Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 855
Filter
Add more filters

Publication year range
1.
Cell ; 172(3): 534-548.e19, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29275861

ABSTRACT

Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRß signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion.


Subject(s)
Brain Neoplasms/immunology , Cell Cycle Checkpoints , Glioblastoma/immunology , Killer Cells, Natural/immunology , Platelet-Derived Growth Factor/metabolism , Animals , Brain Neoplasms/pathology , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Female , Glioblastoma/pathology , Humans , Immunity, Innate , Interferon-gamma/metabolism , MCF-7 Cells , Male , Mice , Mice, Inbred C57BL , Natural Cytotoxicity Triggering Receptor 2/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Cell ; 173(3): 762-775.e16, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677517

ABSTRACT

Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology.


Subject(s)
Mechanotransduction, Cellular , RNA Interference , Receptors, G-Protein-Coupled/physiology , Animals , Biocompatible Materials , Calcium/metabolism , Cell Line, Tumor , Endothelial Cells/physiology , Endothelium, Vascular/cytology , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen-Ion Concentration , Mesenteric Arteries/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/genetics , Shear Strength , Stress, Mechanical , Vascular Resistance
3.
Nature ; 624(7992): 621-629, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38049589

ABSTRACT

Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet ß cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and ß cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by ß cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the ß cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by ß cells. RFX6 perturbation in primary human islet cells alters ß cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.


Subject(s)
Diabetes Mellitus, Type 2 , Gene Expression Profiling , Gene Regulatory Networks , Genetic Predisposition to Disease , Islets of Langerhans , Humans , Case-Control Studies , Cell Separation , Chromatin/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Gene Regulatory Networks/genetics , Genome-Wide Association Study , Insulin Secretion , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Reproducibility of Results
4.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38149922

ABSTRACT

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Subject(s)
Complement C1s , Complement Pathway, Classical , Animals , Sheep , Peptide Hydrolases , Complement C1/metabolism , Endopeptidases , Pyridines/pharmacology
5.
Nucleic Acids Res ; 52(9): 5067-5087, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38416570

ABSTRACT

CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB's association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy.


Subject(s)
BRCA2 Protein , DNA Helicases , DNA Repair Enzymes , DNA Replication , Poly-ADP-Ribose Binding Proteins , Replication Protein A , DNA Helicases/metabolism , DNA Helicases/genetics , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Protein Binding , Cell Line, Tumor , DNA Repair
6.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37586884

ABSTRACT

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Subject(s)
Pharmacology, Clinical , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism , Carrier Proteins , Ligands
7.
J Biol Chem ; 300(3): 105690, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280428

ABSTRACT

The hydrolytic activity of the ATP synthase in bovine mitochondria is inhibited by a protein called IF1, but bovine IF1 has no effect on the synthetic activity of the bovine enzyme in mitochondrial vesicles in the presence of a proton motive force. In contrast, it has been suggested based on indirect observations that human IFI inhibits both the hydrolytic and synthetic activities of the human ATP synthase and that the activity of human IF1 is regulated by the phosphorylation of Ser-14 of mature IF1. Here, we have made both human and bovine IF1 which are 81 and 84 amino acids long, respectively, and identical in 71.4% of their amino acids and have investigated their inhibitory effects on the hydrolytic and synthetic activities of ATP synthase in bovine submitochondrial particles. Over a wide range of conditions, including physiological conditions, both human and bovine IF1 are potent inhibitors of ATP hydrolysis, with no effect on ATP synthesis. Also, substitution of Ser-14 with phosphomimetic aspartic and glutamic acids had no effect on inhibitory properties, and Ser-14 is not conserved throughout mammals. Therefore, it is unlikely that the inhibitory activity of mammalian IF1 is regulated by phosphorylation of this residue.


Subject(s)
Adenosine Triphosphate , Mitochondria , Mitochondrial Proteins , Mitochondrial Proton-Translocating ATPases , Animals , Cattle , Humans , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/metabolism , Amino Acids/metabolism , Hydrolysis , Mitochondria/enzymology , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Serine/metabolism , Phosphorylation
8.
Circulation ; 149(3): 227-250, 2024 01 16.
Article in English | MEDLINE | ID: mdl-37961903

ABSTRACT

BACKGROUND: Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF. However, in vivo studies demonstrating the potential usefulness of ERR agonist for HF treatment are lacking, because compounds with pharmacokinetics appropriate for in vivo use have not been available. METHODS: Using a structure-based design approach, we designed and synthesized 2 structurally distinct pan-ERR agonists, SLU-PP-332 and SLU-PP-915. We investigated the effect of ERR agonist on cardiac function in a pressure overload-induced HF model in vivo. We conducted comprehensive functional, multi-omics (RNA sequencing and metabolomics studies), and genetic dependency studies both in vivo and in vitro to dissect the molecular mechanism, ERR isoform dependency, and target specificity. RESULTS: Both SLU-PP-332 and SLU-PP-915 significantly improved ejection fraction, ameliorated fibrosis, and increased survival associated with pressure overload-induced HF without affecting cardiac hypertrophy. A broad spectrum of metabolic genes was transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function. Metabolomics analysis showed substantial normalization of metabolic profiles in fatty acid/lipid and tricarboxylic acid/oxidative phosphorylation metabolites in the mouse heart with 6-week pressure overload. ERR agonists increase mitochondria oxidative capacity and fatty acid use in vitro and in vivo. Using both in vitro and in vivo genetic dependency experiments, we show that ERRγ is the main mediator of ERR agonism-induced transcriptional regulation and cardioprotection and definitively demonstrated target specificity. ERR agonism also led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocytes. CONCLUSIONS: ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced HF in vivo. Our results provide direct pharmacologic evidence supporting the further development of ERR agonists as novel HF therapeutics.


Subject(s)
Heart Failure , Mice , Animals , Cardiomegaly/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Fatty Acids/metabolism
9.
BMC Genomics ; 25(1): 107, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267854

ABSTRACT

BACKGROUND: Junipers (Juniperus spp.) are woody native, invasive plants that have caused encroachment problems in the U.S. western rangelands, decreasing forage productivity and biodiversity. A potential solution to this issue is using goats in targeted grazing programs. However, junipers, which grow in dry and harsh environmental conditions, use chemical defense mechanisms to deter herbivores. Therefore, genetically selecting goats for increased juniper consumption is of great interest for regenerative rangeland management. In this context, the primary objectives of this study were to: 1) estimate variance components and genetic parameters for predicted juniper consumption in divergently selected Angora (ANG) and composite Boer x Spanish (BS) goat populations grazing on Western U.S. rangelands; and 2) to identify genomic regions, candidate genes, and biological pathways associated with juniper consumption in these goat populations. RESULTS: The average juniper consumption was 22.4% (± 18.7%) and 7.01% (± 12.1%) in the BS and ANG populations, respectively. The heritability estimates (realized heritability within parenthesis) for juniper consumption were 0.43 ± 0.02 (0.34 ± 0.06) and 0.19 ± 0.03 (0.13 ± 0.03) in BS and ANG, respectively, indicating that juniper consumption can be increased through genetic selection. The repeatability values of predicted juniper consumption were 0.45 for BS and 0.28 for ANG. A total of 571 significant SNP located within or close to 231 genes in BS, and 116 SNP related to 183 genes in ANG were identified based on the genome-wide association analyses. These genes are primarily associated with biological pathways and gene ontology terms related to olfactory receptors, intestinal absorption, and immunity response. CONCLUSIONS: These findings suggest that juniper consumption is a heritable trait of polygenic inheritance influenced by multiple genes of small effects. The genetic parameters calculated indicate that juniper consumption can be genetically improved in both goat populations.


Subject(s)
Juniperus , Animals , Juniperus/genetics , Goats/genetics , Genome-Wide Association Study , Spectroscopy, Near-Infrared , Genetic Background
10.
Oncologist ; 29(1): 57-66, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37648247

ABSTRACT

BACKGROUND: Adjuvant therapies have been approved for resected melanoma based on improved recurrence-free survival. We present early findings from a real-world study on adjuvant treatments for melanoma. METHODS: A comprehensive chart review was conducted for patients receiving adjuvant systemic therapy for resected high-risk stages III and IV melanoma. Statistical analysis was performed to assess recurrence-free survival and subgroup differences. RESULTS: A total of 149 patients (median age = 58.0 years, 61.1% men, 49.7% with BRAF V600E/K genotypes) were included, with 94.6% having resected stage III melanoma. Anti-PD-1 immunotherapy was received by 86.5% of patients, while 13.4% received BRAF-targeted therapy. At a median follow-up of 22.4 months, the recurrence rate was 31.5%, with 1-year and 2-year recurrence-free survival rates of 79% and 62%, respectively. Similar recurrence rates were observed between anti-PD-1 immunotherapy and BRAF-targeted therapy. Long-term toxicity affected 27.4% of patients, with endocrinopathies and late-emergent immune-related adverse events being common. CONCLUSIONS: Real-world adjuvant systemic therapy aligns with clinical trial practice. Recurrence rates remain high despite treatment, and long-term toxicities, including endocrinopathies and chronic inflammatory conditions, are not uncommon.


Subject(s)
Melanoma , Skin Neoplasms , Male , Humans , Middle Aged , Female , Melanoma/drug therapy , Melanoma/genetics , Melanoma/surgery , Proto-Oncogene Proteins B-raf/genetics , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Skin Neoplasms/drug therapy
11.
J Pharmacol Exp Ther ; 388(2): 232-240, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37739806

ABSTRACT

Physical exercise induces physiologic adaptations and is effective at reducing the risk of premature death from all causes. Pharmacological exercise mimetics may be effective in the treatment of a range of diseases including obesity and metabolic syndrome. Previously, we described the development of SLU-PP-332, an agonist for the estrogen-related receptor (ERR)α, ß, and γ nuclear receptors that activates an acute aerobic exercise program. Here we examine the effects of this exercise mimetic in mouse models of obesity and metabolic syndrome. Diet-induced obese or ob/ob mice were administered SLU-PP-332, and the effects on a range of metabolic parameters were assessed. SLU-PP-332 administration mimics exercise-induced benefits on whole-body metabolism in mice including increased energy expenditure and fatty acid oxidation. These effects were accompanied by decreased fat mass accumulation. Additionally, the ERR agonist effectively reduced obesity and improved insulin sensitivity in models of metabolic syndrome. Pharmacological activation of ERR may be an effective method to treat metabolic syndrome and obesity. SIGNIFICANCE STATEMENT: An estrogen receptor-related orphan receptor agonist, SLU-PP-332, with exercise mimetic activity, holds promise as a therapeutic to treat metabolic diseases by decreasing fat mass in mouse models of obesity.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Mice , Animals , Metabolic Syndrome/drug therapy , Obesity/drug therapy , Obesity/metabolism , Energy Metabolism , Receptors, Cytoplasmic and Nuclear , ERRalpha Estrogen-Related Receptor , Estrogens
12.
Am J Pathol ; 193(12): 1969-1987, 2023 12.
Article in English | MEDLINE | ID: mdl-37717940

ABSTRACT

A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.


Subject(s)
Inflammation , Kidney , Mice , Humans , Animals , Aged , Infant , Infant, Newborn , Kidney/metabolism , Inflammation/metabolism , Estrogens/metabolism , Mitochondria/metabolism , Cytokines/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
13.
J Vasc Interv Radiol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901493

ABSTRACT

PURPOSE: To utilize a novel ex vivo perfused human renal model and quantify microwave ablation (MWA) size differences in renal tissue when combining MWA with transarterial embolization (TAE). MATERIALS AND METHODS: Human kidneys (n = 5) declined for transplantation were obtained and connected to a fluoroscopic-compatible ex vivo perfusion system. Two ablations-1 standard MWA, 1 TAE-MWA-were performed in each kidney for 2 minutes at 100 Watts using a MWA system (Solero Angiodynamics). MWA alone was performed in the upper pole. In the lower pole, MWA was performed after TAE with M0 LUMI microspheres (Boston Scientific) to achieve angiographic stasis. Ablation zones of coagulative necrosis were sectioned along the long axis and segmented for maximal short axis diameter (SAD) and long axis diameter (LAD) measurements. RESULTS: A total of 10 ablations (5 MWA, 5 TAE-MWA) were performed in five human kidneys. TAE-MWA resulted in significantly increased SAD, LAD, volume, and sphericity compared to standard MWA + SD with mean measurements as follows (5 standard MWA + SD vs 5 TAE-MWA, two-tailed t-test): SAD, 1.8 ± 0.1 cm vs 2.5 ± 0.1 cm (p < 0.001); LAD, 2.9 ± 0.3 cm vs 3.2 ± 0.1 cm (p = 0.039); volume, 5.0 ± 0.5 mL vs 11.0 ± 0.7 mL (p < 0.001); sphericity, 0.4 ± 0.2 vs 0.6 ± 0.1 (p = 0.049). Histology demonstrated no differences in TAE-MWA other than concentrated microspheres. CONCLUSION: This study utilized a novel ex vivo human kidney perfusion model to confirm combined MWA-TAE significantly increases ablation size and spherical shape.

14.
J Vasc Interv Radiol ; 35(1): 122-126, 2024 01.
Article in English | MEDLINE | ID: mdl-37696430

ABSTRACT

PURPOSE: To develop a reproducible in vitro model simulating central venous catheter (CVC) exchange with high potential for air embolization and test the hypothesis that a closed catheter clamp over hydrophilic guide wire exchange technique will significantly reduce the volume of air introduced during CVC exchange. MATERIALS AND METHODS: The model consisted of a 16-F valved sheath, 240-mL container, and pressure transducer submerged in water in a 1,200-mL suction canister system. Continuous wall suction was applied to the canister to maintain negative pressure at -7 mm Hg or -11 mm Hg. Each trial consisted of 0.035-inch hydrophilic guide wire introduction, over-the-wire catheter exchange, and wire removal following clinical protocol. A total of 256 trials were performed, 128 trials at each pressure with the catheter clamp open (n = 64) or closed (n = 64) around the hydrophilic guide wire. RESULTS: There was a statistically significant lower volume of air introduced with closed clamp over-the-wire exchanges than with open clamp exchanges at both pressures (2-tailed t-test, P < .001). At -7 mm Hg, a mean of 48.0 mL (SD ± 9.3) of air was introduced with open clamp and 20.6 mL (SD ± 4.7) of air was introduced with closed clamp. At -11 mm Hg, 97.8 mL (SD ± 11.9) of air was introduced with open clamp and 37.8 mL (SD ± 6.3) of air was introduced with closed clamp. CONCLUSIONS: This study demonstrated the use of a reproducible in vitro model mimicking conditions causing air embolism during CVC exchange. Results showed that CVC exchange using closed catheter clamp over hydrophilic guide wire exchange technique significantly reduced the volume of air introduced per exchange.


Subject(s)
Catheterization, Central Venous , Central Venous Catheters , Embolism, Air , Humans , Central Venous Catheters/adverse effects , Embolism, Air/etiology , Embolism, Air/prevention & control , Catheterization, Central Venous/adverse effects , Catheterization, Central Venous/methods
15.
J Surg Oncol ; 129(7): 1209-1212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38534025

ABSTRACT

Locally advanced cutaneous squamous cell carcinoma can erode into blood vessels, leading to vascular blowout, requiring emergent surgical intervention. We describe a first case of this disease complication which was effectively managed with endovascular stenting as a bridge to effective systemic and regional therapy. We discuss the efficacy of this staged approach which is novel and timely in a clinical environment of increasingly effective systemic therapies.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Stents , Humans , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , Skin Neoplasms/pathology , Skin Neoplasms/surgery , Skin Neoplasms/therapy , Endovascular Procedures/methods , Endovascular Procedures/instrumentation , Male , Middle Aged , Aged
16.
Radiographics ; 44(7): e230155, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38935550

ABSTRACT

Bile leaks arise from various causes such as trauma, complications after hepatobiliary surgery, and intrahepatic malignancies or their associated liver-directed treatments. Bile leaks can result in significant morbidity and mortality. Delayed diagnosis is not uncommon due to nonspecific manifestations; therefore, a high clinical suspicion is needed. A multidisciplinary approach for treatment of biliary leaks with prompt referral to tertiary care centers with experienced hepatobiliary surgeons, advanced endoscopists, and interventional radiologists is needed to address these challenging complications. Management of biliary leaks can range from conservative management to open surgical repair. Minimally invasive procedures play a crucial role in biliary leak treatment, and the interventional radiologist can help guide appropriate management on the basis of a clear understanding of the pathophysiology of biliary leaks and a current knowledge of the armamentarium of treatment options. In most cases, a simple diversion of bile to decompress the biliary system may prove effective. However, persistent and high-output biliary leaks require delineation of the source with tailored treatment options to control the leak. This may be done by additional diversions, occluding the source, reestablishing connections, or using a combination of therapies to bridge to more definitive surgical interventions. The authors describe the different treatment options and emphasize the role of interventional radiology. ©RSNA, 2024.


Subject(s)
Postoperative Complications , Humans , Postoperative Complications/diagnostic imaging , Postoperative Complications/therapy , Biliary Tract Diseases/diagnostic imaging , Biliary Tract Diseases/therapy , Anastomotic Leak/diagnostic imaging , Anastomotic Leak/therapy , Patient Care Team
17.
Mol Cell ; 62(1): 121-36, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26949039

ABSTRACT

HECT-family E3 ligases ubiquitinate protein substrates to control virtually every eukaryotic process and are misregulated in numerous diseases. Nonetheless, understanding of HECT E3s is limited by a paucity of selective and potent modulators. To overcome this challenge, we systematically developed ubiquitin variants (UbVs) that inhibit or activate HECT E3s. Structural analysis of 6 HECT-UbV complexes revealed UbV inhibitors hijacking the E2-binding site and activators occupying a ubiquitin-binding exosite. Furthermore, UbVs unearthed distinct regulation mechanisms among NEDD4 subfamily HECTs and proved useful for modulating therapeutically relevant targets of HECT E3s in cells and intestinal organoids, and in a genetic screen that identified a role for NEDD4L in regulating cell migration. Our work demonstrates versatility of UbVs for modulating activity across an E3 family, defines mechanisms and provides a toolkit for probing functions of HECT E3s, and establishes a general strategy for systematic development of modulators targeting families of signaling proteins.


Subject(s)
Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Animals , Catalytic Domain , Cell Line , Cell Movement , Dogs , HCT116 Cells , Humans , Madin Darby Canine Kidney Cells , Models, Molecular , Organoids/cytology , Organoids/metabolism , Peptide Library , Ubiquitin/chemistry , Ubiquitin/genetics
18.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33542155

ABSTRACT

The ATP synthase complexes in mitochondria make the ATP required to sustain life by a rotary mechanism. Their membrane domains are embedded in the inner membranes of the organelle, and they dimerize via interactions between their membrane domains. The dimers form extensive chains along the tips of the cristae with the two rows of monomeric catalytic domains extending into the mitochondrial matrix at an angle to each other. Disruption of the interface between dimers by mutation affects the morphology of the cristae severely. By analysis of particles of purified dimeric bovine ATP synthase by cryo-electron microscopy, we have shown that the angle between the central rotatory axes of the monomeric complexes varies between ca. 76 and 95°. These particles represent active dimeric ATP synthase. Some angular variations arise directly from the catalytic mechanism of the enzyme, and others are independent of catalysis. The monomer-monomer interaction is mediated mainly by j subunits attached to the surface of wedge-shaped protein-lipid structures in the membrane domain of the complex, and the angular variation arises from rotational and translational changes in this interaction, and combinations of both. The structures also suggest how the dimeric ATP synthases might be interacting with each other to form the characteristic rows along the tips of the cristae via other interwedge contacts, molding themselves to the range of oligomeric arrangements observed by tomography of mitochondrial membranes, and at the same time allowing the ATP synthase to operate under the range of physiological conditions that influence the structure of the cristae.


Subject(s)
Adenosine Triphosphate/metabolism , Mitochondria/ultrastructure , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/metabolism , Protein Multimerization , Animals , Catalysis , Cattle , Cryoelectron Microscopy , Mitochondria/metabolism , Models, Molecular , Protein Conformation
19.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34782468

ABSTRACT

The structure has been determined by electron cryomicroscopy of the adenosine triphosphate (ATP) synthase from Mycobacterium smegmatis This analysis confirms features in a prior description of the structure of the enzyme, but it also describes other highly significant attributes not recognized before that are crucial for understanding the mechanism and regulation of the mycobacterial enzyme. First, we resolved not only the three main states in the catalytic cycle described before but also eight substates that portray structural and mechanistic changes occurring during a 360° catalytic cycle. Second, a mechanism of auto-inhibition of ATP hydrolysis involves not only the engagement of the C-terminal region of an α-subunit in a loop in the γ-subunit, as proposed before, but also a "fail-safe" mechanism involving the b'-subunit in the peripheral stalk that enhances engagement. A third unreported characteristic is that the fused bδ-subunit contains a duplicated domain in its N-terminal region where the two copies of the domain participate in similar modes of attachment of the two of three N-terminal regions of the α-subunits. The auto-inhibitory plus the associated "fail-safe" mechanisms and the modes of attachment of the α-subunits provide targets for development of innovative antitubercular drugs. The structure also provides support for an observation made in the bovine ATP synthase that the transmembrane proton-motive force that provides the energy to drive the rotary mechanism is delivered directly and tangentially to the rotor via a Grotthuss water chain in a polar L-shaped tunnel.


Subject(s)
Adenosine Triphosphate/metabolism , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/drug effects , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/enzymology , Tuberculosis/drug therapy , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins , Cattle , Cryoelectron Microscopy , Hydrolysis , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Models, Molecular , Protein Conformation , Protein Subunits/chemistry , Proteins/chemistry , Proton-Motive Force , Tuberculosis/microbiology , ATPase Inhibitory Protein
20.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753518

ABSTRACT

Human mitochondrial ATP synthase is a molecular machine with a rotary action bound in the inner organellar membranes. Turning of the rotor, driven by a proton motive force, provides energy to make ATP from ADP and phosphate. Among the 29 component proteins of 18 kinds, ATP6 and ATP8 are mitochondrial gene products, and the rest are nuclear gene products that are imported into the organelle. The ATP synthase is assembled from them via intermediate modules representing the main structural elements of the enzyme. One such module is the c8-ring, which provides the membrane sector of the enzyme's rotor, and its assembly is influenced by another transmembrane (TMEM) protein, TMEM70. We have shown that subunit c interacts with TMEM70 and another hitherto unidentified mitochondrial transmembrane protein, TMEM242. Deletion of TMEM242, similar to deletion of TMEM70, affects but does not completely eliminate the assembly of ATP synthase, and to a lesser degree the assembly of respiratory enzyme complexes I, III, and IV. Deletion of TMEM70 and TMEM242 together prevents assembly of ATP synthase and the impact on complex I is enhanced. Removal of TMEM242, but not of TMEM70, also affects the introduction of subunits ATP6, ATP8, j, and k into the enzyme. TMEM70 and TMEM242 interact with the mitochondrial complex I assembly (the MCIA) complex that supports assembly of the membrane arm of complex I. The interactions of TMEM70 and TMEM242 with MCIA could be part of either the assembly of ATP synthase and complex I or the regulation of their levels.


Subject(s)
Electron Transport Complex I/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Catalytic Domain , Electron Transport Complex I/chemistry , Gene Deletion , HEK293 Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Mitochondrial Proton-Translocating ATPases/chemistry , Proton-Motive Force , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL