, makes them a promising alternative to today's state-of-the-art Fe-based catalysts.

18.
Environ Sci Technol ; 55(17): 11723-11732, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34488356

ABSTRACT

Tire and road wear particles (TRWPs) are one of the main sources of particulate traffic emissions, but measured data on TRWP contents in the environment are scarce. This study aims at identifying organic compounds suitable as quantitative markers for TRWPs by a tiered multistep selection process involving nontarget screening and subsequent identification by liquid-chromatography high-resolution mass spectrometry. Starting from several thousands of signals recorded in the extract of tire particles, the rigorous selection process considered source specificity, tendency of leaching, analytical sensitivity and precision, and stability during aging. It led to three transformation products of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) as the most suitable marker candidates: N-formyl-6-PPD, hydroxylated N-1,3-dimethylbutyl-N-phenyl quinone diimine, and 6-PPD-quinone. A linear response in standard addition experiments with tire particles and the correlation with TRWP contents in a diverse set of environmental samples imply that these compounds are promising candidates as markers for the quantification of TRWPs. Organic markers for TRWP contents in the environment would allow TRWP quantification with the traditional tandem MS (LC-MS/MS) equipment of an organic trace analytical laboratory and, thus, allow easy generation of data on TRWP occurrence in sediments and soils and other environmental matrices.


Subject(s)
Soil , Tandem Mass Spectrometry , Chromatography, Liquid , Dust/analysis , Organic Chemicals
19.
Environ Sci Technol ; 55(16): 11006-11018, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34339175

ABSTRACT

In the context of environmental plastic pollution, it is still under debate if and how the "plastisphere", a plastic-specific microbial community, emerges. In this study, we tested the hypothesis that the first conditioning film of dissolved organic matter (DOM) sorbs selectively to polymer substrates and that microbial attachment is governed in a substrate-dependent manner. We investigated the adsorption of stream water-derived DOM to polyethylene terephthalate (PET), polystyrene (PS), and glass (as control) including UV-weathered surfaces by Fourier-transform ion cyclotron mass spectrometry. Generally, the saturated, high-molecular mass and thus more hydrophobic fraction of the original stream water DOM preferentially adsorbed to the substrates. The UV-weathered polymers adsorbed more polar, hydrophilic OM as compared to the dark controls. The amplicon sequencing data of the initial microbial colonization process revealed a tendency of substrate specificity for biofilm attachment after 24 h and a clear convergence of the communities after 72 h of incubation. Conclusively, the adsorbed OM layer developed depending on the materials' surface properties and increased the water contact angles, indicating higher surface hydrophobicity as compared to pristine surfaces. This study improves our understanding of molecular and biological interactions at the polymer/water interface that are relevant to understand the ecological impact of plastic pollution on a community level.


Subject(s)
Biofilms , Plastics , Adsorption , Polymers , Rivers
20.
Anal Bioanal Chem ; 413(6): 1675-1687, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33523257

ABSTRACT

A workflow was developed and implemented in a software tool for the automated combination of spatially resolved laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data and data on the morphology of the biological tissue. Making use of a recently published biological annotation software, FishImager automatically assigns the biological feature as regions of interest (ROIs) and overlays them with the quantitative LA-ICP-MS data. Furthermore, statistical tools including cluster algorithms can be applied to the elemental intensity data and directly compared with the ROIs. This is effectively visualized in heatmaps. This allows gaining statistical significance on distribution and co-localization patterns. Finally, the biological functions of the assigned ROIs can then be easily linked with elemental distributions. We demonstrate the versatility of FishImager with quantitative LA-ICP-MS data of the zebrafish embryo tissue. The distribution of natural elements and xenobiotics is analyzed and discussed. With the help of FishImager, it was possible to identify compartments affected by toxicity effects or biological mechanisms to eliminate the xenobiotic. The presented workflow can be used for clinical and ecotoxicological testing, for example. Ultimately, it is a tool to simplify and reproduce interpretations of imaging LA-ICP-MS data in many applications.


Subject(s)
Laser Therapy/methods , Mass Spectrometry/methods , Zebrafish/embryology , Algorithms , Animals , Cluster Analysis , Computer Graphics , Embryo, Nonmammalian , Hydrogen-Ion Concentration , Image Processing, Computer-Assisted , Limit of Detection , Pattern Recognition, Automated , Reproducibility of Results , Software , Xenobiotics/analysis
SELECTION OF CITATIONS
SEARCH DETAIL