Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 55(4): 623-638.e5, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35385697

ABSTRACT

The epithelium is an integral component of mucosal barrier and host immunity. Following helminth infection, the intestinal epithelial cells secrete "alarmin" cytokines, such as interleukin-25 (IL-25) and IL-33, to initiate the type 2 immune responses for helminth expulsion and tolerance. However, it is unknown how helminth infection and the resulting cytokine milieu drive epithelial remodeling and orchestrate alarmin secretion. Here, we report that epithelial O-linked N-Acetylglucosamine (O-GlcNAc) protein modification was induced upon helminth infections. By modifying and activating the transcription factor STAT6, O-GlcNAc transferase promoted the transcription of lineage-defining Pou2f3 in tuft cell differentiation and IL-25 production. Meanwhile, STAT6 O-GlcNAcylation activated the expression of Gsdmc family genes. The membrane pore formed by GSDMC facilitated the unconventional secretion of IL-33. GSDMC-mediated IL-33 secretion was indispensable for effective anti-helminth immunity and contributed to induced intestinal inflammation. Protein O-GlcNAcylation can be harnessed for future treatment of type 2 inflammation-associated human diseases.


Subject(s)
Alarmins , Intestinal Mucosa , Acylation , Alarmins/immunology , Anthelmintics/immunology , Biomarkers, Tumor , Cytokines , DNA-Binding Proteins , Helminthiasis/immunology , Humans , Hyperplasia , Inflammation , Interleukin-33 , Intestinal Mucosa/immunology , Mebendazole , N-Acetylglucosaminyltransferases/immunology , Pore Forming Cytotoxic Proteins , STAT6 Transcription Factor/immunology
3.
Nanotechnology ; 35(33)2024 May 30.
Article in English | MEDLINE | ID: mdl-38759634

ABSTRACT

Crystalline copper oxide (CuO) nanostructures with micro, nano, and micro-nano surface roughness were grown on Cu sheet substrates by a facile, scalable, low-cost, and low-temperature hot water treatment (HWT) method that simply involved immersing Cu sheet in DI water at 75 °C for 24 h without any chemical additives. Various morphological features and sizes of CuO nanostructures were tuned by using different surface pretreatment techniques including acid treatment, sandblasting, or a combination of those two. The surface morphology of the prepared samples was analyzed by scanning electron microscopy. The crystal structure of the CuO nanostructures was investigated by x-ray diffraction XRD and Raman spectroscopy. To study the pseudocapacitive behavior, their potential supercapacitor performance, and equivalent series resistance, electrochemical analysis was done by cyclic voltammetry and electrochemical impedance spectroscopy for all the CuO/Cu samples in 1 M of Na2SO4electrolyte. Among all, the best supercapacitive performance was achieved for CuO/Cu samples pretreated with Sandblasting followed by Acid treatment resulting in a specific capacitance of about 104 F g-1. The electrode with the sandblasted + acid pretreated sample showed a maximum of ∼69% capacitive retention after 2000 consecutive cycles. Our results indicate that CuO nanostructures on Cu substrates prepared with different surface pretreatment conditions and grown by HWT can be promising electrodes for supercapacitor device applications.

4.
Anim Genet ; 55(2): 217-229, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38296601

ABSTRACT

The establishment of high-quality pork breeds for improving meat quality in the pig industry is needed. The Chuxiang Black (CX) pig is a new breed developed from Chinese local pigs and Western lean pigs that has a high proportion of lean meat and excellent meat quality. However, the characteristics of cis-regulatory elements in CX pigs are still unknown. In this study, cis-regulatory elements of muscle and adipose tissues in CX pigs were investigated using ChIP-seq and RNA sequencing. Compared with the reported cis-regulatory elements of muscle and adipose tissues, 1768 and 1012 highly activated enhancers and 433 and 275 highly activated promoters in CX muscle and adipose tissues were identified, respectively. Motif analysis showed that transcription factors, such as MEF2A and MEF2C, were core regulators of highly activated enhancers and promoters in muscle. Similarly, the transcription factors JUNB and CUX1 were identified as essential for highly activated enhancers and promoters in CX adipose tissue. These results enrich the resources for the analysis of cis-regulatory elements in the pig genome and provide new basic data for further meat quality improvement through breeding in pigs.


Subject(s)
Adipose Tissue , Muscle, Skeletal , Swine/genetics , Animals , Muscle, Skeletal/physiology , Adipose Tissue/physiology , Base Sequence , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Meat/analysis
5.
Anim Genet ; 54(2): 123-131, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36478569

ABSTRACT

Pleiotropy is an important biological phenomenon with complicated genetic architectures for multiple traits. To date, pleiotropy has been mainly identified by multi-trait genome-wide association studies, but this method has its disadvantages, and new developments for pleiotropy detection methods are needed. Here we define a novel metric, self-product, to measure individual-level co-variation of two traits, and develop a novel self-product-based transcriptome method to detect pleiotropic genes (PGs). Our method was tested using four immune-growth trait pairs and four immune-immune trait pairs in pigs. Comparative transcriptome analyses identified hundreds of candidate PGs related to eight trait pairs from two tails of self-product distribution. Gene Ontology enrichment analysis indicated that most of identified PGs were involved in immune- or growth-related biological processes. We established PG interaction networks to exhibit core genes shared by eight trait pairs, of which CCL5 and IL-10 genes were the hub genes. Genetic association analyses showed that SmaI-polymorphisms of CCL5 and IL-10 genes had significant associations with phenotypic co-variations of multiple trait pairs, indicating that the variants in pleiotropic genes were also pleiotropic variants. Taken together, the validity of our proposed method was preliminarily verified, and our findings provide new insights into the genetic basis of pleiotropic architectures of immune and growth trait pairs in pigs.


Subject(s)
Biological Phenomena , Genome-Wide Association Study , Animals , Swine/genetics , Transcriptome , Interleukin-10/genetics , Phenotype , Genetic Pleiotropy , Polymorphism, Single Nucleotide
6.
Genomics ; 114(2): 110276, 2022 03.
Article in English | MEDLINE | ID: mdl-35104610

ABSTRACT

Although large-scale and accurate identification of cis-regulatory elements on pig protein-coding and long non-coding genes has been reported, similar study on pig miRNAs is still lacking. Here, we systematically characterized the cis-regulatory elements of pig miRNAs in muscle and fat by adopting miRNAomes, ChIP-seq, ATAC-seq, RNA-seq and Hi-C data. In total, the cis-regulatory elements of 257 (85.95%) expressed miRNAs including 226 known and 31 novel miRNAs were identified. Especially, the miRNAs associated with super-enhancers, active promoters, and "A" compartment were significantly higher than those associated by typical enhancers, prompters without H3K27ac, and "B" compartment, respectively. The tissue specific transcription factors were the primary determination of core miRNA expression pattern in muscle and fat. Moreover, the miRNA promoters are more evolutionarily conserved than miRNA enhancers, like other type genes. Our study adds additional important information to existing pig epigenetic data and provides essential resource for future in-depth investigation of pig epigenetics.


Subject(s)
Epigenomics , MicroRNAs , Animals , Chromatin Immunoprecipitation Sequencing , MicroRNAs/genetics , Muscles , Regulatory Sequences, Nucleic Acid , Swine/genetics
7.
J Environ Manage ; 330: 117138, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36623387

ABSTRACT

Fe2O3-assisted pyrolysis has been demonstrated to be a cost-effective thermal desorption (TD) technology. Lurgi-Thyssen dust (LTD) is a type of steel slag waste that contains a large amount of Fe2O3. In this study, to reduce energy consumption, LTD was added to contaminated soil to evaluate the feasibility of enhancing the TD removal efficiency of di-(2-ethylhexyl) phthalate (DEHP). The DEHP removal rate increased by 22.39% after adding 2% LTD at 200 °C for 20 min. Because of the catalytic pyrolysis of LTD, DEHP was pyrolyzed to form three types of short-chain esters: mono-(2-ethylhexyl) phthalate (MEHP), di (2-methylbutyl) ester, and methyl 2-ethylhexyl phthalate. The pyrolysis products of DEHP were less toxic and did not affect soil reuse. When the DEHP removal rate was 87.10%, LTD addition decreased the temperature and residence time of TD and alleviated the effect of TD on the soil physicochemical properties. Additionally, the desorption of DEHP from soil fitted the pseudo-second-order kinetic model well. Thus, the addition of LTD to contaminated soil enhanced the efficiency of TD remediation. Moreover, this study could provide a practical and economical strategy for LTD reuse.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Soil Pollutants , Diethylhexyl Phthalate/chemistry , Ferric Compounds , Soil Pollutants/chemistry , Biodegradation, Environmental , Soil
8.
Immunogenetics ; 72(8): 413-422, 2020 10.
Article in English | MEDLINE | ID: mdl-33063129

ABSTRACT

It is well known that the estrogen receptor alpha gene (ESR1) affects the reproductive traits of pigs; however, the immune role of ESR1 gene has not yet been resolved. Here, we characterized the pleiotropic aspects of ESR1 gene in immunity using the pig model. Tissue expression profile showed that the ESR1 gene had a broad ectopic expression in multiple reproductive and immune-related tissues/organs, which provided the tissue-level spatial fundamental of ESR1 gene that might function as a pleiotropic immune regulator. Using the peripheral blood cell model, a coupling transcriptome analytical strategy was proposed and verified that there existed strong positive or negative correlations of ESR1 gene with hundreds of differentially expressed genes that were involved in the immune regulation, indicating that the ESR1 gene might affect or be affected by, directly or indirectly, dozens of immune-related genes in the peripheral blood cells. Furthermore, the results of genetic association analysis showed that the SmaI-polymorphism of ESR1 gene had significant or highly significant associations with multiple immune traits, including platelet (PLT), hematocrit (HCT), the number of CD4-CD8-CD3- cells, plateletcrit (PCT), mean corpuscular volume (MCV), and mean corpuscular hemoglobin concentration (MCHC). Multiple evidences supported the immune pleiotropic roles of ESR1 gene in pigs. The study advances our understanding of the cross-species immune pleiotropic landscape of ESR1 gene and also provides a potential pleiotropic molecular marker for disease-resistant breeding in pigs.


Subject(s)
Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/immunology , Gene Expression Regulation , Genetic Association Studies/veterinary , Polymorphism, Genetic , Swine/genetics , Swine/immunology , Animals , Female , Genotype , Male , Phenotype , Transcriptome
9.
Article in English | MEDLINE | ID: mdl-32941096

ABSTRACT

Seven surfactants were selected as candidate agents for in situ soil column flushing. Column flushing lacks the interaction between surfactants and contaminants, so efficiency is not easy to improve. Microbubbles generated in situ may adhere to the contaminant diesel. Thereafter, the bubbles were mobilized to lift the multi-system oil to the top layer. This process must be attributed to the increased column flushing efficiency of diesel removal. Compared with a single solution, using randomly methylated beta-cyclodextrin (RAMEB) and microbubble enhancement, the diesel removal of column flushing increased by 30.7%. Compared with the existing conditions (5.25 × 10-4 cm s-1), the hydraulic conductivity of loam soil (3.74 × 10-3 cm s-1) increased by 7.1 times after the continued operation of the two processes. The oil layer was collected for further reuse. After three treatments, the effluent for the RAMEB was more than 85%. The collected effluent was treated with a synthetic absorbent and then qualifiedly discharged with a TOC value of only 2.6 mg L-1. By combining surfactant flushing with microbubbles and other equipment, not only can the reaction time be effectively saved, but organic pollutants could be concentrated and reused in the soil, so no additional treatment was required.


Subject(s)
Environmental Restoration and Remediation/methods , Gasoline/analysis , Petroleum Pollution/prevention & control , Soil Pollutants/analysis , Soil/chemistry , Surface-Active Agents/chemistry , Adsorption , Microbubbles , Models, Theoretical , Nanoparticles/chemistry , Petroleum Pollution/analysis
10.
Appl Opt ; 57(33): 9755-9759, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30462006

ABSTRACT

In this work, a novel hydrogen sulfide detection scheme based on tapered fiber seeded in two long-period fiber gratings (LPGs) coated by a molybdenum disulfide/citric acid composite membrane is proposed and fabricated. The input light of a broadband source is coupled twice by passing through two LPGs with identical parameters, from which a Mach-Zehnder interferometer can be formed. The composite sensitive membrane was prepared with molybdenum disulfide and citric acid, which was coated on the surface of the two LPGs. The experimental results show that in the range of 0-70 ppm of hydrogen sulfide, with the increase of gas concentrations the interference spectra appear to blueshift. In addition, a high sensitivity of 16.65 pm/ppm, an excellent linear relationship (R2=0.97721), and high selectivity for hydrogen sulfide are achieved. The effect of temperature is also discussed. The sensor has the advantages of low cost and small volume, and can be used for detection applications at sites where hydrogen sulfide is produced, such as natural gas plants, areas of magmatic activity, coal mines, etc.

11.
J Environ Qual ; 45(6): 1998-2006, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27898796

ABSTRACT

Agricultural practices are increasingly incorporating recycled waste materials, such as biosolids, to provide plant nutrients and enhance soil functions. Although biosolids provide benefits to soil, municipal wastewater treatment plants receive pharmaceuticals and heavy metals that can accumulate in biosolids, and land application of biosolids can transfer these contaminants to the soil. Environmental exposure of these contaminants may adversely affect wildlife, disrupt microbial communities, detrimentally affect human health through long-term exposure, and cause the proliferation of antibiotic-resistant bacteria. This study considers the use of biochar co-amendments as sorbents for contaminants from biosolids. The sorption of pharmaceuticals (ciprofloxacin, triclocarban, triclosan), and heavy metals (Cu, Cd, Ni, Pb) to biochars and biochar-biosolids-soil mixtures was examined. Phenylurea herbicide (monuron, diuron, linuron) sorption was also studied to determine the potential effect of biochar on soil-applied herbicides. A softwood (SW) biochar (510°C) and a walnut shell (WN) biochar (900°C) were used as contrasting biochars to highlight potential differences in biochar reactivity. Kaolinite and activated carbon served as mineral and organic controls. Greater sorption for almost all contaminants was observed with WN biochar over SW biochar. The addition of biosolids decreased sorption of herbicides to SW biochar, whereas there was no observable change with WN biochar. The WN biochar showed potential for reducing agrochemical and contaminant transport but may inhibit the efficacy of soil-applied herbicides. This study provides support for minimizing contaminant mobility from biosolids using biochar as a co-amendment and highlights the importance of tailoring biochars for specific characteristics through feedstock selection and pyrolysis-gasification conditions.


Subject(s)
Charcoal/chemistry , Herbicides/analysis , Metals, Heavy/analysis , Pharmaceutical Preparations/analysis , Soil , Soil Pollutants
12.
J Environ Sci Health B ; 50(8): 544-51, 2015.
Article in English | MEDLINE | ID: mdl-26065514

ABSTRACT

Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R(2) = 0.93-0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg(-1) and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.


Subject(s)
Charcoal/chemistry , Herbicides/chemistry , Phenylurea Compounds/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Agriculture , Diuron/chemistry , Linuron/chemistry , Manure , Methylurea Compounds/chemistry , Wood
13.
Article in English | MEDLINE | ID: mdl-38779734

ABSTRACT

AIMS: The aim of this study was to investigate the role of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exo) in regulating the intestinal type 2 immune response for either protection or therapy. BACKGROUND: hUCMSC-Exo was considered a novel cell-free therapeutic product that shows promise in the treatment of various diseases. Type 2 immunity is a protective immune response classified as T-helper type 2 (Th2) cells and is associated with helminthic infections and allergic diseases. The effect of hUCMSC-Exo on intestinal type 2 immune response is not clear. METHOD: C57BL/6 mice were used to establish intestinal type 2 immune response by administering of H.poly and treated with hUCMSC-Exo before or after H.poly infection. Intestinal organoids were isolated and co-cultured with IL-4 and hUCMSC-Exo. Then, we monitored the influence of hUCMSC-Exo on type 2 immune response by checking adult worms, the hyperplasia of tuft and goblet cells. RESULT: hUCMSC-Exo significantly delays the colonization of H.poly in subserosal layer of duodenum on day 7 post-infection and promotes the hyperplasia of tuft cells and goblet cells on day 14 post-infection. HUCMSC-Exo enhances the expansion of tuft cells in IL-4 treated intestinal organoids, and promotes lytic cell death. CONCLUSION: Our study demonstrates hUCMSC-Exo may benefit the host by increasing the tolerance at an early infection stage and then enhancing the intestinal type 2 immune response to impede the helminth during Th2 priming. Our results show hUCMSC-Exo may be a positive regulator of type 2 immune response, suggesting hUCMSC-Exo has a potential therapeutic effect on allergic diseases.

14.
Front Immunol ; 15: 1339787, 2024.
Article in English | MEDLINE | ID: mdl-38384475

ABSTRACT

Introduction: The development and migration of T cells in the thymus and peripheral tissues are crucial for maintaining adaptive immunity in mammals. However, the regulatory mechanisms underlying T cell development and thymocyte identity formation in pigs remain largely underexplored. Method: Here, by integrating bulk and single-cell RNA-sequencing data, we investigated regulatory signatures of porcine thymus and lymph node T cells. Results: The comparison of T cell subpopulations derived from porcine thymus and lymph nodes revealed that their transcriptomic differences were influenced more by tissue origin than by T cell phenotypes, and that lymph node cells exhibited greater transcriptional diversity than thymocytes. Through weighted gene co-expression network analysis (WGCNA), we identified the key modules and candidate hub genes regulating the heterogeneity of T cell subpopulations. Further, we integrated the porcine thymocyte dataset with peripheral blood mononuclear cell (PBMC) dataset to systematically compare transcriptomic differences between T cell types from different tissues. Based on single-cell datasets, we further identified the key transcription factors (TFs) responsible for maintaining porcine thymocyte identity and unveiled that these TFs coordinately regulated the entire T cell development process. Finally, we performed GWAS of cell type-specific differentially expressed genes (DEGs) and 30 complex traits, and found that the DEGs in thymus-related and peripheral blood-related cell types, especially CD4_SP cluster and CD8-related cluster, were significantly associated with pig productive and reproductive traits. Discussion: Our findings provide an insight into T cell development and lay a foundation for further exploring the porcine immune system and genetic mechanisms underlying complex traits in pigs.


Subject(s)
Leukocytes, Mononuclear , Thymocytes , Swine , Animals , T-Lymphocyte Subsets/metabolism , Transcriptome , Gene Expression Profiling , Mammals
15.
Cells ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667307

ABSTRACT

Pigs are the most important source of meat and valuable biomedical models. However, the porcine immune system, especially the heterogeneity of CD8 T cell subtypes, has not been fully characterized. Here, using single-cell RNA sequencing, we identified 14 major cell types from peripheral blood circulating cells of pigs and observed remarkable heterogeneity among CD8 T cell types. Upon re-clustering of CD8+ T cells, we defined four CD8 T cell subtypes and revealed their potential differentiation trajectories and transcriptomic differences among them. Additionally, we identified transcription factors with potential regulatory roles in maintaining CD8 T cell differentiation. The cell-cell communication analysis inferred an extensive interaction between CD8 T cells and other immune cells. Finally, cross-species analysis further identified species-specific and conserved cell types across different species. Overall, our study provides the first insight into the extensive functional heterogeneity and state transitions among porcine CD8 T cell subtypes in pig peripheral blood, complements the knowledge of porcine immunity, and enhances its potential as a biomedical model.


Subject(s)
CD8-Positive T-Lymphocytes , Sequence Analysis, RNA , Single-Cell Analysis , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Swine , Sequence Analysis, RNA/methods , Transcriptome/genetics , Cell Differentiation/genetics , Transcription, Genetic
16.
Med Biol Eng Comput ; 62(4): 1061-1076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38141104

ABSTRACT

Early detection of falls is important for reducing fall injuries. However, existing fall detection strategies mostly focus on reducing impact injuries rather than avoiding falls. This study proposed the concept of identifying "Imbalance Point" to warn the body imbalance, allowing sufficient time to recover balance. And if falling cannot be avoided, an impact sign is released by detecting the "Fall Point" prior to the impact. To achieve this goal, motion prediction model and balance recovery model are integrated into a spatiotemporal framework to analyze dynamic and kinematic features of body motion. Eight healthy young volunteers participated in three sets of experiment: Normal trial, Recovery trial and Fall trial. The body motion in the trials was recorded using Microsoft Azure Kinect. The results show that the developed algorithm for Fall Point detection achieved 100% sensitivity and 98.6% specificity, along with an average lead time of 297 ms. Moreover, Imbalance Point was successfully detected in all Fall trials, and the average time interval between Imbalance Point and Fall Point was 315 ms, longer than reported step reaction time for elderly (approximately 270 ms). The experiment results demonstrate that the developed algorithm have great potential for fall warning and protection in the elderly.


Subject(s)
Algorithms , Humans , Aged , Motion , Biomechanical Phenomena , Healthy Volunteers
17.
Nat Commun ; 15(1): 2061, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38448433

ABSTRACT

Plants are capable of altering root growth direction to curtail exposure to a saline environment (termed halotropism). The root cap that surrounds root tip meristematic stem cells plays crucial roles in perceiving and responding to environmental stimuli. However, how the root cap mediates root halotropism remains undetermined. Here, we identified a root cap-localized NAC transcription factor, SOMBRERO (SMB), that is required for root halotropism. Its effect on root halotropism is attributable to the establishment of asymmetric auxin distribution in the lateral root cap (LRC) rather than to the alteration of cellular sodium equilibrium or amyloplast statoliths. Furthermore, SMB is essential for basal expression of the auxin influx carrier gene AUX1 in LRC and for auxin redistribution in a spatiotemporally-regulated manner, thereby leading to directional bending of roots away from higher salinity. Our findings uncover an SMB-AUX1-auxin module linking the role of the root cap to the activation of root halotropism.


Subject(s)
Arabidopsis , Transcription Factors , Transcription Factors/genetics , Arabidopsis/genetics , Gene Expression Regulation , Salt Stress/genetics , Indoleacetic Acids
18.
ACS Appl Mater Interfaces ; 16(8): 10886-10896, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38377567

ABSTRACT

VO2, which exhibits semiconductor-metal phase transition characteristics occurring on a picosecond time scale, holds great promise for ultrafast terahertz modulation in next-generation communication. However, as of now, there is no reported prototype for an ultrafast device. The temperature effect has been proposed as one of the major obstacles. Consequently, reducing the excitation threshold for the phase transition would be highly significant. The traditional strategy typically involves chemical doping, but this approach often leads to a decrease in phase transition amplitude and a slower transition speed. In this work, we proposed a design featuring a highly conductive MXene interfacial layer between the VO2 film and the substrate. We demonstrate a significant reduction in the phase transition threshold for both temperature and laser-induced phase transition by adjusting the conductivity of the MXene layers with varying thicknesses. Our observations show that the phase transition temperature can be decreased by 9 °C, while the pump fluence for laser excitation can be reduced by as high as 36%. The ultrafast phase transition process on a picosecond scale, as revealed by the optical-pump terahertz-probe method, suggests that the MXene layers have minimal impact on the phase transition speed. Moreover, the reduced phase transition threshold can remarkably alleviate the photothermal effect and inhibit temperature rise and diffusion in VO2 triggered by laser. This study offers a blueprint for designing VO2/MXene hybrid films with reduced phase transition thresholds. It holds significant potential for the development of low-power, intelligent optical and electrical devices including, but not limited to, terahertz modulators based on phase transition phenomena.

19.
Am J Transl Res ; 15(1): 125-137, 2023.
Article in English | MEDLINE | ID: mdl-36777839

ABSTRACT

OBJECTIVE: Our previous study found KCTD10 negatively regulates Notch signaling, but whether KCTD10 regulates human hepatocellular carcinoma (HCC) carcinogenicity was uncertain. METHODS: We used lentivirus infection to regulate KCTD10 expression in HCC cell lines, then monitored tumor sphere formation rate, cell migration, in vitro and in vivo tumorigenicity, cancer stem cell (CSC) biomarkers and Notch signaling variation. RESULTS: Down-regulation of KCTD10 in HCC cell lines (Hep3B and MHCC97H) enhanced the expression of CSC marker genes, promoted self-renewal and tumorigenic ability, and increased the CD133+ cell population. Further molecular studies showed that the transmembrane/intracellular region (NTM) of Notch1 decreased when KCTD10 was knocked down in HCC cell lines, and that the balance between P53 and Notch activity was regulated. CONCLUSIONS: The results demonstrated that KCTD10 can act as a tumor suppressor in HCC cells through Notch signaling.

20.
Comput Methods Biomech Biomed Engin ; 26(9): 1044-1054, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35903012

ABSTRACT

Margin of stability (MOS) is one of the essential indices for evaluating dynamic stability. However, there are indications that MOS was affected by body height and its application in identifying factors on dynamic stability other than body height is restricted. An inverted pendulum model was used to simulate human walking and investigate the relevance between MOS and body height. Eventually, a height-independent index in dynamic stability assessment (named as Angled Margin of Stability, AMOS) was proposed. For testing, fifteen healthy young volunteers performed walking trials with normal arm swing, holding arms, and anti-normal arm swing. Kinematic parameters were recorded using a gait analysis system with a Microsoft Kinect V2.0 and instrumented walkway. Both simulation and test results show that MOS had a significant correlation with height during walking with normal arm swing, while AMOS had no such significant correlation. Walking with normal arm swing produced significantly larger AMOS than holding arms and anti-normal arm swing. However, no significant difference showed up in MOS between normal arm swing and holding arms. The results suggest that AMOS is not affected by body height and has the potential to identify the variations in dynamic stability caused by physiological factors other than body height.


Subject(s)
Body Height , Gait , Humans , Gait/physiology , Walking/physiology , Arm/physiology , Computer Simulation , Biomechanical Phenomena/physiology
SELECTION OF CITATIONS
SEARCH DETAIL