Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 667
Filter
Add more filters

Publication year range
1.
Cell ; 185(6): 1041-1051.e6, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35202566

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. In this study, we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals (∼21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4+ and CD8+ memory T cell responses confirmed these findings and revealed that reduced recognition to Omicron spike is primarily observed within the CD8+ T cell compartment potentially due to escape from HLA binding. Booster vaccination enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.

2.
Cell ; 184(17): 4401-4413.e10, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34265281

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that escape convalescent and vaccine-induced antibody responses has renewed focus on the development of broadly protective T-cell-based vaccines. Here, we apply structure-based network analysis and assessments of HLA class I peptide stability to define mutationally constrained CD8+ T cell epitopes across the SARS-CoV-2 proteome. Highly networked residues are conserved temporally among circulating variants and sarbecoviruses and disproportionately impair spike pseudotyped lentivirus infectivity when mutated. Evaluation of HLA class I stabilizing activity for 18 globally prevalent alleles identifies CD8+ T cell epitopes within highly networked regions with limited mutational frequencies in circulating SARS-CoV-2 variants and deep-sequenced primary isolates. Moreover, these epitopes elicit demonstrable CD8+ T cell reactivity in convalescent individuals but reduced recognition in recipients of mRNA-based vaccines. These data thereby elucidate key mutationally constrained regions and immunogenic epitopes in the SARS-CoV-2 proteome for a global T-cell-based vaccine against emerging variants and SARS-like coronaviruses.


Subject(s)
COVID-19 Vaccines/immunology , Epitopes, T-Lymphocyte , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , HLA Antigens/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Cell ; 183(1): 143-157.e13, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32877699

ABSTRACT

Humoral responses in coronavirus disease 2019 (COVID-19) are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined post mortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers and a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+ TFH cell differentiation together with an increase in T-bet+ TH1 cells and aberrant extra-follicular TNF-α accumulation. Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+ TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections, and suggest that achieving herd immunity through natural infection may be difficult.


Subject(s)
Coronavirus Infections/immunology , Germinal Center/immunology , Pneumonia, Viral/immunology , T-Lymphocytes, Helper-Inducer/immunology , Aged , Aged, 80 and over , B-Lymphocytes/immunology , COVID-19 , Female , Germinal Center/pathology , Humans , Male , Middle Aged , Pandemics , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Spleen/immunology , Spleen/pathology , Tumor Necrosis Factor-alpha/metabolism
6.
Nat Immunol ; 20(7): 824-834, 2019 07.
Article in English | MEDLINE | ID: mdl-31209403

ABSTRACT

Multiple genome-wide studies have identified associations between outcome of human immunodeficiency virus (HIV) infection and polymorphisms in and around the gene encoding the HIV co-receptor CCR5, but the functional basis for the strongest of these associations, rs1015164A/G, is unknown. We found that rs1015164 marks variation in an activating transcription factor 1 binding site that controls expression of the antisense long noncoding RNA (lncRNA) CCR5AS. Knockdown or enhancement of CCR5AS expression resulted in a corresponding change in CCR5 expression on CD4+ T cells. CCR5AS interfered with interactions between the RNA-binding protein Raly and the CCR5 3' untranslated region, protecting CCR5 messenger RNA from Raly-mediated degradation. Reduction in CCR5 expression through inhibition of CCR5AS diminished infection of CD4+ T cells with CCR5-tropic HIV in vitro. These data represent a rare determination of the functional importance of a genome-wide disease association where expression of a lncRNA affects HIV infection and disease progression.


Subject(s)
Gene Expression Regulation , Genetic Variation , HIV Infections/genetics , HIV Infections/virology , HIV-1 , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , Receptors, CCR5/genetics , 3' Untranslated Regions , Alleles , Biomarkers , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Membrane/metabolism , Genes, Reporter , Genotype , HIV Infections/metabolism , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Population Groups/genetics , Prognosis , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CCR5/metabolism , Viral Load
7.
Nat Immunol ; 19(5): 475-486, 2018 05.
Article in English | MEDLINE | ID: mdl-29670239

ABSTRACT

CD4+ T lymphocytes are the principal target of human immunodeficiency virus (HIV), but infected macrophages also contribute to viral pathogenesis. The killing of infected cells by CD8+ cytotoxic T lymphocytes (CTLs) leads to control of viral replication. Here we found that the killing of macrophages by CTLs was impaired relative to the killing of CD4+ T cells by CTLs, and this resulted in inefficient suppression of HIV. The killing of macrophages depended on caspase-3 and granzyme B, whereas the rapid killing of CD4+ T cells was caspase independent and did not require granzyme B. Moreover, the impaired killing of macrophages was associated with prolonged effector cell-target cell contact time and higher expression of interferon-γ by CTLs, which induced macrophage production of pro-inflammatory chemokines that recruited monocytes and T cells. Similar results were obtained when macrophages presented other viral antigens, suggestive of a general mechanism for macrophage persistence as antigen-presenting cells that enhance inflammation and adaptive immunity. Inefficient killing of macrophages by CTLs might contribute to chronic inflammation, a hallmark of chronic disease caused by HIV.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Cytotoxicity, Immunologic/immunology , HIV Infections/immunology , Macrophages/virology , T-Lymphocytes, Cytotoxic/immunology , Cells, Cultured , Humans
8.
Immunity ; 54(10): 2372-2384.e7, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34496223

ABSTRACT

Spontaneous control of HIV infection has been repeatedly linked to antiviral CD8+ T cells but is not always permanent. To address mechanisms of durable and aborted control of viremia, we evaluated immunologic and virologic parameters longitudinally among 34 HIV-infected subjects with differential outcomes. Despite sustained recognition of autologous virus, HIV-specific proliferative and cytolytic T cell effector functions became selectively and intrinsically impaired prior to aborted control. Longitudinal transcriptomic profiling of functionally impaired HIV-specific CD8+ T cells revealed altered expression of genes related to activation, cytokine-mediated signaling, and cell cycle regulation, including increased expression of the antiproliferative transcription factor KLF2 but not of genes associated with canonical exhaustion. Lymphoid HIV-specific CD8+ T cells also exhibited poor functionality during aborted control relative to durable control. Our results identify selective functional impairment of HIV-specific CD8+ T cells as prognostic of impending aborted HIV control, with implications for clinical monitoring and immunotherapeutic strategies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/virology , Viremia/immunology , Viremia/virology , Adult , Female , Humans , Male , Middle Aged , Recurrence
9.
Cell ; 160(3): 420-32, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25635456

ABSTRACT

The barrier to curing HIV-1 is thought to reside primarily in CD4(+) T cells containing silent proviruses. To characterize these latently infected cells, we studied the integration profile of HIV-1 in viremic progressors, individuals receiving antiretroviral therapy, and viremic controllers. Clonally expanded T cells represented the majority of all integrations and increased during therapy. However, none of the 75 expanded T cell clones assayed contained intact virus. In contrast, the cells bearing single integration events decreased in frequency over time on therapy, and the surviving cells were enriched for HIV-1 integration in silent regions of the genome. Finally, there was a strong preference for integration into, or in close proximity to, Alu repeats, which were also enriched in local hotspots for integration. The data indicate that dividing clonally expanded T cells contain defective proviruses and that the replication-competent reservoir is primarily found in CD4(+) T cells that remain relatively quiescent.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/physiology , Virus Integration , Virus Latency , Alu Elements , Clone Cells , Defective Viruses/genetics , Defective Viruses/physiology , HIV Infections/drug therapy , HIV-1/genetics , Humans , Immunologic Memory , Proviruses/physiology , Single-Cell Analysis
10.
Immunity ; 53(5): 908-924, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33207216

ABSTRACT

Understanding the earliest immune responses following HIV infection is critical to inform future vaccines and therapeutics. Here, we review recent prospective human studies in at-risk populations that have provided insight into immune responses during acute infection, including additional relevant data from non-human primate (NHP) studies. We discuss the timing, nature, and function of the diverse immune responses induced, the onset of immune dysfunction, and the effects of early anti-retroviral therapy administration. Treatment at onset of viremia mitigates peripheral T and B cell dysfunction, limits seroconversion, and enhances cellular antiviral immunity despite persistence of infection in lymphoid tissues. We highlight pertinent areas for future investigation, and how application of high-throughput technologies, alongside targeted NHP studies, may elucidate immune response features to target in novel preventions and cures.


Subject(s)
Biological Evolution , HIV Infections/immunology , HIV/immunology , Host-Pathogen Interactions/immunology , Immunity , Acute Disease , Adaptive Immunity , Animals , Antiretroviral Therapy, Highly Active , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Disease Management , HIV Infections/therapy , HIV Infections/virology , Humans , Immunity, Innate , Inflammation Mediators/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Time-to-Treatment , Treatment Outcome , Viral Load
11.
Nature ; 614(7947): 309-317, 2023 02.
Article in English | MEDLINE | ID: mdl-36599977

ABSTRACT

Human immunodeficiency virus 1 (HIV-1) reservoir cells persist lifelong despite antiretroviral treatment1,2 but may be vulnerable to host immune responses that could be exploited in strategies to cure HIV-1. Here we used a single-cell, next-generation sequencing approach for the direct ex vivo phenotypic profiling of individual HIV-1-infected memory CD4+ T cells from peripheral blood and lymph nodes of people living with HIV-1 and receiving antiretroviral treatment for approximately 10 years. We demonstrate that in peripheral blood, cells harbouring genome-intact proviruses and large clones of virally infected cells frequently express ensemble signatures of surface markers conferring increased resistance to immune-mediated killing by cytotoxic T and natural killer cells, paired with elevated levels of expression of immune checkpoint markers likely to limit proviral gene transcription; this phenotypic profile might reduce HIV-1 reservoir cell exposure to and killing by cellular host immune responses. Viral reservoir cells harbouring intact HIV-1 from lymph nodes exhibited a phenotypic signature primarily characterized by upregulation of surface markers promoting cell survival, including CD44, CD28, CD127 and the IL-21 receptor. Together, these results suggest compartmentalized phenotypic signatures of immune selection in HIV-1 reservoir cells, implying that only small subsets of infected cells with optimal adaptation to their anatomical immune microenvironment are able to survive during long-term antiretroviral treatment. The identification of phenotypic markers distinguishing viral reservoir cells may inform future approaches for strategies to cure and eradicate HIV-1.


Subject(s)
CD4-Positive T-Lymphocytes , HIV Infections , HIV-1 , Phenotype , Virus Latency , Humans , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , HIV-1/immunology , HIV-1/isolation & purification , Proviruses/drug effects , Proviruses/genetics , Proviruses/isolation & purification , Viral Load , Virus Latency/drug effects , Immunologic Memory , Lymph Nodes/cytology , Lymph Nodes/immunology , Cell Survival , CD28 Antigens , Receptors, Interleukin-21
12.
Nature ; 606(7913): 368-374, 2022 06.
Article in English | MEDLINE | ID: mdl-35418681

ABSTRACT

HIV-1 infection remains a public health problem with no cure. Anti-retroviral therapy (ART) is effective but requires lifelong drug administration owing to a stable reservoir of latent proviruses integrated into the genome of CD4+ T cells1. Immunotherapy with anti-HIV-1 antibodies has the potential to suppress infection and increase the rate of clearance of infected cells2,3. Here we report on a clinical study in which people living with HIV received seven doses of a combination of two broadly neutralizing antibodies over 20 weeks in the presence or absence of ART. Without pre-screening for antibody sensitivity, 76% (13 out of 17) of the volunteers maintained virologic suppression for at least 20 weeks off ART. Post hoc sensitivity analyses were not predictive of the time to viral rebound. Individuals in whom virus remained suppressed for more than 20 weeks showed rebound viraemia after one of the antibodies reached serum concentrations below 10 µg ml-1. Two of the individuals who received all seven antibody doses maintained suppression after one year. Reservoir analysis performed after six months of antibody therapy revealed changes in the size and composition of the intact proviral reservoir. By contrast, there was no measurable decrease in the defective reservoir in the same individuals. These data suggest that antibody administration affects the HIV-1 reservoir, but additional larger and longer studies will be required to define the precise effect of antibody immunotherapy on the reservoir.


Subject(s)
Anti-Retroviral Agents , HIV Antibodies , HIV Infections , HIV-1 , Viral Load , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/virology , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/growth & development , Humans , Proviruses/drug effects , Viral Load/drug effects , Viremia/drug therapy , Virus Latency/drug effects
13.
Immunity ; 46(1): 29-37, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28087240

ABSTRACT

Elevated inflammation in the female genital tract is associated with increased HIV risk. Cervicovaginal bacteria modulate genital inflammation; however, their role in HIV susceptibility has not been elucidated. In a prospective cohort of young, healthy South African women, we found that individuals with diverse genital bacterial communities dominated by anaerobes other than Gardnerella were at over 4-fold higher risk of acquiring HIV and had increased numbers of activated mucosal CD4+ T cells compared to those with Lactobacillus crispatus-dominant communities. We identified specific bacterial taxa linked with reduced (L. crispatus) or elevated (Prevotella, Sneathia, and other anaerobes) inflammation and HIV infection and found that high-risk bacteria increased numbers of activated genital CD4+ T cells in a murine model. Our results suggest that highly prevalent genital bacteria increase HIV risk by inducing mucosal HIV target cells. These findings might be leveraged to reduce HIV acquisition in women living in sub-Saharan Africa.


Subject(s)
Cervix Uteri/microbiology , HIV Infections/microbiology , Vagina/microbiology , Animals , Bacteria, Anaerobic , CD4-Positive T-Lymphocytes/immunology , Cohort Studies , Female , Flow Cytometry , Humans , Lactobacillus , Mice , Microbiota/immunology , Prevotella , South Africa
14.
Nature ; 585(7824): 261-267, 2020 09.
Article in English | MEDLINE | ID: mdl-32848246

ABSTRACT

Sustained, drug-free control of HIV-1 replication is naturally achieved in less than 0.5% of infected individuals (here termed 'elite controllers'), despite the presence of a replication-competent viral reservoir1. Inducing such an ability to spontaneously maintain undetectable plasma viraemia is a major objective of HIV-1 cure research, but the characteristics of proviral reservoirs in elite controllers remain to be determined. Here, using next-generation sequencing of near-full-length single HIV-1 genomes and corresponding chromosomal integration sites, we show that the proviral reservoirs of elite controllers frequently consist of oligoclonal to near-monoclonal clusters of intact proviral sequences. In contrast to individuals treated with long-term antiretroviral therapy, intact proviral sequences from elite controllers were integrated at highly distinct sites in the human genome and were preferentially located in centromeric satellite DNA or in Krüppel-associated box domain-containing zinc finger genes on chromosome 19, both of which are associated with heterochromatin features. Moreover, the integration sites of intact proviral sequences from elite controllers showed an increased distance to transcriptional start sites and accessible chromatin of the host genome and were enriched in repressive chromatin marks. These data suggest that a distinct configuration of the proviral reservoir represents a structural correlate of natural viral control, and that the quality, rather than the quantity, of viral reservoirs can be an important distinguishing feature for a functional cure of HIV-1 infection. Moreover, in one elite controller, we were unable to detect intact proviral sequences despite analysing more than 1.5 billion peripheral blood mononuclear cells, which raises the possibility that a sterilizing cure of HIV-1 infection, which has previously been observed only following allogeneic haematopoietic stem cell transplantation2,3, may be feasible in rare instances.


Subject(s)
Gene Silencing , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , Heterochromatin/genetics , Proviruses/genetics , Virus Integration/genetics , Virus Latency/genetics , Adult , Aged , Centromere/genetics , Chromosomes, Human, Pair 19/genetics , DNA, Satellite/genetics , Female , Genome, Viral/genetics , HIV Infections/blood , HIV-1/isolation & purification , Heterochromatin/metabolism , Humans , Male , Middle Aged , Proviruses/isolation & purification , Repressor Proteins/genetics , Transcription Initiation Site
15.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36804804

ABSTRACT

Recent technological and computational advances have made metagenomic assembly a viable approach to achieving high-resolution views of complex microbial communities. In previous benchmarking, short-read (SR) metagenomic assemblers had the highest accuracy, long-read (LR) assemblers generated the most contiguous sequences and hybrid (HY) assemblers balanced length and accuracy. However, no assessments have specifically compared the performance of these assemblers on low-abundance species, which include clinically relevant organisms in the gut. We generated semi-synthetic LR and SR datasets by spiking small and increasing amounts of Escherichia coli isolate reads into fecal metagenomes and, using different assemblers, examined E. coli contigs and the presence of antibiotic resistance genes (ARGs). For ARG assembly, although SR assemblers recovered more ARGs with high accuracy, even at low coverages, LR assemblies allowed for the placement of ARGs within longer, E. coli-specific contigs, thus pinpointing their taxonomic origin. HY assemblies identified resistance genes with high accuracy and had lower contiguity than LR assemblies. Each assembler type's strengths were maintained even when our isolate was spiked in with a competing strain, which fragmented and reduced the accuracy of all assemblies. For strain characterization and determining gene context, LR assembly is optimal, while for base-accurate gene identification, SR assemblers outperform other options. HY assembly offers contiguity and base accuracy, but requires generating data on multiple platforms, and may suffer high misassembly rates when strain diversity exists. Our results highlight the trade-offs associated with each approach for recovering low-abundance taxa, and that the optimal approach is goal-dependent.


Subject(s)
Metagenome , Microbiota , Sequence Analysis, DNA/methods , Escherichia coli/genetics , Microbiota/genetics , Metagenomics/methods , High-Throughput Nucleotide Sequencing/methods
16.
Immunity ; 45(3): 466-468, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27653598

ABSTRACT

A new macaque study by Cartwright et al. (2016) suggests that CD8(+) T cells could play a previously unrecognized role in the suppression of HIV-1 during ongoing antiretroviral therapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Animals , Anti-HIV Agents/immunology , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active/methods , CD8-Positive T-Lymphocytes/virology , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/drug effects , HIV-1/immunology , Humans
17.
Immunity ; 45(4): 917-930, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27760342

ABSTRACT

CD8+ T cell recognition of virus-infected cells is characteristically restricted by major histocompatibility complex (MHC) class I, although rare examples of MHC class II restriction have been reported in Cd4-deficient mice and a macaque SIV vaccine trial using a recombinant cytomegalovirus vector. Here, we demonstrate the presence of human leukocyte antigen (HLA) class II-restricted CD8+ T cell responses with antiviral properties in a small subset of HIV-infected individuals. In these individuals, T cell receptor ß (TCRß) analysis revealed that class II-restricted CD8+ T cells underwent clonal expansion and mediated killing of HIV-infected cells. In one case, these cells comprised 12% of circulating CD8+ T cells, and TCRα analysis revealed two distinct co-expressed TCRα chains, with only one contributing to binding of the class II HLA-peptide complex. These data indicate that class II-restricted CD8+ T cell responses can exist in a chronic human viral infection, and may contribute to immune control.


Subject(s)
Antiviral Agents/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , Histocompatibility Antigens Class II/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , HLA Antigens/immunology , Humans
18.
Immunity ; 44(2): 391-405, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26850658

ABSTRACT

Innate lymphoid cells (ILCs) play a central role in the response to infection by secreting cytokines crucial for immune regulation, tissue homeostasis, and repair. Although dysregulation of these systems is central to pathology, the impact of HIV-1 on ILCs remains unknown. We found that human blood ILCs were severely depleted during acute viremic HIV-1 infection and that ILC numbers did not recover after resolution of peak viremia. ILC numbers were preserved by antiretroviral therapy (ART), but only if initiated during acute infection. Transcriptional profiling during the acute phase revealed upregulation of genes associated with cell death, temporally linked with a strong IFN acute-phase response and evidence of gut barrier breakdown. We found no evidence of tissue redistribution in chronic disease and remaining circulating ILCs were activated but not apoptotic. These data provide a potential mechanistic link between acute HIV-1 infection, lymphoid tissue breakdown, and persistent immune dysfunction.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , Interferon-gamma/metabolism , Intestines/pathology , Lymphocytes/immunology , Acute Disease , Antiviral Agents/administration & dosage , Apoptosis/drug effects , Apoptosis/genetics , Cell Movement , Cells, Cultured , Chronic Disease , Cohort Studies , Gene Expression Regulation , HIV Infections/drug therapy , Humans , Immunity, Innate , Interferon-gamma/genetics , Intestines/virology , Lymphocytes/drug effects , Lymphocytes/virology , Time Factors , Treatment Outcome , Viral Load/drug effects , Viral Load/immunology
19.
Nat Immunol ; 13(7): 691-700, 2012 Jun 10.
Article in English | MEDLINE | ID: mdl-22683743

ABSTRACT

The human leukocyte antigens HLA-B27 and HLA-B57 are associated with protection against progression of disease that results from infection with human immunodeficiency virus type 1 (HIV-1), yet most people with alleles encoding HLA-B27 and HLA-B57 are unable to control HIV-1. Here we found that HLA-B27-restricted CD8(+) T cells in people able to control infection with HIV-1 (controllers) and those who progress to disease after infection with HIV-1 (progressors) differed in their ability to inhibit viral replication through targeting of the immunodominant epitope of group-associated antigen (Gag) of HIV-1. This was associated with distinct T cell antigen receptor (TCR) clonotypes, characterized by superior control of HIV-1 replication in vitro, greater cross-reactivity to epitope variants and enhanced loading and delivery of perforin. We also observed clonotype-specific differences in antiviral efficacy for an immunodominant HLA-B57-restricted response in controllers and progressors. Thus, the efficacy of such so-called 'protective alleles' is modulated by specific TCR clonotypes selected during natural infection, which provides a functional explanation for divergent HIV-1 outcomes.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , HLA-B Antigens/immunology , HLA-B27 Antigen/immunology , Receptors, Antigen, T-Cell/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Epitopes, T-Lymphocyte/immunology , HIV Infections/blood , HIV Infections/virology , HIV Long-Term Survivors , Humans , Perforin/immunology , Virus Replication/immunology , gag Gene Products, Human Immunodeficiency Virus/immunology
20.
Immunity ; 43(3): 591-604, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26362266

ABSTRACT

CD8(+) T cells contribute to the control of HIV, but it is not clear whether initial immune responses modulate the viral set point. We screened high-risk uninfected women twice a week for plasma HIV RNA and identified 12 hyperacute infections. Onset of viremia elicited a massive HIV-specific CD8(+) T cell response, with limited bystander activation of non-HIV memory CD8(+) T cells. HIV-specific CD8(+) T cells secreted little interferon-γ, underwent rapid apoptosis, and failed to upregulate the interleukin-7 receptor, known to be important for T cell survival. The rapidity to peak CD8(+) T cell activation and the absolute magnitude of activation induced by the exponential rise in viremia were inversely correlated with set point viremia. These data indicate that rapid, high magnitude HIV-induced CD8(+) T cell responses are crucial for subsequent immune control of acute infection, which has important implications for HIV vaccine design.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , Lymphocyte Activation/immunology , Viral Load/immunology , Adolescent , Apoptosis/immunology , CD4 Lymphocyte Count , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Female , Flow Cytometry , HIV Infections/blood , HIV Infections/diagnosis , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , HIV-1/physiology , Humans , Kinetics , Proto-Oncogene Proteins c-bcl-2/immunology , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Viral/genetics , RNA, Viral/immunology , Time Factors , Viremia/diagnosis , Viremia/immunology , Young Adult , fas Receptor/immunology , fas Receptor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL