Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 583
Filter
Add more filters

Publication year range
1.
Cell ; 185(3): 467-484.e15, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35081335

ABSTRACT

On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses.

2.
Cell ; 184(9): 2348-2361.e6, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33730597

ABSTRACT

The race to produce vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK, B.1.1.7; South Africa, B.1.351; and Brazil, P.1. These variants have multiple changes in the immunodominant spike protein that facilitates viral cell entry via the angiotensin-converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here, we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor-binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K, although K417N and N501Y act together against some important antibody classes. In a number of cases, it would appear that convalescent and some vaccine serum offers limited protection against this variant.


Subject(s)
COVID-19 Vaccines/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Chlorocebus aethiops , Clinical Trials as Topic , HEK293 Cells , Humans , Immunization, Passive , Models, Molecular , Mutation/genetics , Neutralization Tests , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Vero Cells , COVID-19 Serotherapy
3.
Cell ; 184(8): 2183-2200.e22, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33756110

ABSTRACT

Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here, we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data-driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50 < 0.1 µg/mL) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryoelectron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Binding Sites, Antibody , CHO Cells , Chlorocebus aethiops , Cricetulus , Epitopes , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Models, Molecular , Protein Binding , Protein Structure, Tertiary , SARS-CoV-2/immunology , Vero Cells
4.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33743891

ABSTRACT

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CHO Cells , COVID-19/epidemiology , Chlorocebus aethiops , Cricetulus , HEK293 Cells , Humans , Pandemics , Protein Binding , Structure-Activity Relationship , Vero Cells
5.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33852911

ABSTRACT

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Binding Sites , COVID-19/therapy , COVID-19/virology , Cell Line , Humans , Immune Evasion , Immunization, Passive , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/genetics , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines/immunology , COVID-19 Serotherapy
6.
Cell ; 184(16): 4220-4236.e13, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34242578

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone progressive change, with variants conferring advantage rapidly becoming dominant lineages, e.g., B.1.617. With apparent increased transmissibility, variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the United Kingdom. Here we study the ability of monoclonal antibodies and convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2, complement this with structural analyses of Fab/receptor binding domain (RBD) complexes, and map the antigenic space of current variants. Neutralization of both viruses is reduced compared with ancestral Wuhan-related strains, but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2, suggesting that individuals infected previously by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insights for immunization policy with future variant vaccines in non-immune populations.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antigen-Antibody Complex/chemistry , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Chlorocebus aethiops , Crystallography, X-Ray , Humans , Immunization, Passive , Neutralization Tests , Protein Domains/immunology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Serotherapy
7.
Nat Immunol ; 23(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34853448

ABSTRACT

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
HLA-B7 Antigen/immunology , Immunodominant Epitopes/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Aged , Amino Acid Sequence , Antibodies, Viral/immunology , Antibody Affinity/immunology , COVID-19/immunology , COVID-19/pathology , Cell Line, Transformed , Female , Gene Expression Profiling , Humans , Immunologic Memory/immunology , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/metabolism
8.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Article in English | MEDLINE | ID: mdl-32887977

ABSTRACT

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Subject(s)
Antigens, Viral/immunology , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Humans , Immunodominant Epitopes/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , United Kingdom , Viral Vaccines/immunology
9.
Mol Cell ; 81(5): 1100-1115.e5, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33472057

ABSTRACT

Bacteria and archaea apply CRISPR-Cas surveillance complexes to defend against foreign invaders. These invading genetic elements are captured and integrated into the CRISPR array as spacer elements, guiding sequence-specific DNA/RNA targeting and cleavage. Recently, in vivo studies have shown that target RNAs with extended complementarity with repeat sequences flanking the target element (tag:anti-tag pairing) can dramatically reduce RNA cleavage by the type VI-A Cas13a system. Here, we report the cryo-EM structure of Leptotrichia shahii LshCas13acrRNA in complex with target RNA harboring tag:anti-tag pairing complementarity, with the observed conformational changes providing a molecular explanation for inactivation of the composite HEPN domain cleavage activity. These structural insights, together with in vitro biochemical and in vivo cell-based assays on key mutants, define the molecular principles underlying Cas13a's capacity to target and discriminate between self and non-self RNA targets. Our studies illuminate approaches to regulate Cas13a's cleavage activity, thereby influencing Cas13a-mediated biotechnological applications.


Subject(s)
Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Endodeoxyribonucleases/chemistry , Leptotrichia/genetics , RNA, Guide, Kinetoplastida/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Pairing , Base Sequence , Binding Sites , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Cloning, Molecular , Cryoelectron Microscopy , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Leptotrichia/metabolism , Models, Molecular , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , RNA Cleavage , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
10.
Circ Res ; 132(1): e22-e42, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36444722

ABSTRACT

BACKGROUND: Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins. METHODS: We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1fl/+). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis. RESULTS: We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1fl/+ mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1. CONCLUSIONS: Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Mice , Plaque, Atherosclerotic/metabolism , Macrophages/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , ATP Binding Cassette Transporter 1/metabolism
11.
Nano Lett ; 24(20): 6174-6182, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739468

ABSTRACT

Accumulated reactive oxygen species (ROS) and their resultant vascular dysfunction in androgenic alopecia (AGA) hinder hair follicle survival and cause permanent hair loss. However, safe and effective strategies to rescue hair follicle viability to enhance AGA therapeutic efficiency remain challenging. Herein, we fabricated a quercetin-encapsulated (Que) and polydopamine-integrated (PDA@QLipo) nanosystem that can reshape the perifollicular microenvironment to initial hair follicle regeneration for AGA treatment. Both the ROS scavenging and angiogenesis promotion abilities of PDA@QLipo were demonstrated. In vivo assays revealed that PDA@QLipo administrated with roller-microneedles successfully rejuvenated the "poor" perifollicular microenvironment, thereby promoting cell proliferation, accelerating hair follicle renewal, and facilitating hair follicle recovery. Moreover, PDA@QLipo achieved a higher hair regeneration coverage of 92.5% in the AGA mouse model than minoxidil (87.8%), even when dosed less frequently. The nanosystem creates a regenerative microenvironment by scavenging ROS and augmenting neovascularity for hair regrowth, presenting a promising approach for AGA clinical treatment.


Subject(s)
Alopecia , Hair Follicle , Indoles , Polymers , Quercetin , Reactive Oxygen Species , Alopecia/drug therapy , Alopecia/pathology , Quercetin/pharmacology , Quercetin/administration & dosage , Quercetin/chemistry , Animals , Indoles/chemistry , Indoles/pharmacology , Hair Follicle/drug effects , Hair Follicle/growth & development , Polymers/chemistry , Mice , Reactive Oxygen Species/metabolism , Regeneration/drug effects , Humans , Hair/drug effects , Hair/growth & development , Cell Proliferation/drug effects , Cellular Microenvironment/drug effects , Disease Models, Animal , Male
12.
J Infect Dis ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38234283

ABSTRACT

BACKGROUND: Soluble inflammatory factors have been investigated in the cerebrospinal fluid (CSF) of neurosyphilis patients with low-throughput technology. This study aimed to illustrate the characteristics of soluble factors profiles in CSF of neurosyphilis patients. METHODS: We measured the concentrations of 45 cytokines/chemokines/growth factors in CSF from 112 untreated syphilis cases, including latent syphilis (LS), asymptomatic neurosyphilis (ANS), meningeal neurosyphilis (MNS), meningovascular neurosyphilis (MVNS), paralytic dementia (PD) and ocular syphilis (OS). RESULTS: Thirty-three differentially expressed soluble factors (DeSFs) were categorized into three clusters. DeSFs scores of cluster 1 and 2 (DeSFS1 and DeSFS2) were positively correlated with elevated neopterin and neurofilament light subunit (NF-L) concentration, respectively. DeSFs scores of cluster 3 were positively correlated with WBC, protein, NF-L and neopterin. Patients with LS, ANS, and OS exhibited an overall lower abundance of DeSFs. PD patients exhibited significantly increased levels of cluster 1 and 3, and the highest total DeSFs score, while patients with MNS and MVNS showed enhanced levels of cluster 2. ROC analysis revealed that DeSFS1 effectively discriminated PD, and DeSFS2 discriminated MNS/MVNS with high accuracy. CONCLUSIONS: Patients with neurosyphilis at different stages have distinctive patterns of soluble factors in CSF, which are correlated with immune status and neuronal damage.

13.
Circulation ; 147(8): 669-685, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36591786

ABSTRACT

BACKGROUND: Epsin endocytic adaptor proteins are implicated in the progression of atherosclerosis; however, the underlying molecular mechanisms have not yet been fully defined. In this study, we determined how epsins enhance endothelial-to-mesenchymal transition (EndoMT) in atherosclerosis and assessed the efficacy of a therapeutic peptide in a preclinical model of this disease. METHODS: Using single-cell RNA sequencing combined with molecular, cellular, and biochemical analyses, we investigated the role of epsins in stimulating EndoMT using knockout in Apoe-/- and lineage tracing/proprotein convertase subtilisin/kexin type 9 serine protease mutant viral-induced atherosclerotic mouse models. The therapeutic efficacy of a synthetic peptide targeting atherosclerotic plaques was then assessed in Apoe-/- mice. RESULTS: Single-cell RNA sequencing and lineage tracing revealed that epsins 1 and 2 promote EndoMT and that the loss of endothelial epsins inhibits EndoMT marker expression and transforming growth factor-ß signaling in vitro and in atherosclerotic mice, which is associated with smaller lesions in the Apoe-/- mouse model. Mechanistically, the loss of endothelial cell epsins results in increased fibroblast growth factor receptor-1 expression, which inhibits transforming growth factor-ß signaling and EndoMT. Epsins directly bind ubiquitinated fibroblast growth factor receptor-1 through their ubiquitin-interacting motif, which results in endocytosis and degradation of this receptor complex. Consequently, administration of a synthetic ubiquitin-interacting motif-containing peptide atheroma ubiquitin-interacting motif peptide inhibitor significantly attenuates EndoMT and progression of atherosclerosis. CONCLUSIONS: We conclude that epsins potentiate EndoMT during atherogenesis by increasing transforming growth factor-ß signaling through fibroblast growth factor receptor-1 internalization and degradation. Inhibition of EndoMT by reducing epsin-fibroblast growth factor receptor-1 interaction with a therapeutic peptide may represent a novel treatment strategy for atherosclerosis.


Subject(s)
Atherosclerosis , Transforming Growth Factor beta , Mice , Animals , Fibroblast Growth Factors , Apolipoproteins E , Atherosclerosis/genetics , Receptors, Fibroblast Growth Factor , Transforming Growth Factors , Ubiquitins
14.
Anal Chem ; 96(11): 4479-4486, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38454359

ABSTRACT

Metal-organic gels (MOGs) are a new type of intelligent soft material, which are bridged by metal ions and organic ligands through noncovalent interactions. In this paper, we prepared highly stable P-MOGs, using the classical organic electrochemiluminescence (ECL) luminescence meso-tetra(4-carboxyphenyl)porphine as the organic ligand and Fe3+ as the metal ion. Surprisingly, P-MOGs can stably output ECL signals at a low potential. We introduced P-MOGs into the ECL resonance energy transfer strategy (ECL-RET) and constructed a quenched ECL immunosensor for the detection of the SARS-CoV-2 nucleocapsid protein (SARS-CoV-2-N). In the ECL-RET system, P-MOGs were used as energy donors, and Au@Cu2O@Fe3O4 were selected as energy acceptors. The ultraviolet-visible spectrum of Au@Cu2O@Fe3O4 partially overlaps with the ECL spectrum of P-MOGs, which can effectively touch off the ECL-RET behavior between the donors and receptors. Under the ideal experimental situation, the linear detection range of the SARS-CoV-2-N concentration was 10 fg/mL to 100 ng/mL, and the limit of detection was 1.5 fg/mL. This work has broad application prospects for porphyrin-MOGs in ECL sensing.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Luminescent Measurements , SARS-CoV-2 , Electrochemical Techniques , Limit of Detection , Immunoassay , COVID-19/diagnosis , Gels , Nucleocapsid Proteins
15.
Small ; : e2311079, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733224

ABSTRACT

Ternary topological insulators have attracted worldwide attention because of their broad application prospects in fields such as magnetism, optics, electronics, and quantum computing. However, their potential and electrochemical mechanisms in sodium ion batteries (SIBs) and hybrid capacitors (SIHCs) have not been fully studied. Herein, a composite material comprising vacancy-defects ternary topological insulator Bi2Se2Te encapsulated in mesoporous carbon spheres (Bi2Se2Te@C) is designed. Bi2Se2Te with ample vacancy-defects has a wide interlayer spacing to enable frequent insertion/extraction of Na+ and boost reaction kinetics within the electrode. Meanwhile, the Bi2Se2Te@C with optimized yolk-shell structure can buffer the volume variation without breaking the outer protective carbon shell, ensuring structural stability and integrity. As expected, the Bi2Se2Te@C electrode delivers high reversible capacity and excellent rate capability in half SIB cells. Various electrochemical analyses and theoretical calculations manifest that Bi2Se2Te@C anode confirms the synergistic effect of ternary chalcogenide systems and suitable void space yolk-shell structure. Consequently, the full cells of SIB and SIHC coupled with Bi2Se2Te@C anode exhibit good performance and high energy/power density, indicating its widespread practical applications. This design is expected to offer a reliable strategy for further exploring advanced topological insulators in Na+-based storage systems.

16.
Mol Carcinog ; 63(6): 1174-1187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501385

ABSTRACT

Sorbin and SH3 domain-containing 2 (SORBS2) is an RNA-binding protein and has been implicated in the development of some cancers. However, its role in bladder cancer (BC) is yet to be established. The expression of SORBS2 in BC tissues was determined from the Gene Expression Omnibus and Gene Expression Profiling Interactive Analysis databases and collected paired tumor/normal samples. The effects of SORBS2 on BC cells were detected by CCK-8, colony formation, Transwell, dual-luciferase, RNA immunoprecipitation, chromatin immunoprecipitation, and DNA pull-down assays. In vivo, BC cell growth and metastasis were studied by a xenograft subcutaneous model and a tail-vein metastasis model. The results showed that SORBS2 expression was significantly decreased in BC tissues and cells. SORBS2 overexpression inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition in vitro and tumor growth and metastasis in vivo, while silencing SORBS2 produced the opposite effect. Mechanistically, we found that SORBS2 enhanced the stability of tissue factor pathway inhibitor (TFPI) mRNA via direct binding to its 3' UTR. Restoration of TFPI expression reversed SORBS2 knockdown-induced malignant phenotypes of BC cells. In addition, SORBS2 expression was negatively regulated by the transcription factor specificity protein 1 (SP1). Conversely, SORBS2 can be transcriptionally regulated by SP1 and inhibit BC cell growth and metastasis via stabilization of TFPI mRNA, indicating SORBS2 may be a promising therapeutic target for BC.


Subject(s)
Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , RNA-Binding Proteins , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Humans , Animals , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Mice, Nude , Female , Male , Xenograft Model Antitumor Assays , Mice, Inbred BALB C
17.
Bioinformatics ; 39(10)2023 10 03.
Article in English | MEDLINE | ID: mdl-37847755

ABSTRACT

MOTIVATION: In recent years, there has been a breakthrough in protein structure prediction, and the AlphaFold2 model of the DeepMind team has improved the accuracy of protein structure prediction to the atomic level. Currently, deep learning-based protein function prediction models usually extract features from protein sequences and combine them with protein-protein interaction networks to achieve good results. However, for newly sequenced proteins that are not in the protein-protein interaction network, such models cannot make effective predictions. To address this, this article proposes the Struct2GO model, which combines protein structure and sequence data to enhance the precision of protein function prediction and the generality of the model. RESULTS: We obtain amino acid residue embeddings in protein structure through graph representation learning, utilize the graph pooling algorithm based on a self-attention mechanism to obtain the whole graph structure features, and fuse them with sequence features obtained from the protein language model. The results demonstrate that compared with the traditional protein sequence-based function prediction model, the Struct2GO model achieves better results. AVAILABILITY AND IMPLEMENTATION: The data underlying this article are available at https://github.com/lyjps/Struct2GO.


Subject(s)
Neural Networks, Computer , Proteins , Proteins/chemistry , Algorithms , Amino Acid Sequence , Amino Acids
18.
Chemistry ; 30(6): e202400052, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38224210

ABSTRACT

Invited for the cover of this issue is the group of Cheng-an Tao, Jianfang Wang and co-workers at the University of Defense Technology. The image depicts a novel starfruit-shaped metal-organic framework composed of zirconium and tetra(4-carboxyphenyl)porphine linkers and characterized by 2D nanosheet petals grown through edge-sharing that showcases superior catalytic activity. Read the full text of the article at 10.1002/chem.202302835.

19.
Chemistry ; 30(6): e202302835, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38116892

ABSTRACT

We present the fabrication of a novel Starfruit-shaped metal-organic framework (SMOF) composed of zirconium and Tetra(4-carboxyphenyl)porphine linkers. The SMOF exhibits a unique morphology with edge-sharing two-dimensional (2D) nanosheet petals. Our investigation unravels a captivating transformation process, wherein three-dimensional (3D) shuttle-shaped MOFs form initially and subsequently evolve into 2D nanosheet-based SMOF structures. The distinct morphology of SMOF showcases superior catalytic activity in detoxifying G-type nerve agent and blister agent simulants, surpassing that of its 3D counterparts. This discovery of the 3D-to-2D transition growth pathway unlocks exciting opportunities for exploring novel strategies in advanced MOF nanostructure development, not only for catalysis but also for various other applications.

20.
Environ Sci Technol ; 58(18): 7758-7769, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38669205

ABSTRACT

Polycyclic aromatic hydrocarbon (PAH) exposure is suspected to be linked to oxidative damage. Herein, ten PAH human exposure biomarkers [hydroxylated PAH metabolites (OH-PAHs)] and five oxidative stress biomarkers (OSBs) were detected in urine samples collected from participants living in a rural area (n = 181) in Northwestern China. The median molar concentration of ΣOH-PAHs in urine was 47.0 pmol mL-1. The 2-hydroxynaphthalene (2-OHNap; median: 2.21 ng mL-1) was the dominant OH-PAH. The risk assessment of PAH exposure found that hazard index (HI) values were <1, indicating that the PAH exposure of rural people in Jingyuan would not generate significant cumulative risks. Smokers (median: 0.033) obtained higher HI values than nonsmokers (median: 0.015, p < 0.01), suggesting that smokers face a higher health risk from PAH exposure than nonsmokers. Pearson correlation and multivariate linear regression analysis revealed that ΣOH-PAH concentrations were significant factors in increasing the oxidative damage to deoxyribonucleic acid (DNA) (8-hydroxy-2'-deoxyguanosine, 8-OHdG), ribonucleic acid (RNA) (8-oxo-7,8-dihydroguanine, 8-oxoGua), and protein (o, o'-dityrosine, diY) (p < 0.05). Among all PAH metabolites, only 1-hydroxypyrene (1-OHPyr) could positively affect the expression of all five OSBs (p < 0.05), suggesting that urinary 1-OHPyr might be a reliable biomarker for PAH exposure and a useful indicator for assessing the impacts of PAH exposure on oxidative stress. This study is focused on the relation between PAH exposure and oxidative damage and lays a foundation for the study of the health effect mechanism of PAHs.


Subject(s)
Biomarkers , Oxidative Stress , Polycyclic Aromatic Hydrocarbons , Rural Population , Polycyclic Aromatic Hydrocarbons/urine , Humans , China , Risk Assessment , Biomarkers/urine , Male , Female , Environmental Exposure , Middle Aged , Adult
SELECTION OF CITATIONS
SEARCH DETAIL