Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Antonie Van Leeuwenhoek ; 115(6): 773-782, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35396624

ABSTRACT

A Gram-stain-positive, orange-pigmented, rod-shaped and flagellated bacterial strain T12T was isolated from wetland soil in Kunyu Mountain Wetland in Yantai, China. The strain was able to grow at 15-40 °C (optimum 37 °C), at 0.0-9.0% NaCl (optimum 2%, w/v) and at pH 5.5-9.0 (optimum 8.5). A phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain T12T is a member of the family Planococcaceae, sharing 97.6% and 97.1% sequence similarity with the type strains of Jeotgalibacillus salarius and Jeotgalibacillus marinus, respectively. Genome-based analyses revealed a genome size of 3,506,682 bp and a DNA G + C content of 43.7%. Besides, the genome sequence led to 55.0-74.6% average amino acid identity values and 67.8-74.7% average nucleotide identity values between strain T12T and the current closest relatives. Digital DNA-DNA hybridization of strain T12T with the type strains of Jeotgalibacillus proteolyticus and J. marinus demonstrated 19.0% and 20.3% relatedness, respectively. The chemotaxonomic analysis showed that the sole quinone was MK-7. The predominant cellular fatty acids were iso-C15:0, anteiso-C15:0, C16:1ω7c alcohol and iso-C14:0. The polar lipids consisted of an unidentified aminolipid, phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. Based on the polyphasic characterization, strain T12T is considered to represent a novel species, for which the name Jeotgalibacillus aurantiacus sp. nov. is proposed. The type strain is T12T (= KCTC 43296 T = MCCC 1K07171T).


Subject(s)
Citrus sinensis , Planococcaceae , Bacterial Typing Techniques , Carotenoids , China , Citrus sinensis/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Multigene Family , Phospholipids/chemistry , Phylogeny , Planococcaceae/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil , Wetlands
2.
Mar Drugs ; 19(4)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800691

ABSTRACT

Alginate, a major acidic polysaccharide in brown algae, has attracted great attention as a promising carbon source for biorefinery systems. Alginate lyases, especially exo-type alginate lyase, play a critical role in the biorefinery process. Although a large number of alginate lyases have been characterized, few can efficiently degrade alginate comprised of mannuronate (M) and guluronate (G) at low temperatures by means of an exolytic mode. In this study, the gene of a new exo-alginate lyase-Alys1-with high activity (1350 U/mg) was cloned from a marine strain, Tamlana sp. s12. When sodium alginate was used as a substrate, the recombinant enzyme showed optimal activity at 35 °C and pH 7.0-8.0. Noticeably, recombinant Alys1 was unstable at temperatures above 30 °C and had a low melting temperature of 56.0 °C. SDS and EDTA significantly inhibit its activity. These data indicate that Alys1 is a cold-adapted enzyme. Moreover, the enzyme can depolymerize alginates polyM and polyG, and produce a monosaccharide as the minimal alginate oligosaccharide. Primary substrate preference tests and identification of the final oligosaccharide products demonstrated that Alys1 is a bifunctional alginate lyase and prefers M to G. These properties make Alys1 a valuable candidate in both basic research and industrial applications.


Subject(s)
Alginates/metabolism , Bacterial Proteins/metabolism , Cold Temperature , Flavobacteriaceae/enzymology , Polysaccharide-Lyases/metabolism , Stichopus/microbiology , Acclimatization , Animals , Bacterial Proteins/genetics , Catalysis , Enzyme Stability , Evolution, Molecular , Flavobacteriaceae/genetics , Hydrogen-Ion Concentration , Phylogeny , Polysaccharide-Lyases/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL