ABSTRACT
Protein C inhibitor (PCI) is a serpin with broad protease reactivity. It binds glycosaminoglycans and certain phospholipids that can modulate its inhibitory activity. PCI can penetrate through cellular membranes via binding to phosphatidylethanolamine. The exact mechanism of PCI internalization and the intracellular role of the serpin are not well understood. Here we showed that testisin, a glycosylphosphatidylinositol-anchored serine protease, cleaved human PCI and mouse PCI (mPCI) at their reactive sites as well as at sites close to their N terminus. This cleavage was observed not only with testisin in solution but also with cell membrane-anchored testisin on U937 cells. The cleavage close to the N terminus released peptides rich in basic amino acids. Synthetic peptides corresponding to the released peptides of human PCI (His(1)-Arg(11)) and mPCI (Arg(1)-Ala(18)) functioned as cell-penetrating peptides. Because intact mPCI but not testisin-cleaved mPCI was internalized by Jurkat T cells, a truncated mPCI mimicking testisin-cleaved mPCI was created. The truncated mPCI lacking 18 amino acids at the N terminus was not taken up by Jurkat T cells. Therefore our model suggests that testisin or other proteases could regulate the internalization of PCI by removing its N terminus. This may represent one of the mechanisms regulating the intracellular functions of PCI.
Subject(s)
Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Protein C Inhibitor/chemistry , Protein C Inhibitor/metabolism , Animals , Cell Line, Tumor , Cell Membrane Permeability/physiology , GPI-Linked Proteins/metabolism , Humans , Mice , Serine Endopeptidases/metabolism , U937 CellsABSTRACT
Serine protease inhibitors (serpin) have therapeutic potential in a variety of pathogenic processes, ranging from thrombosis and altered immune response to liver cirrhosis. To investigate the physiological effects of protein C inhibitor (PCI, serpinA5), its gene was inactivated in a mouse model, resulting in male infertility. In the present report, 2D differential gel electrophoresis was utilized to investigate the molecular mechanisms for PCI involvement in male reproduction. Comparing the testes proteomes of three PCI-knockout mice with three wild types demonstrated similar patterns with the exception of a massive upregulation of prostaglandin reductase 1 (tenfold; p < 0.002) and the complete shifts in the molecular weights of serpinA1C and serpinA3K. All these PCI-dependent proteome changes were immunologically verified. Unbiased proteome analysis indicated that inactivation of serpinA5 strongly influenced both the protein species pattern of other A-clade serpins as well as prostaglandin metabolism in the testes.
ABSTRACT
Protein C inhibitor (PCI, SerpinA5) is a heparin-binding serpin which can penetrate through cellular membranes. Selected negatively charged phospholipids like unsaturated phosphatidylserine and oxidised phosphatidylethanolamine bind to PCI and stimulate its inhibitory activity towards different proteases. The interaction of phospholipids with PCI might also alter the lipid distribution pattern of blood cells and influence the remodelling of cellular membranes. Here we showed that PCI is an additional binding partner of phosphatidic acid (PA), cardiolipin (CL), and phosphoinositides (PIPs). Protein lipid overlay assays exhibited a unique binding pattern of PCI towards different lipid species. In addition PA, CL, and unsaturated, monophosphorylated PIPs stimulated the inhibitory property of PCI towards activated protein C in a heparin like manner. As shown for kallistatin (SerpinA4) and vaspin (SerpinA12), the incubation of cells with PCI led to the activation of protein kinase B (AKT), which could be achieved through direct interaction of PCI with PIPs. This model is supported by the fact that PCI stimulated the PIP-dependent 5-phosphatase SHIP2 in vitro, which would result in AKT activation. Hence the interaction of PCI with different lipids might not only stimulate the inhibition of potential target protease by PCI, but could also alter intracellular lipid signalling.