Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Lancet Oncol ; 24(9): 1042-1052, 2023 09.
Article in English | MEDLINE | ID: mdl-37657463

ABSTRACT

BACKGROUND: High-grade gliomas have a poor prognosis and do not respond well to treatment. Effective cancer immune responses depend on functional immune cells, which are typically absent from the brain. This study aimed to evaluate the safety and activity of two adenoviral vectors expressing HSV1-TK (Ad-hCMV-TK) and Flt3L (Ad-hCMV-Flt3L) in patients with high-grade glioma. METHODS: In this dose-finding, first-in-human trial, treatment-naive adults aged 18-75 years with newly identified high-grade glioma that was evaluated per immunotherapy response assessment in neuro-oncology criteria, and a Karnofsky Performance Status score of 70 or more, underwent maximal safe resection followed by injections of adenoviral vectors expressing HSV1-TK and Flt3L into the tumour bed. The study was conducted at the University of Michigan Medical School, Michigan Medicine (Ann Arbor, MI, USA). The study included six escalating doses of viral particles with starting doses of 1×1010 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort A), and then 1×1011 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort B), 1×1010 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort C), 1×1011 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort D), 1×1010 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort E), and 1×1011 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort F) following a 3+3 design. Two 1 mL tuberculin syringes were used to deliver freehand a mix of Ad-hCMV-TK and Ad-hCMV-Flt3L vectors into the walls of the resection cavity with a total injection of 2 mL distributed as 0·1 mL per site across 20 locations. Subsequently, patients received two 14-day courses of valacyclovir (2 g orally, three times per day) at 1-3 days and 10-12 weeks after vector administration and standad upfront chemoradiotherapy. The primary endpoint was the maximum tolerated dose of Ad-hCMV-Flt3L and Ad-hCMV-TK. Overall survival was a secondary endpoint. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT01811992. FINDINGS: Between April 8, 2014, and March 13, 2019, 21 patients were assessed for eligibility and 18 patients with high-grade glioma were enrolled and included in the analysis (three patients in each of the six dose cohorts); eight patients were female and ten were male. Neuropathological examination identified 14 (78%) patients with glioblastoma, three (17%) with gliosarcoma, and one (6%) with anaplastic ependymoma. The treatment was well-tolerated, and no dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common serious grade 3-4 adverse events across all treatment groups were wound infection (four events in two patients) and thromboembolic events (five events in four patients). One death due to an adverse event (respiratory failure) occurred but was not related to study treatment. No treatment-related deaths occurred during the study. Median overall survival was 21·3 months (95% CI 11·1-26·1). INTERPRETATION: The combination of two adenoviral vectors demonstrated safety and feasibility in patients with high-grade glioma and warrants further investigation in a phase 1b/2 clinical trial. FUNDING: Funded in part by Phase One Foundation, Los Angeles, CA, The Board of Governors at Cedars-Sinai Medical Center, Los Angeles, CA, and The Rogel Cancer Center at The University of Michigan.


Subject(s)
Antineoplastic Agents , Glioblastoma , Glioma , Adult , Female , Humans , Male , Chemoradiotherapy , Genetic Therapy , Glioblastoma/genetics , Glioblastoma/therapy , Glioma/genetics , Glioma/therapy , Adolescent , Middle Aged , Aged
2.
Trends Biochem Sci ; 44(12): 991-993, 2019 12.
Article in English | MEDLINE | ID: mdl-31699584

ABSTRACT

Senescence is engaged in response to oncogenes to suppress proliferation. Cancers rewire metabolism to facilitate proliferation; however, it is not well appreciated how this enables senescence bypass. Recent work by Buj et al. demonstrates that loss of the tumor suppressor p16 engages a mTORC1-dependent increase in nucleotide pools to override senescence.


Subject(s)
Cellular Senescence , Neoplasms/genetics , Humans , Mechanistic Target of Rapamycin Complex 1 , Nucleotides , Oncogenes
3.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35163841

ABSTRACT

Metabolic reprogramming is a hallmark of cancer. Cancer cells rewire one-carbon metabolism, a central metabolic pathway, to turn nutritional inputs into essential biomolecules required for cancer cell growth and maintenance. Radiation therapy, a common cancer therapy, also interacts and alters one-carbon metabolism. This review discusses the interactions between radiation therapy, one-carbon metabolism and its component metabolic pathways.


Subject(s)
Carbon/metabolism , Metabolic Networks and Pathways/radiation effects , Neoplasms/radiotherapy , Folic Acid/metabolism , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Methionine/metabolism , Neoplasms/metabolism
4.
J Stroke Cerebrovasc Dis ; 29(8): 104863, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32689634

ABSTRACT

BACKGROUND: High arteriovenous malformation (AVM) obliteration rates have been reported with stereotactic radiosurgery (SRS), and multiple factors have been found to be associated with AVM obliteration. These predictors have been inconsistent throughout studies. We aimed to analyze our experience with linear accelerator (LINAC)-based SRS for brain AVMs, evaluate outcomes, assess factors associated with AVM obliteration and review the various reported predictors of AVM obliteration. METHODS: Electronic medical records were retrospectively reviewed to identify consecutive patients with brain AVMs treated with SRS over a 27-year period with at least 2 years of follow-up. Logistic regression analysis was performed to identify factors associated with AVM obliteration. RESULTS: One hundred twenty-eight patients with 142 brain AVMs treated with SRS were included. Mean age was 34.4 years. Fifty-two percent of AVMs were associated with a hemorrhage before SRS, and 14.8% were previously embolized. Mean clinical and angiographic follow-up times were 67.8 months and 58.6 months, respectively. The median Spetzler-Martin grade was 3. Mean maximal AVM diameter was 2.8 cm and mean AVM target volume was 7.4 cm3 with a median radiation dose of 16 Gy. Complete AVM obliteration was achieved in 80.3%. Radiation-related signs and symptoms were encountered in 32.4%, only 4.9% of which consisted of a permanent deficit. Post-SRS AVM-related hemorrhage occurred in 6.3% of cases. In multivariate analysis, factors associated with AVM obliteration included younger patient age (P = .019), male gender (P = .008), smaller AVM diameter (P = .04), smaller AVM target volume (P = .009), smaller isodose surface volume (P = .005), a higher delivered radiation dose (P = .013), and having only one major draining vein (P = .04). CONCLUSIONS: AVM obliteration with LINAC-based radiosurgery was safe and effective and achieved complete AVM obliteration in about 80% of cases. The most prominent predictors of AVM success included AVM size, AVM volume, radiation dose, number of draining veins and patient age.


Subject(s)
Arteriovenous Fistula/radiotherapy , Intracranial Arteriovenous Malformations/radiotherapy , Radiosurgery , Adolescent , Adult , Aged , Arteriovenous Fistula/diagnostic imaging , Arteriovenous Fistula/physiopathology , Child , Child, Preschool , Electronic Health Records , Female , Humans , Intracranial Arteriovenous Malformations/diagnostic imaging , Intracranial Arteriovenous Malformations/physiopathology , Male , Middle Aged , Radiation Dosage , Radiosurgery/adverse effects , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome , Young Adult
5.
J Neurooncol ; 143(2): 313-319, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30977058

ABSTRACT

BACKGROUND AND PURPOSE: We evaluated whether dose-intensified chemoradiation alters patterns of failure and is associated with favorable survival in the temozolomide era. MATERIALS AND METHODS: Between 2003 and 2015, 82 patients with newly diagnosed glioblastoma were treated with 66-81 Gy in 30 fractions using conventional magnetic resonance imaging. Progression-free (PFS) and overall survival (OS) were calculated using Kaplan-Meier methods. Factors associated with improved PFS, OS, and time to progression were assessed using multivariate Cox model and linear regression. RESULTS: Median follow-up was 23 months (95% CI 4-124 months). Sixty-one percent of patients underwent subtotal resection or biopsy, and 38% (10/26) of patients with available data had MGMT promoter methylation. Median PFS was 8.4 months (95% CI 7.3-11.0) and OS was 18.7 months (95% CI 13.1-25.3). Only 30 patients (44%) experienced central recurrence, 6 (9%) in-field, 16 (23.5%) marginal and 16 (23.5%) distant. On multivariate analysis, younger age (HR 0.95, 95% CI 0.93-0.97, p = 0.0001), higher performance status (HR 0.39, 95% CI 0.16-0.95, p = 0.04), gross total resection (GTR) versus biopsy (HR 0.37, 95% CI 0.16-0.85, p = 0.02) and MGMT methylation (HR 0.25, 95% CI 0.09-0.71, p = 0.009) were associated with improved OS. Only distant versus central recurrence (p = 0.03) and GTR (p = 0.02) were associated with longer time to progression. Late grade 3 neurologic toxicity was rare (6%) in patients experiencing long-term survival. CONCLUSION: Dose-escalated chemoRT resulted in lower rates of central recurrence and prolonged time to progression compared to historical controls, although a significant number of central recurrences were still observed. Advanced imaging and correlative molecular studies may enable targeted treatment advances that reduce rates of in- and out-of-field progression.


Subject(s)
Brain Neoplasms/mortality , Chemoradiotherapy/mortality , Glioblastoma/mortality , Salvage Therapy , Temozolomide/therapeutic use , Adult , Aged , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Female , Follow-Up Studies , Glioblastoma/diagnosis , Glioblastoma/therapy , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Rate , Young Adult
6.
J Neurooncol ; 138(1): 155-162, 2018 May.
Article in English | MEDLINE | ID: mdl-29388034

ABSTRACT

We hypothesized elderly patients with good Karnofsky Performance Status (KPS) treated with standard dose or dose-escalated radiation therapy (SDRT/DERT) and concurrent temozolomide (TMZ) would have favorable overall survival (OS) compared to historical elderly patients treated with hypofractionated RT (HFRT). From 2004 to 2015, 66 patients age ≥ 60 with newly diagnosed, pathologically proven glioblastoma were treated with SDRT/DERT over 30 fractions with concurrent/adjuvant TMZ at a single institution. Kaplan-Meier methods and the log-rank test were used to assess OS and progression-free survival (PFS). Multivariate analysis (MVA) was performed using Cox Proportional-Hazards. Median follow-up was 12.6 months. Doses ranged from 60 to 81 Gy (median 66). Median KPS was 90 (range 60-100) and median age was 67 years (range 60-81), with 29 patients ≥ 70 years old. 32% underwent gross total resection (GTR). MGMT status was known in 28%, 42% of whom were methylated. Median PFS was 8.3 months (95% CI 6.9-11.0) and OS was 12.7 months (95% CI 9.7-14.1). Patients age ≥ 70 with KPS ≥ 90 had a median OS of 12.4 months. Median OS was 27.1 months for MGMT methylated patients. On MVA controlling for age, dose, KPS, MGMT, GTR, and adjuvant TMZ, younger age (HR 0.9, 95% CI 0.8-0.9, p < 0.01), MGMT methylation (HR:0.2, 95% CI 0.1-0.7, p = 0.01), and GTR (HR:0.5, 95% CI 0.3-0.9, p = 0.01) were associated with improved OS. Our findings do not support routine use of a standard 6-week course of radiation therapy in elderly patients with glioblastoma. However, a select group of elderly patients with excellent performance status and MGMT methylation or GTR may experience favorable survival with a standard 6-week course of treatment.


Subject(s)
Brain Neoplasms/mortality , Brain Neoplasms/radiotherapy , Glioblastoma/mortality , Glioblastoma/radiotherapy , Age Factors , Aged , Aged, 80 and over , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/diagnostic imaging , Dose-Response Relationship, Radiation , Female , Follow-Up Studies , Glioblastoma/diagnostic imaging , Humans , Karnofsky Performance Status , Magnetic Resonance Imaging , Male , Middle Aged , Multivariate Analysis , Progression-Free Survival , Retrospective Studies , Temozolomide/therapeutic use
7.
Radiology ; 283(2): 460-468, 2017 05.
Article in English | MEDLINE | ID: mdl-28045603

ABSTRACT

Purpose To assess the cost-effectiveness of stereotactic body radiation therapy (SBRT) versus radiofrequency ablation (RFA) for patients with inoperable localized hepatocellular carcinoma (HCC) who are eligible for both SBRT and RFA. Materials and Methods A decision-analytic Markov model was developed for patients with inoperable, localized HCC who were eligible for both RFA and SBRT to evaluate the cost-effectiveness of the following treatment strategies: (a) SBRT as initial treatment followed by SBRT for local progression (SBRT-SBRT), (b) RFA followed by RFA for local progression (RFA-RFA), (c) SBRT followed by RFA for local progression (SBRT-RFA), and (d) RFA followed by SBRT for local progression (RFA-SBRT). Probabilities of disease progression, treatment characteristics, and mortality were derived from published studies. Outcomes included health benefits expressed as discounted quality-adjusted life years (QALYs), costs in U.S. dollars, and cost-effectiveness expressed as an incremental cost-effectiveness ratio. Deterministic and probabilistic sensitivity analysis was performed to assess the robustness of the findings. Results In the base case, SBRT-SBRT yielded the most QALYs (1.565) and cost $197 557. RFA-SBRT yielded 1.558 QALYs and cost $193 288. SBRT-SBRT was not cost-effective, at $558 679 per QALY gained relative to RFA-SBRT. RFA-SBRT was the preferred strategy, because RFA-RFA and SBRT-RFA were less effective and more costly. In all evaluated scenarios, SBRT was preferred as salvage therapy for local progression after RFA. Probabilistic sensitivity analysis showed that at a willingness-to-pay threshold of $100 000 per QALY gained, RFA-SBRT was preferred in 65.8% of simulations. Conclusion SBRT for initial treatment of localized, inoperable HCC is not cost-effective. However, SBRT is the preferred salvage therapy for local progression after RFA. © RSNA, 2017 Online supplemental material is available for this article.


Subject(s)
Carcinoma, Hepatocellular/economics , Carcinoma, Hepatocellular/mortality , Catheter Ablation/economics , Liver Neoplasms/economics , Liver Neoplasms/mortality , Radiosurgery/economics , Catheter Ablation/mortality , Catheter Ablation/statistics & numerical data , Computer Simulation , Cost-Benefit Analysis/economics , Health Care Costs/statistics & numerical data , Humans , Markov Chains , Models, Economic , Postoperative Complications/economics , Postoperative Complications/mortality , Prevalence , Prognosis , Proportional Hazards Models , Radiation Injuries/economics , Radiation Injuries/mortality , Radiosurgery/mortality , Radiosurgery/statistics & numerical data , Reproducibility of Results , Risk Assessment/methods , Sensitivity and Specificity , Survival Rate , United States/epidemiology
8.
Immunol Rev ; 249(1): 104-15, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22889218

ABSTRACT

For several decades, it has been known that T-cell activation in vitro leads to increased glycolytic metabolism that fuels proliferation and effector function. Recently, this simple model has been complicated by the observation that different T-cell subsets differentially regulate fundamental metabolic pathways under the control of distinct molecular regulators. Although the majority of these data have been generated in vitro, several recent studies have documented the metabolism of T cells activated in vivo. Here, we review the recent data surrounding the differential regulation of metabolism by distinct T-cell subsets in vitro and in vivo and discuss how differential metabolic regulation might facilitate T-cell function vis-à-vis proliferation, survival, and energy production. We further discuss the important therapeutic implications of differential metabolism across T-cell subsets and review recent successes in exploiting lymphocyte metabolism to treat immune-mediated diseases.


Subject(s)
Immunomodulation , Lymphocyte Activation , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Cell Differentiation , Cell Proliferation , Energy Metabolism , Glycolysis , Humans , Mitochondria/metabolism , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism
9.
Cancer Metab ; 12(1): 11, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594734

ABSTRACT

BACKGROUND: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT) but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. METHODS: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and our models, quantified purine synthesis using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. RESULTS: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novo synthesis and apparent lower activity of purine salvage demonstrated via stable isotope tracing of key metabolites in purine synthesis and by lower expression of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the rate-limiting enzyme of purine salvage into IMP and GMP. Inhibition of de novo guanylate synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells upregulated HGPRT expression and hypoxanthine-derived guanylate salvage but maintained high levels of guanine-derived salvage. Exogenous guanine supplementation decreased radiosensitization in cells treated with combination RT and de novo purine synthesis inhibition. Silencing HGPRT combined with RT markedly suppressed DMG-H3K27M tumor growth in vivo. CONCLUSIONS: Our results indicate that DMG-H3K27M cells rely on highly active purine synthesis, both from the de novo and salvage synthesis pathways. However, highly active salvage of free purine bases into mature guanylates can bypass inhibition of the de novo synthetic pathway. We conclude that inhibiting purine salvage may be a promising strategy to overcome treatment resistance in DMG-H3K27M tumors.

10.
JCI Insight ; 9(6)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376927

ABSTRACT

Radiotherapy induces a type I interferon-mediated (T1IFN-mediated) antitumoral immune response that we hypothesized could be potentiated by a first-in-class ataxia telangiectasia mutated (ATM) inhibitor, leading to enhanced innate immune signaling, T1IFN expression, and sensitization to immunotherapy in pancreatic cancer. We evaluated the effects of AZD1390 or a structurally related compound, AZD0156, on innate immune signaling and found that both inhibitors enhanced radiation-induced T1IFN expression via the POLIII/RIG-I/MAVS pathway. In immunocompetent syngeneic mouse models of pancreatic cancer, ATM inhibitor enhanced radiation-induced antitumoral immune responses and sensitized tumors to anti-PD-L1, producing immunogenic memory and durable tumor control. Therapeutic responses were associated with increased intratumoral CD8+ T cell frequency and effector function. Tumor control was dependent on CD8+ T cells, as therapeutic efficacy was blunted in CD8+ T cell-depleted mice. Adaptive immune responses to combination therapy provided systemic control of contralateral tumors outside of the radiation field. Taken together, we show that a clinical candidate ATM inhibitor enhances radiation-induced T1IFN, leading to both innate and subsequent adaptive antitumoral immune responses and sensitization of otherwise resistant pancreatic cancer to immunotherapy.


Subject(s)
Ataxia Telangiectasia , Interferon Type I , Pancreatic Neoplasms , Pyridines , Quinolones , Animals , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/pathology , Immunity
11.
Cancer Discov ; 14(1): 158-175, 2024 01 12.
Article in English | MEDLINE | ID: mdl-37902550

ABSTRACT

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE: A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.


Subject(s)
Glioblastoma , Signal Transduction , Humans , Mice , Animals , Signal Transduction/genetics , DNA Repair , DNA Damage , Guanosine Triphosphate
13.
Neoplasia ; 37: 100881, 2023 03.
Article in English | MEDLINE | ID: mdl-36724689

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) is a rare but highly lethal pediatric and adolescent tumor located in the pons of the brainstem. DIPGs harbor unique and specific pathological and molecular alterations, such as the hallmark lysine 27-to-methionine (H3K27M) mutation in histone H3, which lead to global changes in the epigenetic landscape and drive tumorigenesis. While fractionated radiotherapy, the current standard of care, improves symptoms and delays tumor progression, DIPGs inevitably recur, and despite extensive efforts chemotherapy-driven radiosensitization strategies have failed to improve survival. Advances in our understanding of the role of epigenetics in the cellular response to radiation-induced DNA damage, however, offer new opportunities to develop combinational therapeutic strategies selective for DIPGs expressing H3K27M. In this review, we provide an overview of preclinical studies that explore potential radiosensitization strategies targeting the unique epigenetic landscape of H3K27M mutant DIPG. We further discuss opportunities to selectively radiosensitize DIPG through strategic inhibition of the radiation-induced DNA damage response. Finally, we discuss the potential for using radiation to induce anti-tumor immune responses that may be potentiated in DIPG by radiosensitizing-therapeutic strategies.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Glioma , Adolescent , Humans , Child , Diffuse Intrinsic Pontine Glioma/genetics , Glioma/genetics , Neoplasm Recurrence, Local , Histones/genetics , Mutation , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology
14.
Pract Radiat Oncol ; 13(2): e166-e175, 2023.
Article in English | MEDLINE | ID: mdl-36503624

ABSTRACT

PURPOSE: Prognostic factors for prostate cancer include tumor, node, metastases stage, pretreatment prostate-specific antigen, and pathology (via Gleason score [GS] or grade group). Of these, GS yields the largest effect on prostate cancer specific mortality. It was previously determined that those with cores with a mix of higher and lower GS at biopsy (which was termed a "ComboGS") had decreased risk for prostate cancer specific mortality after either surgical or radiation treatment. We validate the effect of ComboGS in an independent cohort of patients with prostate cancer treated with definitive dose-escalated radiation therapy (DE-RT) at 2 institutions. METHODS AND MATERIALS: DE-RT was administered to 2539 men, of which 687 men had a ComboGS. To further ascertain the ComboGS effect we employed the modified Cancer of the Prostate Risk Assessment (mCAPRA) score. Rates of biochemical event-free survival and distant metastasis-free survival were compared across CAPRA scores, with and without modification, and the prognostic value of the CAPRA scores was compared using Harrel's concordance index. RESULTS: On univariate analysis in Gleason 7 to 10 patients the presence of ComboGS improved 10-year biochemical event-free survival from 76.6% to 82.4% (hazard ratio [HR], 0.75; confidence interval [CI], 0.59-0.96; P = .021), 10-year distant metastasis-free survival from 89.3% to 93.2% (HR, 0.57; CI, 0.39-0.85; P = .005), 10-year prostate cancer specific survival from 93.9% to 97.4% (HR, 0.39; CI, 0.21-0.7; P = .001), and 10-year overall survival from 65.7% to 75.6% (HR, 0.69; CI, 0.57-0.83; P < .001). Multivariable analysis also supported that ComboGS is protective for biochemical failure (HR, 0.64; CI, 0.50-0.83; P < .001), distant metastasis (HR, 0.42; CI, 0.28-0.63; P < .001), death from prostate cancer (HR, 0.32; CI, 0.17-0.58; P < .001), and overall mortality (HR, 0.65; CI, 0.54-0.79; P < .001). Additionally, adjusting the mCAPRA score for ComboGS decreased the risk of biochemical failure by nearly 30% (HR, 0.70; 95% CI, 0.55-0.88; P = .003) and by 50% (HR, 0.54; 95% CI, 0.37-0.80; P = .002) for distant metastasis. CONCLUSIONS: ComboGS is a useful and readily available independent prognostic factor for all clinical endpoints evaluated. Moreover, the ComboGS can be used in conjunction with the extensively validated CAPRA scoring to better risk stratify patients being treated with definitive DE-RT for GS 7 to 10 disease.


Subject(s)
Prostatic Neoplasms , Male , Humans , Neoplasm Grading , Prognosis , Prostatic Neoplasms/pathology , Prostate-Specific Antigen , Prostate/pathology
15.
Res Sq ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37790517

ABSTRACT

Background: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT), but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. Methods: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and in our models, quantified purine synthetic flux using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. Results: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novosynthesis and lower activity of purine salvage due to decreased expression of the purine salvage enzymes. Inhibition of de novo synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells adaptively upregulate purine salvage enzyme expression and pathway activity. Silencing the rate limiting enzyme in purine salvage, hypoxanthine guanine phosphoribosyl transferase (HGPRT) when combined with radiation markedly suppressed DMG-H3K27M tumor growth in vivo. Conclusions: H3K27M expressing cells rely on de novo purine synthesis but adaptively upregulate purine salvage in response to RT. Inhibiting purine salvage may help overcome treatment resistance in DMG-H3K27M tumors.

16.
Neoplasia ; 36: 100872, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36621024

ABSTRACT

PURPOSE: Glioblastoma(GBM) is a lethal disease characterized by inevitable recurrence. Here we investigate the molecular pathways mediating resistance, with the goal of identifying novel therapeutic opportunities. EXPERIMENTAL DESIGN: We developed a longitudinal in vivo recurrence model utilizing patient-derived explants to produce paired specimens(pre- and post-recurrence) following temozolomide(TMZ) and radiation(IR). These specimens were evaluated for treatment response and to identify gene expression pathways driving treatment resistance. Findings were clinically validated using spatial transcriptomics of human GBMs. RESULTS: These studies reveal in replicate cohorts, a gene expression profile characterized by upregulation of mesenchymal and stem-like genes at recurrence. Analyses of clinical databases revealed significant association of this transcriptional profile with worse overall survival and upregulation at recurrence. Notably, gene expression analyses identified upregulation of TGFß signaling, and more than one-hundred-fold increase in THY1 levels at recurrence. Furthermore, THY1-positive cells represented <10% of cells in treatment-naïve tumors, compared to 75-96% in recurrent tumors. We then isolated THY1-positive cells from treatment-naïve patient samples and determined that they were inherently resistant to chemoradiation in orthotopic models. Additionally, using image-guided biopsies from treatment-naïve human GBM, we conducted spatial transcriptomic analyses. This revealed rare THY1+ regions characterized by mesenchymal/stem-like gene expression, analogous to our recurrent mouse model, which co-localized with macrophages within the perivascular niche. We then inhibited TGFBRI activity in vivo which decreased mesenchymal/stem-like protein levels, including THY1, and restored sensitivity to TMZ/IR in recurrent tumors. CONCLUSIONS: These findings reveal that GBM recurrence may result from tumor repopulation by pre-existing, therapy-resistant, THY1-positive, mesenchymal cells within the perivascular niche.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Mice , Humans , Glioblastoma/metabolism , Cell Line, Tumor , Brain Neoplasms/pathology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/drug therapy , Temozolomide/pharmacology , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents, Alkylating/pharmacology
17.
Elife ; 122023 05 31.
Article in English | MEDLINE | ID: mdl-37254839

ABSTRACT

Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic programs for survival and proliferation. Therefore, knowledge of microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to understand the metabolism underpinning cancer cell biology. Previously, we performed quantitative metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the microenvironment of these tumors. Here, we develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the PDAC microenvironment, enabling us to study PDAC metabolism ex vivo under physiological nutrient conditions. We show that PDAC cells cultured in TIFM adopt a cellular state closer to that of PDAC cells present in tumors compared to standard culture models. Further, using the TIFM model, we found arginine biosynthesis is active in PDAC and allows PDAC cells to maintain levels of this amino acid despite microenvironmental arginine depletion. We also show that myeloid derived arginase activity is largely responsible for the low levels of arginine in PDAC tumors. Altogether, these data indicate that nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models that incorporate physiological nutrient availability have improved fidelity to in vivo systems and enable the discovery of novel cancer metabolic phenotypes.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Amino Acids , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Arginine , Tumor Microenvironment
18.
Neuro Oncol ; 25(11): 1989-2000, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37279645

ABSTRACT

BACKGROUND: Resistance to existing therapies is a significant challenge in improving outcomes for glioblastoma (GBM) patients. Metabolic plasticity has emerged as an important contributor to therapy resistance, including radiation therapy (RT). Here, we investigated how GBM cells reprogram their glucose metabolism in response to RT to promote radiation resistance. METHODS: Effects of radiation on glucose metabolism of human GBM specimens were examined in vitro and in vivo with the use of metabolic and enzymatic assays, targeted metabolomics, and FDG-PET. Radiosensitization potential of interfering with M2 isoform of pyruvate kinase (PKM2) activity was tested via gliomasphere formation assays and in vivo human GBM models. RESULTS: Here, we show that RT induces increased glucose utilization by GBM cells, and this is accompanied with translocation of GLUT3 transporters to the cell membrane. Irradiated GBM cells route glucose carbons through the pentose phosphate pathway (PPP) to harness the antioxidant power of the PPP and support survival after radiation. This response is regulated in part by the PKM2. Activators of PKM2 can antagonize the radiation-induced rewiring of glucose metabolism and radiosensitize GBM cells in vitro and in vivo. CONCLUSIONS: These findings open the possibility that interventions designed to target cancer-specific regulators of metabolic plasticity, such as PKM2, rather than specific metabolic pathways, have the potential to improve the radiotherapeutic outcomes in GBM patients.


Subject(s)
Glioblastoma , Pyruvate Kinase , Humans , Pyruvate Kinase/metabolism , Glioblastoma/metabolism , Antioxidants , Protein Isoforms , Glucose/metabolism , Cell Line, Tumor
19.
Antioxid Redox Signal ; 39(13-15): 942-956, 2023 11.
Article in English | MEDLINE | ID: mdl-36852494

ABSTRACT

Aims: Targeting tumor metabolism may improve the outcomes for patients with glioblastoma (GBM). To further preclinical efforts targeting metabolism in GBM, we tested the hypothesis that brain tumors can be stratified into distinct metabolic groups with different patient outcomes. Therefore, to determine if tumor metabolites relate to patient survival, we profiled the metabolomes of human gliomas and correlated metabolic information with clinical data. Results: We found that isocitrate dehydrogenase-wildtype (IDHwt) GBMs are metabolically distinguishable from IDH mutated (IDHmut) astrocytomas and oligodendrogliomas. Survival of patients with IDHmut gliomas was expectedly more favorable than those with IDHwt GBM, and metabolic signatures can stratify IDHwt GBMs subtypes with varying prognoses. Patients whose GBMs were enriched in amino acids had improved survival, while those whose tumors were enriched for nucleotides, redox molecules, and lipid metabolites fared more poorly. These findings were recapitulated in validation cohorts using both metabolomic and transcriptomic data. Innovation: Our results suggest the existence of metabolic subtypes of GBM with differing prognoses, and further support the concept that metabolism may drive the aggressiveness of human gliomas. Conclusions: Our data show that metabolic signatures of human gliomas can inform patient survival. These findings may be used clinically to tailor novel metabolically targeted agents for GBM patients with different metabolic phenotypes. Antioxid. Redox Signal. 39, 942-956.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Glioma , Humans , Mutation , Glioma/genetics , Glioma/metabolism , Astrocytoma/genetics , Astrocytoma/metabolism , Astrocytoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism
20.
Cell Metab ; 35(1): 134-149.e6, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36528023

ABSTRACT

Effective therapies are lacking for patients with advanced colorectal cancer (CRC). The CRC tumor microenvironment has elevated metabolic waste products due to altered metabolism and proximity to the microbiota. The role of metabolite waste in tumor development, progression, and treatment resistance is unclear. We generated an autochthonous metastatic mouse model of CRC and used unbiased multi-omic analyses to reveal a robust accumulation of tumoral ammonia. The high ammonia levels induce T cell metabolic reprogramming, increase exhaustion, and decrease proliferation. CRC patients have increased serum ammonia, and the ammonia-related gene signature correlates with altered T cell response, adverse patient outcomes, and lack of response to immune checkpoint blockade. We demonstrate that enhancing ammonia clearance reactivates T cells, decreases tumor growth, and extends survival. Moreover, decreasing tumor-associated ammonia enhances anti-PD-L1 efficacy. These findings indicate that enhancing ammonia detoxification can reactivate T cells, highlighting a new approach to enhance the efficacy of immunotherapies.


Subject(s)
Ammonia , Colorectal Neoplasms , Animals , Mice , T-Cell Exhaustion , T-Lymphocytes , Colorectal Neoplasms/pathology , Immunotherapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL