Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Pediatr ; 216: 150-157.e1, 2020 01.
Article in English | MEDLINE | ID: mdl-31635813

ABSTRACT

OBJECTIVE: To evaluate the roles of thiopurine methyltransferase (TPMT), inosine triphosphatase (ITPA), and Nudix hydrolase 15 (NUDT15) in 6-mercaptopurine (6-MP) sensitivity during treatment of pediatric patients with acute lymphoblastic leukemia (ALL). STUDY DESIGN: The study included 102 pediatric patients with ALL subject to the Nordic society Of Paediatric Haematology and Oncology (NOPHO) ALL-2000 and ALL-2008 protocols. Episodes of neutropenia and febrile neutropenia, TPMT sequence variants, as well as 6-MP end doses, were collected retrospectively from medical records. TPMT, ITPA, and NUDT15 sequence variants were analyzed using pyrosequencing. RESULTS: TPMT variants were associated with a reduced risk of neutropenia and febrile neutropenia during the maintenance II period (P = .019 and P < .0001, respectively). In addition, a NUDT15 variant was associated with a lower end dose of 6-MP (P = .0097), but not with neutropenia and febrile neutropenia. ITPA variants were not associated with an increased risk of neutropenia, febrile neutropenia, nor lower end dose of 6-MP. However, when analyzing the entire treatment period, ITPA variants were associated with a decreased risk of febrile neutropenia. CONCLUSIONS: White blood cell count-based dose adjustments are regularly performed for known TPMT- deficient patients and results in a reduced risk of neutropenia and febrile neutropenia. Also in NUDT15-deficient patients dose adjustments are performed as indicated by low end dose of 6-MP. ITPA-deficient patients had a decreased risk of febrile neutropenia when analyzing the entire treatment period. Our data suggest that NUDT15 plays an important role in 6-MP treatment and the results should be confirmed in larger cohorts. Future studies should also follow up whether white blood cell count-based dose adjustments affect the risk of relapse.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Mercaptopurine/therapeutic use , Methyltransferases/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Pyrophosphatases/genetics , Adolescent , Child , Child, Preschool , Female , Genetic Variation , Humans , Infant , Male , Retrospective Studies , Sweden , Inosine Triphosphatase
2.
Int J Mol Sci ; 21(15)2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32722616

ABSTRACT

Infection is a common and serious complication of cancer treatment in children that often presents as febrile neutropenia (FN). Gene-expression profiling techniques can reveal transcriptional signatures that discriminate between viral, bacterial and asymptomatic infections in otherwise healthy children. Here, we examined whether gene-expression profiling was feasible in children with FN who were undergoing cancer treatment. The blood transcriptome of the children (n = 63) was investigated at time of FN diagnosed as viral, bacterial, co-infection or unknown etiology, respectively, and compared to control samples derived from 12 of the patients following the FN episode. RNA sequencing was successful in 43 (68%) of the FN episodes. Only two genes were significantly differentially expressed in the bacterial versus the control group. Significantly up-regulated genes in patients with the other three etiologies versus the control group were enriched with cellular processes related to proliferation and cellular stress response, with no clear enrichment with innate responses to pathogens. Among the significantly down-regulated genes, a few clustered into pathways connected to responses to infection. In the present study of children during cancer treatment, the blood transcriptome was not suitable for determining the etiology of FN because of too few circulating immune cells for reliable gene expression analysis.


Subject(s)
Bacterial Infections , Febrile Neutropenia , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/immunology , Neoplasms , Adolescent , Bacterial Infections/genetics , Bacterial Infections/immunology , Bacterial Infections/microbiology , Bacterial Infections/pathology , Child , Child, Preschool , Febrile Neutropenia/genetics , Febrile Neutropenia/immunology , Febrile Neutropenia/microbiology , Febrile Neutropenia/pathology , Female , Humans , Infant , Male , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/microbiology , Neoplasms/pathology
3.
Children (Basel) ; 10(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37371198

ABSTRACT

Febrile neutropenia is a common complication during chemotherapy in paediatric cancer care. In this setting, clinical features and current diagnostic tests do not reliably distinguish between bacterial and viral infections. Children with cancer (n = 63) presenting with fever and neutropenia were recruited for extensive microbiological and blood RNA sampling. RNA sequencing was successful in 43 cases of febrile neutropenia. These were classified as having probable bacterial infection (n = 17), probable viral infection (n = 13) and fever of unknown origin (n = 13) based on microbiological defined infections and CRP cut-off levels. RNA expression data with focus on the 2-transcript signature (FAM89A and IFI44L), earlier shown to identify bacterial infections with high specificity and sensitivity, was implemented as a disease risk score. The median disease risk score was higher in the probable bacterial infection group, -0.695 (max 2.795; min -5.478) compared to the probable viral infection group -3.327 (max 0.218; min -7.861), which in ROC analysis corresponded to a sensitivity of 0.88 and specificity of 0.54 with an AUC of 0.80. To further characterise the immune signature, analysis of significantly expressed genes and pathways was performed and upregulation of genes associated to antibacterial responses was present in the group classified as probable bacterial infection. Our results suggest that the 2-transcript signature may have a potential use as a diagnostic tool to identify bacterial infections in immunosuppressed children with febrile neutropenia.

4.
J Clin Virol ; 136: 104754, 2021 03.
Article in English | MEDLINE | ID: mdl-33601153

ABSTRACT

OBJECTIVES: The four seasonal coronaviruses 229E, NL63, OC43, and HKU1 are frequent causes of respiratory infections and show annual and seasonal variation. Increased understanding about these patterns could be informative about the epidemiology of SARS-CoV-2. METHODS: Results from PCR diagnostics for the seasonal coronaviruses, and other respiratory viruses, were obtained for 55,190 clinical samples analyzed at the Karolinska University Hospital, Stockholm, Sweden, between 14 September 2009 and 2 April 2020. RESULTS: Seasonal coronaviruses were detected in 2130 samples (3.9 %) and constituted 8.1 % of all virus detections. OC43 was most commonly detected (28.4 % of detections), followed by NL63 (24.0 %), HKU1 (17.6 %), and 229E (15.3 %). The overall fraction of positive samples was similar between seasons, but at species level there were distinct biennial alternating peak seasons for the Alphacoronaviruses, 229E and NL63, and the Betacoronaviruses, OC43 and HKU1, respectively. The Betacoronaviruses peaked earlier in the winter season (Dec-Jan) than the Alphacoronaviruses (Feb-Mar). Coronaviruses were detected across all ages, but diagnostics were more frequently requested for paediatric patients than adults and the elderly. OC43 and 229E incidence was relatively constant across age strata, while that of NL63 and HKU1 decreased with age. CONCLUSIONS: Both the Alphacoronaviruses and Betacoronaviruses showed alternating biennial winter incidence peaks, which suggests some type of immune mediated interaction. Symptomatic reinfections in adults and the elderly appear relatively common. Both findings may be of relevance for the epidemiology of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , Common Cold/epidemiology , Coronavirus 229E, Human/isolation & purification , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Deltacoronavirus/isolation & purification , Female , Humans , Male , Retrospective Studies , SARS-CoV-2 , Seasons , Sweden
5.
Children (Basel) ; 7(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339376

ABSTRACT

Sequence variants in genes involved in the immune system have previously been linked to neutropenia as well as infections in cancer patients. Sequence variants in genes coding for TLR4, MBL, and IL-1Ra were investigated in relation to clinical utility of identifying severe episodes of febrile neutropenia (FN) in a cohort of children undergoing treatment for acute lymphoblastic leukemia. The study included 122 children, where data on FN and microbiological findings were retrospectively collected from medical records. Sequence variants in genes coding for MBL, TLR4, and IL-1Ra were identified by pyrosequencing, TaqMan SNP genotyping assay, and gel electrophoresis. A total of 380 episodes of FN were identified and in 139 episodes, there was a microbiological defined infection. Age and treatment intensity were all associated with the risk of developing FN. No sequence variant was associated to increased numbers of FN episodes. Two sequence variants in the TLR4 gene increased the risk of viral infection, whilst sequence variants in the IL-1Ra gene were associated to a decreased risk of bacterial blood-stream infection (BSI). The investigated sequence variants did not associate with increased risk for FN or to severe infections, as to why the clinical utility as a risk-stratification tool is low. Most episodes of FN were classified as fever with unknown origin, emphasizing the need for improved microbial detection methods.

SELECTION OF CITATIONS
SEARCH DETAIL