Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Infect Dis ; 225(4): 715-722, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34423369

ABSTRACT

BACKGROUND: Preclinical animal studies and retrospective human studies suggest that adult females have worse outcomes from influenza than males. Prospective studies in humans are missing. METHODS: Data from 164 healthy volunteers who underwent influenza A/California/04/2009/H1N1 challenge were compiled to compare differences between sexes. Baseline characteristics, including hormone levels, hemagglutination inhibition (HAI) titers, neuraminidase inhibition (NAI) titers, and outcomes after challenge were compared. Linear and logistic regression models were built to determine significant predictor variables with respect to outcomes of interest. RESULTS: HAI titers were similar between the sexes, but NAI titers were higher in males than females at 4 weeks and 8 weeks postchallenge. Females were more likely to have symptoms (mean, 0.96 vs 0.80; P = .003) and to have a higher number of symptoms (median, 3 vs 4; P = .011) than males. Linear and logistic regression models showed that prechallenge NAI titers, but not HAI titers or sex hormone levels, were predictive of all shedding and symptom outcomes of interest. CONCLUSIONS: Females in our cohorts were more likely to be symptomatic and to have a higher number of symptoms than males. NAI titers predicted all outcomes of interest and may explain differential outcomes between the sexes.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Antibodies, Viral , Female , Hemagglutination Inhibition Tests , Humans , Influenza, Human/epidemiology , Male , Neuraminidase , Prospective Studies , Retrospective Studies , Sex Characteristics
2.
Clin Infect Dis ; 70(5): 748-753, 2020 02 14.
Article in English | MEDLINE | ID: mdl-30953061

ABSTRACT

BACKGROUND: Identification of correlates of protection against human influenza A virus infection is important in development of broadly protective ("universal") influenza vaccines. Certain assumptions underlie current vaccine developmental strategies, including that infection with a particular influenza A virus should offer long-term or lifelong protection against that strain, preventing reinfection. In this study we report observations made when 7 volunteers participated in sequential influenza challenge studies where they were challenged intranasally using the identical influenza A(H1N1)pdm09 virus approximately 1 year apart. We evaluate and describe the outcomes of these 7 rechallenge participants and discuss what these results may suggest about correlates of protection and development of more broadly protective influenza vaccines. METHODS: Seven participants were enrolled in 2 viral challenge studies at 7.5- to 18.5-month intervals. Both challenge studies used the identical lot of influenza A (H1N1)pdm09 virus administered intranasally. We evaluated pre- and postchallenge hemagglutination inhibition, neuraminidase inhibition, and stalk antibody titers; peripheral blood leukocyte host gene expression response profiles; daily viral detection via nasal wash; and clinical signs and symptoms. RESULTS: At least 3 of 7 participants demonstrated confirmed laboratory evidence of sequential infection, with 5 of 7 demonstrating clinical evidence. CONCLUSIONS: The data presented in this report demonstrate that sequential infection with the identical influenza A virus can occur and suggest it may not be rare. These data raise questions about immune memory responses in an acute superficial respiratory mucosal infection and their implications in development of broadly protective influenza vaccines. Further investigation of these observations is warranted. CLINICAL TRIALS REGISTRATION: NCT01646138; NCT01971255.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Antibodies, Viral , Humans , Influenza, Human/prevention & control , Reinfection
3.
J Pathol ; 238(1): 85-97, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26383585

ABSTRACT

To study bacterial co-infection following 1918 H1N1 influenza virus infection, mice were inoculated with the 1918 influenza virus, followed by Streptococcus pneumoniae (SP) 72 h later. Co-infected mice exhibited markedly more severe disease, shortened survival time and more severe lung pathology, including widespread thrombi. Transcriptional profiling revealed activation of coagulation only in co-infected mice, consistent with the extensive thrombogenesis observed. Immunohistochemistry showed extensive expression of tissue factor (F3) and prominent deposition of neutrophil elastase on endothelial and epithelial cells in co-infected mice. Lung sections of SP-positive 1918 autopsy cases showed extensive thrombi and prominent staining for F3 in alveolar macrophages, monocytes, neutrophils, endothelial and epithelial cells, in contrast to co-infection-positive 2009 pandemic H1N1 autopsy cases. This study reveals that a distinctive feature of 1918 influenza virus and SP co-infection in mice and humans is extensive expression of tissue factor and activation of the extrinsic coagulation pathway leading to widespread pulmonary thrombosis.


Subject(s)
Coinfection/complications , Influenza, Human/microbiology , Orthomyxoviridae Infections/microbiology , Pneumococcal Infections/microbiology , Pulmonary Embolism/microbiology , Animals , Blood Coagulation , Disease Models, Animal , Female , Humans , Immunohistochemistry , Influenza A Virus, H1N1 Subtype , Influenza Pandemic, 1918-1919 , Influenza, Human/complications , Influenza, Human/pathology , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/pathology , Pneumococcal Infections/complications , Pneumococcal Infections/pathology , Pulmonary Embolism/pathology , Reverse Transcriptase Polymerase Chain Reaction , Streptococcus pneumoniae
4.
BMC Genomics ; 16: 874, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26510639

ABSTRACT

BACKGROUND: Francisella infection attenuates immune cell infiltration and expression of selected pro-inflammatory cytokines in response to endogenous LPS, suggesting the bacteria is actively antagonizing at least some part of the response to Toll-like receptor 4 (TLR4) engagement. The ability of different Francisella strains to inhibit the ability of E. coli LPS to induce a pulmonary inflammatory response, as measured by gene expression profiling, was examined to define the scope of modulation and identify of inflammatory genes/pathways that are specifically antagonized by a virulent F. tularensis infection. RESULTS: Prior aerosol exposure to F. tularensis subsp. tularensis, but not the live attenuated strain (LVS) of F. tularensis subsp. holarctica or F. novicida, significantly antagonized the transcriptional response in the lungs of infected mice exposed to aerosolized E. coli LPS. The response to E. coli LPS was not completely inhibited, suggesting that the bacteria is targeting further downstream of the TLR4 molecule. Analysis of the promotors of LPS-responsive genes that were perturbed by Type A Francisella infection identified candidate transcription factors that were potentially modulated by the bacteria, including multiple members of the forkhead transcription factor family (FoxA1, Foxa2, FoxD1, Foxd3, Foxf2, FoxI1, Fox03, Foxq1), IRF1, CEBPA, and Mef2. The annotated functional roles of the affected genes suggested that virulent Francisella infection suppressed cellular processes including mRNA processing, antiviral responses, intracellular trafficking, and regulation of the actin cytoskeleton. Surprisingly, despite the broad overall suppression of LPS-induced genes by virulent Francisella, and contrary to what was anticipated from prior studies, Type A Francisella did not inhibit the expression of the majority of LPS-induced cytokines, nor the expression of many classic annotated inflammatory genes. CONCLUSIONS: Collectively, this analysis demonstrates clear differences in the ability of different Francisella strains to modulate TLR4 signaling and identifies genes/pathways that are specifically targeted by virulent Type A Francisella.


Subject(s)
Francisella tularensis/immunology , Lipopolysaccharides/immunology , Toll-Like Receptor 4/agonists , Tularemia/immunology , Aerosols , Animals , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
5.
Antimicrob Agents Chemother ; 58(7): 3714-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752275

ABSTRACT

The amikacin-fosfomycin inhalation system (AFIS) is a combination of 2 antibiotics and an in-line nebulizer delivery system that is being developed for adjunctive treatment of pneumonia caused by Gram-negative organisms in patients on mechanical ventilation. AFIS consists of a combination of amikacin and fosfomycin solutions at a 5:2 ratio (amikacin, 3 ml at 100 mg/ml; fosfomycin, 3 ml at 40 mg/ml) and the PARI Investigational eFlow Inline System. In this antibiotic potentiation study, the antimicrobial activities of amikacin and fosfomycin, alone and in a 5:2 combination, were assessed against 62 Gram-negative pathogens from a worldwide antimicrobial surveillance collection (SENTRY). The amikacin MICs for 62 isolates of Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were ≥32 µg/ml (intermediate or resistant according to the Clinical and Laboratory Standards Institute [CLSI]; resistant according to the European Committee on Antimicrobial Susceptibility Testing [EUCAST]). Each isolate was tested against amikacin (0.25 to 1,024 µg/ml), fosfomycin (0.1 to 409.6 µg/ml), and amikacin-fosfomycin (at a 5:2 ratio) using CLSI reference agar dilution methods. The median MIC values for amikacin and fosfomycin against the 62 isolates each decreased 2-fold with the amikacin-fosfomycin (5:2) combination from that with either antibiotic alone. Interactions between amikacin and fosfomycin differed by isolate and ranged from no detectable interaction to high potentiation. The amikacin-fosfomycin (5:2) combination reduced the amikacin concentration required to inhibit all 62 isolates from >1,024 to ≤ 256 µg/ml and reduced the required fosfomycin concentration from 204.8 to 102.4 µg/ml. These results support continued development of the amikacin-fosfomycin combination for aerosolized administration, where high drug levels can be achieved.


Subject(s)
Amikacin/pharmacology , Anti-Bacterial Agents/pharmacology , Fosfomycin/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/microbiology , Respiratory Tract Infections/microbiology , Acinetobacter baumannii/drug effects , Drug Resistance, Bacterial , Drug Synergism , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects
6.
Antimicrob Agents Chemother ; 58(7): 3708-13, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752276

ABSTRACT

The amikacin-fosfomycin inhalation system (AFIS), a combination of antibiotics administered with an in-line nebulizer delivery system, is being developed for adjunctive treatment of ventilator-associated pneumonia (VAP). The in vitro characterization of amikacin-fosfomycin (at a 5:2 ratio) described here included determining resistance selection rates for pathogens that are representative of those commonly associated with VAP (including multidrug-resistant strains) and evaluating interactions with antibiotics commonly used intravenously to treat VAP. Spontaneous resistance to amikacin-fosfomycin (5:2) was not observed for most strains tested (n, 10/14). Four strains had spontaneously resistant colonies (frequencies, 4.25 × 10(-8) to 3.47 × 10(-10)), for which amikacin-fosfomycin (5:2) MICs were 2- to 8-fold higher than those for the original strains. After 7 days of serial passage, resistance (>4-fold increase over the baseline MIC) occurred in fewer strains (n, 4/14) passaged in the presence of amikacin-fosfomycin (5:2) than with either amikacin (n, 7/14) or fosfomycin (n, 12/14) alone. Interactions between amikacin-fosfomycin (5:2) and 10 comparator antibiotics in checkerboard testing against 30 different Gram-positive or Gram-negative bacterial strains were synergistic (fractional inhibitory concentration [FIC] index, ≤ 0.5) for 6.7% (n, 10/150) of combinations tested. No antagonism was observed. Synergy was confirmed by time-kill methodology for amikacin-fosfomycin (5:2) plus cefepime (against Escherichia coli), aztreonam (against Pseudomonas aeruginosa), daptomycin (against Enterococcus faecalis), and azithromycin (against Staphylococcus aureus). Amikacin-fosfomycin (5:2) was bactericidal at 4-fold the MIC for 7 strains tested. The reduced incidence of development of resistance to amikacin-fosfomycin (5:2) compared with that for amikacin or fosfomycin alone, and the lack of negative interactions with commonly used intravenous antibiotics, further supports the development of AFIS for the treatment of VAP.


Subject(s)
Amikacin/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Fosfomycin/pharmacology , Pneumonia, Ventilator-Associated/microbiology , DNA Mutational Analysis , Drug Combinations , Drug Interactions , Drug Resistance, Bacterial/genetics , Drug Synergism , Humans , Kinetics , Microbial Sensitivity Tests , Mutation/genetics , Mutation/physiology
7.
Hepatology ; 56(1): 17-27, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22278598

ABSTRACT

UNLABELLED: Liver failure resulting from chronic hepatitis C virus (HCV) infection is a major cause for liver transplantation worldwide. Recurrent infection of the graft is universal in HCV patients after transplant and results in a rapid progression to severe fibrosis and end-stage liver disease in one third of all patients. No single clinical variable, or combination thereof, has, so far, proven accurate in identifying patients at risk of hepatic decompensation in the transplant setting. A combination of longitudinal, dimensionality reduction and categorical analysis of the transcriptome from 111 liver biopsy specimens taken from 57 HCV-infected patients over time identified a molecular signature of gene expression of patients at risk of developing severe fibrosis. Significantly, alterations in gene expression occur before histologic evidence of liver disease progression, suggesting that events that occur during the acute phase of infection influence patient outcome. Additionally, a common precursor state for different severe clinical outcomes was identified. CONCLUSION: Based on this patient cohort, incidence of severe liver disease is a process initiated early during HCV infection of the donor organ. The probable cellular network at the basis of the initial transition to severe liver disease was identified and characterized.


Subject(s)
Graft Rejection/genetics , Hepatitis C, Chronic/complications , Liver Failure/surgery , Liver Transplantation/adverse effects , Transcriptional Activation/genetics , Aged , Biopsy, Needle , Cohort Studies , Disease Progression , Female , Gene Expression Regulation , Hepacivirus/genetics , Hepacivirus/physiology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/surgery , Humans , Immunohistochemistry , Liver Failure/etiology , Liver Failure/genetics , Liver Transplantation/methods , Longitudinal Studies , Male , Middle Aged , Postoperative Complications/genetics , Postoperative Complications/physiopathology , Prognosis , Recurrence , Risk Assessment , Severity of Illness Index , Tissue Donors
8.
Hepatology ; 56(1): 28-38, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22331615

ABSTRACT

UNLABELLED: Liver transplant tissues offer the unique opportunity to model the longitudinal protein abundance changes occurring during hepatitis C virus (HCV)-associated liver disease progression in vivo. In this study, our goal was to identify molecular signatures, and potential key regulatory proteins, representative of the processes influencing early progression to fibrosis. We performed global protein profiling analyses on 24 liver biopsy specimens obtained from 15 HCV(+) liver transplant recipients at 6 and/or 12 months posttransplantation. Differentially regulated proteins associated with early progression to fibrosis were identified by analysis of the area under the receiver operating characteristic curve. Analysis of serum metabolites was performed on samples obtained from an independent cohort of 60 HCV(+) liver transplant patients. Computational modeling approaches were applied to identify potential key regulatory proteins of liver fibrogenesis. Among 4,324 proteins identified, 250 exhibited significant differential regulation in patients with rapidly progressive fibrosis. Patients with rapid fibrosis progression exhibited enrichment in differentially regulated proteins associated with various immune, hepatoprotective, and fibrogenic processes. The observed increase in proinflammatory activity and impairment in antioxidant defenses suggests that patients who develop significant liver injury experience elevated oxidative stresses. This was supported by an independent study demonstrating the altered abundance of oxidative stress-associated serum metabolites in patients who develop severe liver injury. Computational modeling approaches further highlight a potentially important link between HCV-associated oxidative stress and epigenetic regulatory mechanisms impacting on liver fibrogenesis. CONCLUSION: Our proteome and metabolome analyses provide new insights into the role for increased oxidative stress in the rapid fibrosis progression observed in HCV(+) liver transplant recipients. These findings may prove useful in prognostic applications for predicting early progression to fibrosis.


Subject(s)
Hepacivirus/metabolism , Hepatitis C/complications , Liver Cirrhosis/pathology , Liver Transplantation/pathology , Protein Array Analysis/methods , Proteome/metabolism , Adult , Aged , Biopsy, Needle , Chromatography, Liquid/methods , Cohort Studies , Diagnosis, Computer-Assisted/methods , Disease Progression , Female , Graft Rejection , Graft Survival , Hepacivirus/pathogenicity , Hepatitis C/pathology , Humans , Immunohistochemistry , Liver Cirrhosis/etiology , Liver Cirrhosis/surgery , Liver Transplantation/adverse effects , Male , Mass Spectrometry/methods , Middle Aged , Oxidative Stress/physiology , Proteome/genetics , Proteomics/methods , Recurrence , Reference Values , Risk Assessment , Sampling Studies , Sensitivity and Specificity
9.
PLoS Pathog ; 6(1): e1000719, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20062526

ABSTRACT

Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis.


Subject(s)
Hepacivirus/physiology , Lipids/analysis , Liver/metabolism , Liver/virology , Proteins/analysis , Cell Line, Tumor , Chromatography, Liquid , Energy Metabolism/physiology , Humans , Mass Spectrometry , Proteins/metabolism , Proteome , Virus Replication
10.
Sci Transl Med ; 14(653): eabo2167, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35857640

ABSTRACT

Influenza A viruses (IAVs) present major public health threats from annual seasonal epidemics and pandemics and from viruses adapted to a variety of animals including poultry, pigs, and horses. Vaccines that broadly protect against all such IAVs, so-called "universal" influenza vaccines, do not currently exist but are urgently needed. Here, we demonstrated that an inactivated, multivalent whole-virus vaccine, delivered intramuscularly or intranasally, was broadly protective against challenges with multiple IAV hemagglutinin and neuraminidase subtypes in both mice and ferrets. The vaccine is composed of four ß-propiolactone-inactivated low-pathogenicity avian IAV subtypes of H1N9, H3N8, H5N1, and H7N3. Vaccinated mice and ferrets demonstrated substantial protection against a variety of IAVs, including the 1918 H1N1 strain, the highly pathogenic avian H5N8 strain, and H7N9. We also observed protection against challenge with antigenically variable and heterosubtypic avian, swine, and human viruses. Compared to control animals, vaccinated mice and ferrets demonstrated marked reductions in viral titers, lung pathology, and host inflammatory responses. This vaccine approach indicates the feasibility of eliciting broad, heterosubtypic IAV protection and identifies a promising candidate for influenza vaccine clinical development.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Ferrets , Horses , Humans , Influenza A Virus, H7N3 Subtype , Mice , Swine
11.
PLoS Pathog ; 5(1): e1000269, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19148281

ABSTRACT

The mechanisms of liver injury associated with chronic HCV infection, as well as the individual roles of both viral and host factors, are not clearly defined. However, it is becoming increasingly clear that direct cytopathic effects, in addition to immune-mediated processes, play an important role in liver injury. Gene expression profiling during multiple time-points of acute HCV infection of cultured Huh-7.5 cells was performed to gain insight into the cellular mechanism of HCV-associated cytopathic effect. Maximal induction of cell-death-related genes and appearance of activated caspase-3 in HCV-infected cells coincided with peak viral replication, suggesting a link between viral load and apoptosis. Gene ontology analysis revealed that many of the cell-death genes function to induce apoptosis in response to cell cycle arrest. Labeling of dividing cells in culture followed by flow cytometry also demonstrated the presence of significantly fewer cells in S-phase in HCV-infected relative to mock cultures, suggesting HCV infection is associated with delayed cell cycle progression. Regulation of numerous genes involved in anti-oxidative stress response and TGF-beta1 signaling suggest these as possible causes of delayed cell cycle progression. Significantly, a subset of cell-death genes regulated during in vitro HCV infection was similarly regulated specifically in liver tissue from a cohort of HCV-infected liver transplant patients with rapidly progressive fibrosis. Collectively, these data suggest that HCV mediates direct cytopathic effects through deregulation of the cell cycle and that this process may contribute to liver disease progression. This in vitro system could be utilized to further define the cellular mechanism of this perturbation.


Subject(s)
Apoptosis/physiology , Cell Cycle/physiology , Hepacivirus/genetics , Hepatitis C/physiopathology , Apoptosis/genetics , Cell Line, Tumor , Cells, Cultured , Cytokines/physiology , Hepacivirus/physiology , Hepatocytes/cytology , Hepatocytes/virology , Humans , Liver Transplantation/pathology , Liver Transplantation/physiology
12.
PLoS Pathog ; 5(2): e1000296, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19214219

ABSTRACT

Simian immunodeficiency virus (SIV) infection leads to AIDS in experimentally infected macaques, whereas natural reservoir hosts exhibit limited disease and pathology. It is, however, unclear how natural hosts can sustain high viral loads, comparable to those observed in the pathogenic model, without developing severe disease. We performed transcriptional profiling on lymph node, blood, and colon samples from African green monkeys (natural host model) and Asian pigtailed macaques (pathogenic model) to directly compare gene expression patterns during acute pathogenic versus non-pathogenic SIV infection. The majority of gene expression changes that were unique to either model were detected in the lymph nodes at the time of peak viral load. Results suggest a shift toward cellular stress pathways and Th1 profiles during pathogenic infection, with strong and sustained type I and II interferon responses. In contrast, a strong type I interferon response was initially induced during non-pathogenic infection but resolved after peak viral load. The natural host also exhibited controlled Th1 profiles and better preservation of overall cell homeostasis. This study identified gene expression patterns that are specific to disease susceptibility, tissue compartmentalization, and infection duration. These patterns provide a unique view of how host responses differ depending upon lentiviral infection outcome.


Subject(s)
Gene Expression/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity , Analysis of Variance , Animals , Apoptosis , Chlorocebus aethiops , Cluster Analysis , Colon/immunology , Colon/metabolism , Disease Progression , Disease Susceptibility , Inflammation/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Macaca nemestrina , Male , NF-kappa B/immunology , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Signal Transduction , Stress, Physiological , T-Lymphocytes, Cytotoxic/immunology , Th1 Cells/immunology , Viral Load
13.
PLoS Pathog ; 5(2): e1000291, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19242562

ABSTRACT

Hepatitis C virus (HCV) is a blood-borne pathogen and a major cause of liver disease worldwide. Gene expression profiling was used to characterize the transcriptional response to HCV H77c infection. Evidence is presented for activation of innate antiviral signaling pathways as well as induction of lipid metabolism genes, which may contribute to oxidative stress. We also found that infection of chimeric SCID/Alb-uPA mice by HCV led to signs of hepatocyte damage and apoptosis, which in patients plays a role in activation of stellate cells, recruitment of macrophages, and the subsequent development of fibrosis. Infection of chimeric mice with HCV H77c also led an inflammatory response characterized by infiltration of monocytes and macrophages. There was increased apoptosis in HCV-infected human hepatocytes in H77c-infected mice but not in mice inoculated with a replication incompetent H77c mutant. Moreover, TUNEL reactivity was restricted to HCV-infected hepatocytes, but an increase in FAS expression was not. To gain insight into the factors contributing specific apoptosis of HCV infected cells, immunohistological and confocal microscopy using antibodies for key apoptotic mediators was done. We found that the ER chaperone BiP/GRP78 was increased in HCV-infected cells as was activated BAX, but the activator of ER stress-mediated apoptosis CHOP was not. We found that overall levels of NF-kappaB and BCL-xL were increased by infection; however, within an infected liver, comparison of infected cells to uninfected cells indicated both NF-kappaB and BCL-xL were decreased in HCV-infected cells. We conclude that HCV contributes to hepatocyte damage and apoptosis by inducing stress and pro-apoptotic BAX while preventing the induction of anti-apoptotic NF-kappaB and BCL-xL, thus sensitizing hepatocytes to apoptosis.


Subject(s)
Apoptosis , Endoplasmic Reticulum/physiology , Gene Expression Regulation , Hepatitis C/physiopathology , Oxidative Stress , Stress, Physiological , Animals , Endoplasmic Reticulum Chaperone BiP , Gene Expression Profiling , Heat-Shock Proteins/metabolism , Hepacivirus/physiology , Hepatitis C/immunology , Hepatitis C/pathology , Hepatitis C/virology , Hepatitis C Antibodies/metabolism , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Lipid Metabolism , Liver/metabolism , Liver/virology , Mice , Mice, SCID , Microscopy, Confocal , Molecular Chaperones/metabolism , NF-kappa B/metabolism , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism
14.
NPJ Vaccines ; 6(1): 48, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33824333

ABSTRACT

Despite the importance of immunity against neuraminidase (NA), NA content and immunogenicity are neglected in current influenza vaccines. To address this, a recombinant N1/N2 NA vaccine (NAV) was developed. Stability assays were used to determine optimal temperature and buffer conditions for vaccine storage. The effect of divalent cation-related enhancement of NA stability and activity on N1 and N2 immunogenicity and efficacy against viral challenge was assessed. Differences in activity between N1 and N2 and cation-related activity enhancement did not translate into differences in immunogenicity or efficacy. NAV-vaccinated mice showed robust antibody titers against N1 and N2, and after challenge with influenza A (H1N1) virus, decreased viral titers and decreased antiviral and inflammatory responses by transcriptomic analysis. These findings provide guidance for optimal storage and assessment of NA-based vaccines and confirm the importance of NA in influenza vaccination strategies in attenuating viral replication and limiting inflammatory responses necessary to clear infection.

15.
Sci Transl Med ; 13(620): eabj7790, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34648357

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by respiratory distress, multiorgan dysfunction, and, in some cases, death. The pathological mechanisms underlying COVID-19 respiratory distress and the interplay with aggravating risk factors have not been fully defined. Lung autopsy samples from 18 patients with fatal COVID-19, with symptom onset-to-death times ranging from 3 to 47 days, and antemortem plasma samples from 6 of these cases were evaluated using deep sequencing of SARS-CoV-2 RNA, multiplex plasma protein measurements, and pulmonary gene expression and imaging analyses. Prominent histopathological features in this case series included progressive diffuse alveolar damage with excessive thrombosis and late-onset pulmonary tissue and vascular remodeling. Acute damage at the alveolar-capillary barrier was characterized by the loss of surfactant protein expression with injury to alveolar epithelial cells, endothelial cells, respiratory epithelial basal cells, and defective tissue repair processes. Other key findings included impaired clot fibrinolysis with increased concentrations of plasma and lung plasminogen activator inhibitor-1 and modulation of cellular senescence markers, including p21 and sirtuin-1, in both lung epithelial and endothelial cells. Together, these findings further define the molecular pathological features underlying the pulmonary response to SARS-CoV-2 infection and provide important insights into signaling pathways that may be amenable to therapeutic intervention.


Subject(s)
COVID-19 , Cellular Senescence , Fibrinolysis , Humans , Lung , SARS-CoV-2
16.
Nat Med ; 26(8): 1240-1246, 2020 08.
Article in English | MEDLINE | ID: mdl-32601336

ABSTRACT

The conserved region of influenza hemagglutinin (HA) stalk (or stem) has gained attention as a potent target for universal influenza vaccines1-5. Although the HA stalk region is relatively well conserved, the evolutionarily dynamic nature of influenza viruses6 raises concerns about the possible emergence of viruses carrying stalk escape mutation(s) under sufficient immune pressure. Here we show that immune pressure on the HA stalk can lead to expansion of escape mutant viruses in study participants challenged with a 2009 H1N1 pandemic influenza virus inoculum containing an A388V polymorphism in the HA stalk (45% wild type and 55% mutant). High level of stalk antibody titers was associated with the selection of the mutant virus both in humans and in vitro. Although the mutant virus showed slightly decreased replication in mice, it was not observed in cell culture, ferrets or human challenge participants. The A388V mutation conferred resistance to some of the potent HA stalk broadly neutralizing monoclonal antibodies (bNAbs). Co-culture of wild-type and mutant viruses in the presence of either a bNAb or human serum resulted in rapid expansion of the mutant. These data shed light on a potential obstacle for the success of HA-stalk-targeting universal influenza vaccines-viral escape from vaccine-induced stalk immunity.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/genetics , Selection, Genetic/genetics , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , Conserved Sequence/genetics , Cross Reactions/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Mice , Selection, Genetic/immunology
17.
BMC Genomics ; 10: 373, 2009 Aug 11.
Article in English | MEDLINE | ID: mdl-19671175

ABSTRACT

BACKGROUND: Hepatitis C virus (HCV) is a major cause of chronic liver disease by infecting over 170 million people worldwide. Recent studies have shown that microRNAs (miRNAs), a class of small non-coding regulatory RNAs, are involved in the regulation of HCV infection, but their functions have not been systematically studied. We propose an integrative strategy for identifying the miRNA-mRNA regulatory modules that are associated with HCV infection. This strategy combines paired expression profiles of miRNAs and mRNAs and computational target predictions. A miRNA-mRNA regulatory module consists of a set of miRNAs and their targets, in which the miRNAs are predicted to coordinately regulate the level of the target mRNA. RESULTS: We simultaneously profiled the expression of cellular miRNAs and mRNAs across 30 HCV positive or negative human liver biopsy samples using microarray technology. We constructed a miRNA-mRNA regulatory network, and using a graph theoretical approach, identified 38 miRNA-mRNA regulatory modules in the network that were associated with HCV infection. We evaluated the direct miRNA regulation of the mRNA levels of targets in regulatory modules using previously published miRNA transfection data. We analyzed the functional roles of individual modules at the systems level by integrating a large-scale protein interaction network. We found that various biological processes, including some HCV infection related canonical pathways, were regulated at the miRNA level during HCV infection. CONCLUSION: Our regulatory modules provide a framework for future experimental analyses. This report demonstrates the utility of our approach to obtain new insights into post-transcriptional gene regulation at the miRNA level in complex human diseases.


Subject(s)
Gene Regulatory Networks , Hepatitis C/genetics , Liver/metabolism , MicroRNAs/metabolism , RNA, Messenger/metabolism , Adolescent , Adult , Aged , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation , Hepacivirus/physiology , Hepatitis C/metabolism , Humans , Liver/virology , MicroRNAs/genetics , Middle Aged , Models, Genetic , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Sequence Analysis, RNA/methods , Young Adult
18.
Sci Rep ; 9(1): 7365, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089177

ABSTRACT

Implementation of multi-gene biomarker panels identified from high throughput data, including microarray or next generation sequencing, need to be adapted to a platform suitable in a clinical setting such as quantitative polymerase chain reaction. However, technical challenges when transitioning from one measurement platform to another, such as inconsistent measurement results can affect panel development. We describe a process to overcome the challenges by replacing poor performing genes during platform transition and reducing the number of features without impacting classification performance. This approach assumes that a diagnostic panel reflects the effect of dysregulated biological processes associated with a disease, and genes involved in the same biological processes and coordinately affected by a disease share a similar discriminatory power. The utility of this optimization process was assessed using a published sepsis diagnostic panel. Substitution of more than half of the genes and/or reducing genes based on biological processes did not negatively affect the performance of the sepsis diagnostic panel. Our results suggest a systematic gene substitution and reduction process based on biological function can be used to alleviate the challenges associated with clinical development of biomarker panels.


Subject(s)
Algorithms , Biomarkers/analysis , Gene Expression Profiling/methods , High-Throughput Screening Assays/methods , Datasets as Topic , High-Throughput Nucleotide Sequencing/methods , Humans , Microarray Analysis/methods , Real-Time Polymerase Chain Reaction/methods , Sepsis/diagnosis , Sepsis/genetics , Signal Transduction/genetics
19.
mBio ; 10(3)2019 05 14.
Article in English | MEDLINE | ID: mdl-31088926

ABSTRACT

In this study, we examined the relationships between anti-influenza virus serum antibody titers, clinical disease, and peripheral blood leukocyte (PBL) global gene expression during presymptomatic, acute, and convalescent illness in 83 participants infected with 2009 pandemic H1N1 virus in a human influenza challenge model. Using traditional statistical and logistic regression modeling approaches, profiles of differentially expressed genes that correlated with active viral shedding, predicted length of viral shedding, and predicted illness severity were identified. These analyses further demonstrated that challenge participants fell into three peripheral blood leukocyte gene expression phenotypes that significantly correlated with different clinical outcomes and prechallenge serum titers of antibodies specific for the viral neuraminidase, hemagglutinin head, and hemagglutinin stalk. Higher prechallenge serum antibody titers were inversely correlated with leukocyte responsiveness in participants with active disease and could mask expression of peripheral blood markers of clinical disease in some participants, including viral shedding and symptom severity. Consequently, preexisting anti-influenza antibodies may modulate PBL gene expression, and this must be taken into consideration in the development and interpretation of peripheral blood diagnostic and prognostic assays of influenza infection.IMPORTANCE Influenza A viruses are significant human pathogens that caused 83,000 deaths in the United States during 2017 to 2018, and there is need to understand the molecular correlates of illness and to identify prognostic markers of viral infection, symptom severity, and disease course. Preexisting antibodies against viral neuraminidase (NA) and hemagglutinin (HA) proteins play a critical role in lessening disease severity. We performed global gene expression profiling of peripheral blood leukocytes collected during acute and convalescent phases from a large cohort of people infected with A/H1N1pdm virus. Using statistical and machine-learning approaches, populations of genes were identified early in infection that correlated with active viral shedding, predicted length of shedding, or disease severity. Finally, these gene expression responses were differentially affected by increased levels of preexisting influenza antibodies, which could mask detection of these markers of contagiousness and disease severity in people with active clinical disease.


Subject(s)
Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza, Human/immunology , Leukocytes/immunology , Neuraminidase/immunology , Acute Disease , Adolescent , Adult , Convalescence , Cross Protection , Female , Gene Expression Profiling , Healthy Volunteers , Hemagglutination Inhibition Tests , Human Experimentation , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/blood , Male , Middle Aged , Virus Shedding , Young Adult
20.
PLoS Pathog ; 2(6): e59, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16789836

ABSTRACT

The severe combined immunodeficiency disorder (SCID)-beige/albumin (Alb)-urokinase plasminogen activator (uPA) mouse containing a human-mouse chimeric liver is currently the only small animal model capable of supporting hepatitis C virus (HCV) infection. This model was utilized to characterize the host transcriptional response to HCV infection. The purpose of these studies was to investigate the genetic component of the host response to HCV infection and also to distinguish virus-induced gene expression changes from adaptive HCV-specific immune-mediated effects. Gene expression profiles from HCV-infected mice were also compared to those from HCV-infected patients. Analyses of the gene expression data demonstrate that host factors regulate the response to HCV infection, including the nature of the innate antiviral immune response. They also indicate that HCV mediates gene expression changes, including regulation of lipid metabolism genes, which have the potential to be directly cytopathic, indicating that liver pathology may not be exclusively mediated by HCV-specific adaptive immune responses. This effect appears to be inversely related to the activation of the innate antiviral immune response. In summary, the nature of the initial interferon response to HCV infection may determine the extent of viral-mediated effects on host gene expression.


Subject(s)
Antibodies, Viral/biosynthesis , Chimera , Hepatitis C/immunology , Immunity, Innate , Mice, SCID/genetics , Mice, SCID/immunology , Albumins , Animals , Gene Expression Profiling , Hepatitis C/genetics , Hepatitis C/metabolism , Hepatocytes/transplantation , Humans , Lipid Metabolism , Liver/metabolism , Mice , Oxidative Stress , Signal Transduction/immunology , Urokinase-Type Plasminogen Activator/genetics
SELECTION OF CITATIONS
SEARCH DETAIL