ABSTRACT
Circadian rhythms of approximately 24 h have emerged as important modulators of the immune system. These oscillations are important for mounting short-term, innate immune responses, but surprisingly also long-term, adaptive immune responses. Recent data indicate that they play a central role in antitumor immunity, in both mice and humans. In this review, we discuss the evolving literature on circadian antitumor immune responses and the underlying mechanisms that control them. We further provide an overview of circadian treatment regimens-chrono-immunotherapies-that harness time-of-day differences in immunity for optimal efficacy. Our aim is to provide an overview for researchers and clinicians alike, for a better understanding of the circadian immune system and how to best harness it for chronotherapeutic interventions. This knowledge is important for a better understanding of immune responses per se and could revolutionize the way we approach the treatment of cancer and a range of other diseases, ultimately improving clinical practice.
Subject(s)
Circadian Rhythm , Neoplasms , Humans , Circadian Rhythm/immunology , Animals , Neoplasms/immunology , Neoplasms/therapy , Immunotherapy/methods , Immunity, Innate , Adaptive ImmunityABSTRACT
Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgos) and the DNA defense module DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids. We demonstrate that DdmE, a pAgo-like protein, acts as a catalytically inactive, DNA-guided, DNA-targeting defense module. In the presence of guide DNA, DdmE targets plasmids and recruits a dimeric DdmD, which contains nuclease and helicase domains. Upon binding to DNA substrates, DdmD transitions from an autoinhibited dimer to an active monomer, which then translocates along and cleaves the plasmids. Together, our findings reveal the intricate mechanisms underlying DdmDE-mediated plasmid clearance, offering fundamental insights into bacterial defense systems against plasmid invasions.
Subject(s)
Bacterial Proteins , Gene Transfer, Horizontal , Plasmids , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA/metabolism , DNA Helicases/metabolism , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Models, Molecular , Plasmids/metabolism , Plasmids/geneticsABSTRACT
Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.
Subject(s)
CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Taurine , Taurine/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Mice , Cell Line, Tumor , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , Activating Transcription Factor 4/metabolism , Signal Transduction , Female , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , STAT3 Transcription Factor/metabolismABSTRACT
The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.
Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Mice, Inbred C57BL , Tumor Microenvironment , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Circadian Clocks , Circadian Rhythm , Endothelial Cells/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , Melanoma/therapy , Melanoma/pathology , Tumor Microenvironment/immunologyABSTRACT
Non-neuronal cells are key to the complex cellular interplay that follows central nervous system insult. To understand this interplay, we generated a single-cell atlas of immune, glial and retinal pigment epithelial cells from adult mouse retina before and at multiple time points after axonal transection. We identified rare subsets in naive retina, including interferon (IFN)-response glia and border-associated macrophages, and delineated injury-induced changes in cell composition, expression programs and interactions. Computational analysis charted a three-phase multicellular inflammatory cascade after injury. In the early phase, retinal macroglia and microglia were reactivated, providing chemotactic signals concurrent with infiltration of CCR2+ monocytes from the circulation. These cells differentiated into macrophages in the intermediate phase, while an IFN-response program, likely driven by microglia-derived type I IFN, was activated across resident glia. The late phase indicated inflammatory resolution. Our findings provide a framework to decipher cellular circuitry, spatial relationships and molecular interactions following tissue injury.
Subject(s)
Macrophages , Retina , Animals , Mice , Retina/injuries , Retina/metabolism , Microglia , Central Nervous System , MonocytesABSTRACT
Mammalian chromosomes are partitioned into A/B compartments and topologically associated domains (TADs). The inactive X (Xi) chromosome, however, adopts a distinct conformation without evident compartments or TADs. Here, through exploration of an architectural protein, structural-maintenance-of-chromosomes hinge domain containing 1 (SMCHD1), we probe how the Xi is reconfigured during X chromosome inactivation. A/B compartments are first fused into "S1" and "S2" compartments, coinciding with Xist spreading into gene-rich domains. SMCHD1 then binds S1/S2 compartments and merges them to create a compartment-less architecture. Contrary to current views, TADs remain on the Xi but in an attenuated state. Ablating SMCHD1 results in a persistent S1/S2 organization and strengthening of TADs. Furthermore, loss of SMCHD1 causes regional defects in Xist spreading and erosion of heterochromatic silencing. We present a stepwise model for Xi folding, where SMCHD1 attenuates a hidden layer of Xi architecture to facilitate Xist spreading.
Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Chromosomes, Mammalian/chemistry , X Chromosome Inactivation , Alleles , Animals , Cell Line , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Mammalian/metabolism , DNA Methylation , Female , Heterochromatin/metabolism , Histones/genetics , Histones/metabolism , Male , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Principal Component Analysis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolismABSTRACT
Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.
Subject(s)
Databases, Genetic , Neoplasms/pathology , Signal Transduction/genetics , Genes, Neoplasm , Humans , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolismABSTRACT
We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.
Subject(s)
Germ Cells/metabolism , Neoplasms/pathology , DNA Copy Number Variations , Databases, Genetic , Gene Deletion , Gene Frequency , Genetic Predisposition to Disease , Genotype , Germ Cells/cytology , Germ-Line Mutation , Humans , Loss of Heterozygosity/genetics , Mutation, Missense , Neoplasms/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-ret/genetics , Tumor Suppressor Proteins/geneticsABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
Although a number of repair strategies have been shown to promote axon outgrowth following neuronal injury in the mammalian CNS, it remains unclear whether regenerated axons establish functional synapses and support behavior. Here, in both juvenile and adult mice, we show that either PTEN and SOCS3 co-deletion, or co-overexpression of osteopontin (OPN)/insulin-like growth factor 1 (IGF1)/ciliary neurotrophic factor (CNTF), induces regrowth of retinal axons and formation of functional synapses in the superior colliculus (SC) but not significant recovery of visual function. Further analyses suggest that regenerated axons fail to conduct action potentials from the eye to the SC due to lack of myelination. Consistent with this idea, administration of voltage-gated potassium channel blockers restores conduction and results in increased visual acuity. Thus, enhancing both regeneration and conduction effectively improves function after retinal axon injury.
Subject(s)
Axons/physiology , Superior Colliculi/physiology , 4-Aminopyridine/pharmacology , Animals , Axons/drug effects , Ciliary Neurotrophic Factor/metabolism , Electrophysiological Phenomena , Eye/metabolism , Insulin-Like Growth Factor I/metabolism , Mice , Myelin Sheath/metabolism , Optic Nerve , Osteopontin/metabolism , PTEN Phosphohydrolase/metabolism , Potassium Channel Blockers/pharmacology , Regeneration/drug effects , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , SynapsesABSTRACT
To convert intentions into actions, movement instructions must pass from the brain to downstream motor circuits through descending neurons (DNs). These include small sets of command-like neurons that are sufficient to drive behaviours1-the circuit mechanisms for which remain unclear. Here we show that command-like DNs in Drosophila directly recruit networks of additional DNs to orchestrate behaviours that require the active control of numerous body parts. Specifically, we found that command-like DNs previously thought to drive behaviours alone2-4 in fact co-activate larger populations of DNs. Connectome analyses and experimental manipulations revealed that this functional recruitment can be explained by direct excitatory connections between command-like DNs and networks of interconnected DNs in the brain. Descending population recruitment is necessary for behavioural control: DNs with many downstream descending partners require network co-activation to drive complete behaviours and drive only simple stereotyped movements in their absence. These DN networks reside within behaviour-specific clusters that inhibit one another. These results support a mechanism for command-like descending control in which behaviours are generated through the recruitment of increasingly large DN networks that compose behaviours by combining multiple motor subroutines.
Subject(s)
Brain , Connectome , Drosophila melanogaster , Motor Neurons , Nerve Net , Animals , Female , Behavior, Animal/physiology , Brain/cytology , Brain/physiology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Motor Neurons/physiology , Movement/physiology , Nerve Net/physiologyABSTRACT
Rapid demographic ageing substantially affects socioeconomic development1-4 and presents considerable challenges for food security and agricultural sustainability5-8, which have so far not been well understood. Here, by using data from more than 15,000 rural households with crops but no livestock across China, we show that rural population ageing reduced farm size by 4% through transferring cropland ownership and land abandonment (approximately 4 million hectares) in 2019, taking the population age structure in 1990 as a benchmark. These changes led to a reduction of agricultural inputs, including chemical fertilizers, manure and machinery, which decreased agricultural output and labour productivity by 5% and 4%, respectively, further lowering farmers' income by 15%. Meanwhile, fertilizer loss increased by 3%, resulting in higher pollutant emissions to the environment. In new farming models, such as cooperative farming, farms tend to be larger and operated by younger farmers, who have a higher average education level, hence improving agricultural management. By encouraging the transition to new farming models, the negative consequences of ageing can be reversed. Agricultural input, farm size and farmer's income would grow by approximately 14%, 20% and 26%, respectively, and fertilizer loss would reduce by 4% in 2100 compared with that in 2020. This suggests that management of rural ageing will contribute to a comprehensive transformation of smallholder farming to sustainable agriculture in China.
Subject(s)
Age Distribution , Agriculture , Farmers , Farms , Food Security , Rural Population , Sustainable Development , Humans , Agriculture/economics , Agriculture/education , Agriculture/methods , Agriculture/organization & administration , China , Farmers/education , Farmers/statistics & numerical data , Farms/economics , Farms/organization & administration , Farms/statistics & numerical data , Farms/trends , Fertilizers/analysis , Age Factors , Food Security/economics , Food Security/methods , Sustainable Development/economics , Sustainable Development/trends , Rural Population/statistics & numerical data , Rural Population/trends , Efficiency , Environmental PollutantsABSTRACT
All-perovskite tandem solar cells hold great promise in surpassing the Shockley-Queisser limit for single-junction solar cells1-3. However, the practical use of these cells is currently hampered by the subpar performance and stability issues associated with mixed tin-lead (Sn-Pb) narrow-bandgap perovskite subcells in all-perovskite tandems4-7. In this study, we focus on the narrow-bandgap subcells and develop an all-in-one doping strategy for them. We introduce aspartate hydrochloride (AspCl) into both the bottom poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) and bulk perovskite layers, followed by another AspCl posttreatment. We show that a single AspCl additive can effectively passivate defects, reduce Sn4+ impurities and shift the Fermi energy level. Additionally, the strong molecular bonding of AspCl-Sn/Pb iodide and AspCl-AspCl can strengthen the structure and thereby improve the stability of Sn-Pb perovskites. Ultimately, the implementation of AspCl doping in Sn-Pb perovskite solar cells yielded power conversion efficiencies of 22.46% for single-junction cells and 27.84% (27.62% stabilized and 27.34% certified) for tandems with 95% retention after being stored in an N2-filled glovebox for 2,000 h. These results suggest that all-in-one AspCl doping is a favourable strategy for enhancing the efficiency and stability of single-junction Sn-Pb perovskite solar cells and their tandems.
ABSTRACT
The process of cancer immunosurveillance is a mechanism of tumour suppression that can protect the host from cancer development throughout its lifetime1,2. However, it is unknown whether the effectiveness of cancer immunosurveillance fluctuates over a single day. Here we demonstrate that the initial time of day of tumour engraftment dictates the ensuing tumour size across mouse cancer models. Using immunodeficient mice as well as mice lacking lineage-specific circadian functions, we show that dendritic cells (DCs) and CD8+ T cells exert circadian anti-tumour functions that control melanoma volume. Specifically, we find that rhythmic trafficking of DCs to the tumour draining lymph node governs a circadian response of tumour-antigen-specific CD8+ T cells that is dependent on the circadian expression of the co-stimulatory molecule CD80. As a consequence, cancer immunotherapy is more effective when synchronized with DC functions, shows circadian outcomes in mice and suggests similar effects in humans. These data demonstrate that the circadian rhythms of anti-tumour immune components are not only critical for controlling tumour size but can also be of therapeutic relevance.
Subject(s)
CD8-Positive T-Lymphocytes , Circadian Rhythm , Dendritic Cells , Melanoma , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Immunotherapy/methods , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Mice, Inbred C57BL , B7-1 Antigen , Antigens, Neoplasm/immunology , Lymph Nodes , Circadian Rhythm/immunologyABSTRACT
Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single-strand DNA (ssDNA) in BRCA1-deficient cells, leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against DNA2/EXO1 exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the CTC1-STN1-TEN1 (CST) and DNA polymerase α (Polα) to counteract resection. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at restriction enzyme-induced DSBs. We show that, in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths in G0/G1, supporting a previous model that fill-in synthesis can limit the extent of resection. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, EXO1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, Polα-mediated fill-in partially limits resection in the presence of 53BP1 but cannot counter extensive hyperresection due to the loss of 53BP1 exonuclease blockade. These data provide the first nucleotide mapping of DNA synthesis at resected DSBs and provide insight into the relationship between fill-in polymerases and resection exonucleases.
Subject(s)
DNA Breaks, Double-Stranded , DNA Replication , DNA Repair/genetics , DNA Replication/genetics , DNA, Single-Stranded/genetics , Homologous Recombination/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolismABSTRACT
The chloroplast NADH dehydrogenase-like (NDH) complex is composed of at least 29 subunits and has an important role in mediating photosystem I (PSI) cyclic electron transport (CET)1-3. The NDH complex associates with PSI to form the PSI-NDH supercomplex and fulfil its function. Here, we report cryo-electron microscopy structures of a PSI-NDH supercomplex from barley (Hordeum vulgare). The structures reveal that PSI-NDH is composed of two copies of the PSI-light-harvesting complex I (LHCI) subcomplex and one NDH complex. Two monomeric LHCI proteins, Lhca5 and Lhca6, mediate the binding of two PSI complexes to NDH. Ten plant chloroplast-specific NDH subunits are presented and their exact positions as well as their interactions with other subunits in NDH are elucidated. In all, this study provides a structural basis for further investigations on the functions and regulation of PSI-NDH-dependent CET.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Hordeum , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Cryoelectron Microscopy , Light-Harvesting Protein Complexes/metabolism , Photosystem I Protein Complex/metabolismABSTRACT
Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.
Subject(s)
Alcohol Drinking , Genetic Predisposition to Disease , Genetic Variation , Internationality , Multifactorial Inheritance , Tobacco Use , Humans , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Multifactorial Inheritance/genetics , Risk Factors , Tobacco Use/genetics , Alcohol Drinking/genetics , Transcriptome , Sample Size , Genetic Loci/genetics , Europe/ethnologyABSTRACT
Despite the prominent role of TDP-43 in neurodegeneration, its physiological and pathological functions are not fully understood. Here, we report an unexpected role of TDP-43 in the formation of dynamic, reversible, liquid droplet-like nuclear bodies (NBs) in response to stress. Formation of NBs alleviates TDP-43-mediated cytotoxicity in mammalian cells and fly neurons. Super-resolution microscopy reveals distinct functions of the two RRMs in TDP-43 NB formation. TDP-43 NBs are partially colocalized with nuclear paraspeckles, whose scaffolding lncRNA NEAT1 is dramatically upregulated in stressed neurons. Moreover, increase of NEAT1 promotes TDP-43 liquid-liquid phase separation (LLPS) in vitro. Finally, we discover that the ALS-associated mutation D169G impairs the NEAT1-mediated TDP-43 LLPS and NB assembly, causing excessive cytoplasmic translocation of TDP-43 to form stress granules, which become phosphorylated TDP-43 cytoplasmic foci upon prolonged stress. Together, our findings suggest a stress-mitigating role and mechanism of TDP-43 NBs, whose dysfunction may be involved in ALS pathogenesis.
Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Intranuclear Inclusion Bodies/metabolism , Neurons/metabolism , RNA, Long Noncoding/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , Arsenites/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , DNA-Binding Proteins/metabolism , Disease Models, Animal , Drosophila melanogaster , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Intranuclear Inclusion Bodies/drug effects , Intranuclear Inclusion Bodies/ultrastructure , Mice , Mutation , Neurons/drug effects , Neurons/ultrastructure , Primary Cell Culture , Protein Transport/drug effects , RNA, Long Noncoding/metabolism , Signal Transduction , Stress, PhysiologicalABSTRACT
Both trio and population designs are popular study designs for identifying risk genetic variants in genome-wide association studies (GWASs). The trio design, as a family-based design, is robust to confounding due to population structure, whereas the population design is often more powerful due to larger sample sizes. Here, we propose KnockoffHybrid, a knockoff-based statistical method for hybrid analysis of both the trio and population designs. KnockoffHybrid provides a unified framework that brings together the advantages of both designs and produces powerful hybrid analysis while controlling the false discovery rate (FDR) in the presence of linkage disequilibrium and population structure. Furthermore, KnockoffHybrid has the flexibility to leverage different types of summary statistics for hybrid analyses, including expression quantitative trait loci (eQTL) and GWAS summary statistics. We demonstrate in simulations that KnockoffHybrid offers power gains over non-hybrid methods for the trio and population designs with the same number of cases while controlling the FDR with complex correlation among variants and population structure among subjects. In hybrid analyses of three trio cohorts for autism spectrum disorders (ASDs) from the Autism Speaks MSSNG, Autism Sequencing Consortium, and Autism Genome Project with GWAS summary statistics from the iPSYCH project and eQTL summary statistics from the MetaBrain project, KnockoffHybrid outperforms conventional methods by replicating several known risk genes for ASDs and identifying additional associations with variants in other genes, including the PRAME family genes involved in axon guidance and which may act as common targets for human speech/language evolution and related disorders.
Subject(s)
Autism Spectrum Disorder , Genome-Wide Association Study , Linkage Disequilibrium , Quantitative Trait Loci , Genome-Wide Association Study/methods , Humans , Autism Spectrum Disorder/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Computer Simulation , Models, GeneticABSTRACT
BACKGROUND: Simnotrelvir is an oral 3-chymotrypsin-like protease inhibitor that has been found to have in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and potential efficacy in a phase 1B trial. METHODS: In this phase 2-3, double-blind, randomized, placebo-controlled trial, we assigned patients who had mild-to-moderate coronavirus disease 2019 (Covid-19) and onset of symptoms within the past 3 days in a 1:1 ratio to receive 750 mg of simnotrelvir plus 100 mg of ritonavir or placebo twice daily for 5 days. The primary efficacy end point was the time to sustained resolution of symptoms, defined as the absence of 11 Covid-19-related symptoms for 2 consecutive days. Safety and changes in viral load were also assessed. RESULTS: A total of 1208 patients were enrolled at 35 sites in China; 603 were assigned to receive simnotrelvir and 605 to receive placebo. Among patients in the modified intention-to-treat population who received the first dose of trial drug or placebo within 72 hours after symptom onset, the time to sustained resolution of Covid-19 symptoms was significantly shorter in the simnotrelvir group than in the placebo group (180.1 hours [95% confidence interval {CI}, 162.1 to 201.6] vs. 216.0 hours [95% CI, 203.4 to 228.1]; median difference, -35.8 hours [95% CI, -60.1 to -12.4]; P = 0.006 by Peto-Prentice test). On day 5, the decrease in viral load from baseline was greater in the simnotrelvir group than in the placebo group (mean difference [±SE], -1.51±0.14 log10 copies per milliliter; 95% CI, -1.79 to -1.24). The incidence of adverse events during treatment was higher in the simnotrelvir group than in the placebo group (29.0% vs. 21.6%). Most adverse events were mild or moderate. CONCLUSIONS: Early administration of simnotrelvir plus ritonavir shortened the time to the resolution of symptoms among adult patients with Covid-19, without evident safety concerns. (Funded by Jiangsu Simcere Pharmaceutical; ClinicalTrials.gov number, NCT05506176.).