Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Cell Stress Chaperones ; 29(2): 300-311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508444

ABSTRACT

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell malignancies characterized by abnormal hematopoietic cell maturation, increased apoptosis of bone marrow cells, and anemia. They are the most common myeloid blood cancers in American adults. The full complement of gene mutations that contribute to the phenotypes or clinical symptoms in MDS is not fully understood. Around 10%-25% of MDS patients harbor an interstitial heterozygous deletion on the long arm of chromosome 5 [del(5q)], creating haploinsufficiency for a large set of genes, including HSPA9. The HSPA9 gene encodes for the protein mortalin, a highly conserved heat shock protein predominantly localized in mitochondria. Our prior study showed that knockdown of HSPA9 induces TP53-dependent apoptosis in human CD34+ hematopoietic progenitor cells. In this study, we explored the role of HSPA9 in regulating erythroid maturation using human CD34+ cells. We inhibited the expression of HSPA9 using gene knockdown and pharmacological inhibition and found that inhibition of HSPA9 disrupted erythroid maturation as well as increased expression of p53 in CD34+ cells. To test whether the molecular mechanism of HSPA9 regulating erythroid maturation is TP53-dependent, we knocked down HSPA9 and TP53 individually or in combination in human CD34+ cells. We found that the knockdown of TP53 partially rescued the erythroid maturation defect induced by HSPA9 knockdown, suggesting that the defect in cells with reduced HSPA9 expression is TP53-dependent. Collectively, these findings indicate that reduced levels of HSPA9 may contribute to the anemia observed in del(5q)-associated MDS patients due to the activation of TP53.


Subject(s)
Anemia , Myelodysplastic Syndromes , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Anemia/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
2.
Clin Cancer Res ; 30(15): 3220-3228, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38446993

ABSTRACT

PURPOSE: Clonal hematopoiesis (CH) is thought to be the origin of myeloid neoplasms (MN). Yet, our understanding of the mechanisms driving CH progression to MN and clinical risk prediction of MN remains limited. The human proteome reflects complex interactions between genetic and epigenetic regulation of biological systems. We hypothesized that the plasma proteome might predict MN risk and inform our understanding of the mechanisms promoting MN development. EXPERIMENTAL DESIGN: We jointly characterized CH and plasma proteomic profiles of 46,237 individuals in the UK Biobank at baseline study entry. During 500,036 person-years of follow-up, 115 individuals developed MN. Cox proportional hazard regression was used to test for an association between plasma protein levels and MN risk. RESULTS: We identified 115 proteins associated with MN risk, of which 30% (N = 34) were also associated with CH. These were enriched for known regulators of the innate and adaptive immune system. Plasma proteomics improved the prediction of MN risk (AUC = 0.85; P = 5×10-9) beyond clinical factors and CH (AUC = 0.80). In an independent group (N = 381,485), we used inherited polygenic risk scores (PRS) for plasma protein levels to validate the relevance of these proteins toMNdevelopment. PRS analyses suggest that most MN-associated proteins we identified are not directly causally linked toMN risk, but rather represent downstream markers of pathways regulating the progression of CH to MN. CONCLUSIONS: These data highlight the role of immune cell regulation in the progression of CH to MN and the promise of leveraging multi-omic characterization of CH to improveMN risk stratification. See related commentary by Bhalgat and Taylor, p. 3095.


Subject(s)
Biomarkers, Tumor , Proteomics , Humans , Proteomics/methods , Female , Male , Middle Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Aged , Proteome , Clonal Hematopoiesis , Risk Factors , Adult , Blood Proteins/metabolism , Blood Proteins/analysis , Myeloproliferative Disorders/blood , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/diagnosis , Prognosis
3.
Cancer Res ; 84(15): 2518-2532, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38832931

ABSTRACT

DNA methyltransferase inhibitors (DNMTi), most commonly cytidine analogs, are compounds that decrease 5'-cytosine methylation. DNMTi are used clinically based on the hypothesis that cytosine demethylation will lead to re-expression of tumor suppressor genes. 5-Aza-4'-thio-2'-deoxycytidine (Aza-TdCyd or ATC) is a recently described thiol-substituted DNMTi that has been shown to have anti-tumor activity in solid tumor models. In this study, we investigated the therapeutic potential of ATC in a murine transplantation model of myelodysplastic syndrome. ATC treatment led to the transformation of transplanted wild-type bone marrow nucleated cells into lymphoid leukemia, and healthy mice treated with ATC also developed lymphoid leukemia. Whole-exome sequencing revealed 1,000 acquired mutations, almost all of which were C>G transversions in a specific 5'-NCG-3' context. These mutations involved dozens of genes involved in human lymphoid leukemia, such as Notch1, Pten, Pax5, Trp53, and Nf1. Human cells treated in vitro with ATC showed 1,000 acquired C>G transversions in a similar context. Deletion of Dck, the rate-limiting enzyme for the cytidine salvage pathway, eliminated C>G transversions. Taken together, these findings demonstrate a highly penetrant mutagenic and leukemogenic phenotype associated with ATC. Significance: Treatment with a DNA methyltransferase inhibitor generates a distinct mutation signature and triggers leukemic transformation, which has important implications for the research and clinical applications of these inhibitors.


Subject(s)
Azacitidine , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Mice , Humans , Azacitidine/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , DNA Methylation/drug effects , Enzyme Inhibitors/pharmacology , Decitabine/pharmacology , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL