Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Magn Reson Med ; 91(3): 1200-1208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38010065

ABSTRACT

PURPOSE: Robust implementation of spiral imaging requires efficient deblurring. A deblurring method was previously proposed to separate and deblur water and fat simultaneously, based on image-space kernel operations. The goal of this work is to improve the performance of the previous deblurring method using kernels with better properties. METHODS: Four types of kernels were formed using different models for the region outside the collected k-space as well as low-pass preconditioning (LP). The performances of the kernels were tested and compared with both phantom and volunteer data. Data were also synthesized to evaluate the SNR. RESULTS: The proposed "square" kernels are much more compact than the previously used circular kernels. Square kernels have better properties in terms of normalized RMS error, structural similarity index measure, and SNR. The square kernels created by LP demonstrated the best performance of artifact mitigation on phantom data. CONCLUSIONS: The sizes of the blurring kernels and thus the computational cost can be reduced by the proposed square kernels instead of the previous circular ones. Using LP may further enhance the performance.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Phantoms, Imaging
2.
Magn Reson Med ; 92(3): 1095-1103, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38576077

ABSTRACT

PURPOSE: To develop a method that achieves simultaneous brain and neck time-of-flight (ToF) magnetic resonance angiography (MRA) within feasible scan timeframes. METHODS: Localized quadratic (LQ) encoding is efficient for both signal-to-noise ratio (SNR) and in-flow enhancement. We proposed a spiral multiband LQ method to enable simultaneous intracranial and carotid ToF-MRA within a single scan. To address the venous signal contamination that becomes a challenge with multiband (MB) ToF, tilt-optimized non-saturated excitation (TONE) and partial-Fourier slice selection (PFSS) were further introduced in the LQ framework to mitigate the venous signal and improve artery contrast. A sequential spiral MB and LQ reconstruction pipeline was employed to obtain the brain-and-neck image volumes. RESULTS: The proposed MB method was able to achieve simultaneous brain and neck ToF-MRA within a 2:50-min scan. The complementarily boosted SNR-efficiency by MB and LQ acquisitions allows for the increased spatial coverage without increase in scan time or noticeable compromise in SNR. The incorporation of both TONE and PFSS effectively alleviated the venous contamination with improved small vessel sensitivity. Selection of scan parameters such as the LQ factor and flip angle reflected the trade-off among SNR, blood contrast, and venous suppression. CONCLUSIONS: A novel MB spiral LQ approach was proposed to enable fast intracranial and carotid ToF-MRA with minimized venous corruption. The method has shown promise in MRA applications where large spatial coverage is necessary.


Subject(s)
Brain , Magnetic Resonance Angiography , Neck , Signal-To-Noise Ratio , Humans , Magnetic Resonance Angiography/methods , Neck/diagnostic imaging , Brain/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods , Carotid Arteries/diagnostic imaging , Adult , Male
3.
Magn Reson Med ; 92(2): 631-644, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38469930

ABSTRACT

PURPOSE: Perfusion MRI reveals important tumor physiological and pathophysiologic information, making it a critical component in managing brain tumor patients. This study aimed to develop a dual-echo 3D spiral technique with a single-bolus scheme to simultaneously acquire both dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) data and overcome the limitations of current EPI-based techniques. METHODS: A 3D spiral-based technique with dual-echo acquisition was implemented and optimized on a 3T MRI scanner with a spiral staircase trajectory and through-plane SENSE acceleration for improved speed and image quality, in-plane variable-density undersampling combined with a sliding-window acquisition and reconstruction approach for increased speed, and an advanced iterative deblurring algorithm. Four volunteers were scanned and compared with the standard of care (SOC) single-echo EPI and a dual-echo EPI technique. Two patients were scanned with the spiral technique during a preload bolus and compared with the SOC single-echo EPI collected during the second bolus injection. RESULTS: Volunteer data demonstrated that the spiral technique achieved high image quality, reduced geometric artifacts, and high temporal SNR compared with both single-echo and dual-echo EPI. Patient perfusion data showed that the spiral acquisition achieved accurate DSC quantification comparable to SOC single-echo dual-dose EPI, with the additional DCE information. CONCLUSION: A 3D dual-echo spiral technique was developed to simultaneously acquire both DSC and DCE data in a single-bolus injection with reduced contrast use. Preliminary volunteer and patient data demonstrated increased temporal SNR, reduced geometric artifacts, and accurate perfusion quantification, suggesting a competitive alternative to SOC-EPI techniques for brain perfusion MRI.


Subject(s)
Algorithms , Brain Neoplasms , Brain , Contrast Media , Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Artifacts , Male , Female , Adult , Image Processing, Computer-Assisted/methods , Signal-To-Noise Ratio , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods
4.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 717-729, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38676398

ABSTRACT

The epicardium is integral to cardiac development and facilitates endogenous heart regeneration and repair. While miR-194-3p is associated with cellular migration and invasion, its impact on epicardial cells remains uncharted. In this work we use gain-of-function and loss-of-function methodologies to investigate the function of miR-194-3p in cardiac development. We culture embryonic epicardial cells in vitro and subject them to transforming growth factor ß (TGF-ß) treatment to induce epithelial-mesenchymal transition (EMT) and monitor miR-194-3p expression. In addition, the effects of miR-194-3p mimics and inhibitors on epicardial cell development and changes in EMT are investigated. To validate the binding targets of miR-194-3p and its ability to recover the target gene-phenotype, we produce a mutant vector p120-catenin-3'UTR-MUT. In epicardial cells, TGF-ß-induced EMT results in a notable overexpression of miR-194-3p. The administration of miR-194-3p mimics promotes EMT, which is correlated with elevated levels of mesenchymal markers. Conversely, miR-194-3p inhibitor attenuates EMT. Further investigations reveal a negative correlation between miR-194-3p and p120-catenin, which influences ß-catenin level in the cell adhesion pathway. The suppression of EMT caused by the miR-194-3p inhibitor is balanced by silencing of p120-catenin. In conclusion, miR-194-3p directly targets p120-catenin and modulates its expression, which in turn alters ß-catenin expression, critically influencing the EMT process in the embryonic epicardial cells via the cell adhesion mechanism.


Subject(s)
Catenins , Epithelial-Mesenchymal Transition , MicroRNAs , Pericardium , Signal Transduction , beta Catenin , Epithelial-Mesenchymal Transition/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , beta Catenin/metabolism , beta Catenin/genetics , Pericardium/metabolism , Pericardium/cytology , Pericardium/embryology , Mice , Catenins/metabolism , Catenins/genetics , Delta Catenin , Transforming Growth Factor beta/metabolism , Cells, Cultured
5.
J Biol Chem ; 298(9): 102309, 2022 09.
Article in English | MEDLINE | ID: mdl-35921899

ABSTRACT

Protein arginine methyltransferase 1 (PRMT1) methylates a variety of histone and nonhistone protein substrates to regulate multiple cellular functions such as transcription, DNA damage response, and signal transduction. It has been reported as an emerging regulator of various metabolic pathways including glucose metabolism in the liver, atrophy in the skeletal muscle, and lipid catabolism in the adipose tissue. However, the underlying mechanisms governing how PRMT1 regulates adipogenesis remain elusive. Here, we delineate the roles of PRMT1 in mitotic clonal expansion and adipocyte differentiation. Gain and loss of functions demonstrate that PRMT1 is essential for adipogenesis of 3T3-L1 and C3H10T1/2 cells. Mechanistically, we show PRMT1 promotes the expression of transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) by catalyzing histone modification H4R3me2a and impedes the activation of Wnt/ß-catenin signaling by increasing the level of Axin to accelerate adipogenic differentiation. In addition, we demonstrate mitotic clonal expansion is suppressed by PRMT1 deficiency. PRMT1 interacts with transcription factor CCATT enhancer-binding protein ß (C/EBPß), and the absence of PRMT1 leads to the depressed phosphorylation of C/EBPß. Interestingly, we discover PRMT1 acts as a positive regulator of C/EBPß protein stability through decreasing the level of E3 ubiquitin ligase Smurf2, which promotes the ubiquitination and degradation of C/EBPß, thus facilitating adipogenesis. Collectively, these discoveries highlight a critical role of PRMT1 in adipogenesis and provide potential therapeutic targets for the treatment of obesity.


Subject(s)
Adipogenesis , CCAAT-Enhancer-Binding Protein-beta , PPAR gamma , Protein-Arginine N-Methyltransferases , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Axin Protein/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Differentiation , Glucose/metabolism , Histones/metabolism , Lipid Metabolism , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
6.
Magn Reson Med ; 90(6): 2261-2274, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37639386

ABSTRACT

PURPOSE: To demonstrate T2 -weighted (single-echo) spin-echo (SE) imaging with near-optimal acquisition efficiency by applying SNR-efficient RF slice encoding and spiral readout. METHODS: A quadratic-phase (frequency swept) excitation RF pulse replaced the conventional excitation in T2 -weighted SE sequence to excite a thick slab that is internally spatially encoded by a variable phase along the slice direction. Highly overlapping slabs centered at every desired slice location were acquired in multiple passes, such that the entire imaging volume was excited by contiguous slabs in any given pass. Following 90° excitation, each slab was refocused with a conventional 180° RF to produce a SE signal, followed by a spiral in-out readout. A noise-insensitive reconstruction removed the quadratic phase in the spatial frequency domain, yielding desired slice resolution and improved SNR. RESULTS: Increasing the RF frequency sweep (hence, excitation width) allowed more frequent encoding of each slice over the multiple passes, improving final image SNR, until crosstalk ensued at excessive slab widths compared to their center-to-center spacing. With an optimized slab width, the proposed technique used all passes to acquire every prescribed slice, with substantially improved SNR over conventional SE or 2D-turbo-spin-echo (TSE) scans. Quantitative SNR measurements indicated similar SNR as 3D-TSE, but radiologist scoring favored 3D-TSE, mainly because of spiral-related artifacts and possibly because of regularized reconstructions in 3D-TSE. CONCLUSION: Using SNR-efficient slice excitation scheme and spiral readout helped eliminate SNR and temporal inefficiencies in conventional T2 -weighted imaging, yielding SNR independent of TR or number of passes.

7.
Magn Reson Med ; 90(5): 1818-1829, 2023 11.
Article in English | MEDLINE | ID: mdl-37415416

ABSTRACT

PURPOSE: This work proposes a 2D/3D hybrid inflow MRA technique for fast scanning and high SNR and contrast-to-noise (CNR) efficiencies. METHODS: Localized quadratic (LQ) encoding was combined with a sliding-slice spiral acquisition. Inflow MRAs around the circle of Willis and the carotid bifurcations were collected on four healthy volunteers. Spiral images were deblurred without or with water-fat separation for sliding-slice LQ (ssLQ) out-of-phase (OP) and Dixon inflow MRAs, respectively. Results were compared to multiple overlapping thin slab acquisitions (MOTSA) and 2D OP inflow MRAs. Noise data were also acquired with RF and gradients turned off to compute maps of SNR and SNR efficiency. Quantitative assessment of relative contrast, CNR, and CNR efficiency for flow were performed in regions of interest. RESULTS: The sliding-slice spiral technique alone reduces scan time by 10% to 40% compared with a standard spiral acquisition scheme. The proposed spiral ssLQ OP achieves 50% higher scan speed than the spiral MOTSA with comparable SNR and CNR efficiencies, which are ∼100% higher than the Cartesian MOTSA for intracranial inflow MRAs. Spiral ssLQ Dixon inflow MRA provides better visibility for vessels around the fat compared to spiral ssLQ OP inflow MRA, with a trade-off of scan speed. Spiral ssLQ MRA with thinner slice thickness is two to five times faster than the 2D Cartesian inflow neck MRA around the carotid bifurcations, while also achieving higher SNR efficiency. CONCLUSION: The proposed spiral ssLQ is a fast and flexible MRA method with improved SNR and CNR efficiencies over traditional Cartesian inflow MRAs.


Subject(s)
Carotid Arteries , Magnetic Resonance Angiography , Humans , Magnetic Resonance Angiography/methods , Carotid Arteries/diagnostic imaging , Healthy Volunteers , Water , Imaging, Three-Dimensional/methods
8.
Magn Reson Med ; 90(5): 2190-2197, 2023 11.
Article in English | MEDLINE | ID: mdl-37379476

ABSTRACT

PURPOSE: The combination of SENSE and spiral imaging with fat/water separation enables high temporal efficiency. However, the corresponding computation increases due to the blurring/deblurring operation across the multi-channel data. This study presents two alternative models to simplify computational complexity in the original full model (model 1). The performances of the models are evaluated in terms of the computation time and reconstruction error. METHODS: Two approximated spiral MRI reconstruction models were proposed: the comprehensive blurring before coil operation (model 2) and the regional blurring before coil operation (model 3), respectively, by altering the order of coil-sensitivity encoding process to distribute signals among the multi-channel coils. Four subjects were recruited for scanning both fully sampled T1 - and T2 -weighted brain image data with simulated undersampling for testing the computational efficiency and accuracy on the approximation models. RESULTS: Based on the examples, the computation time can be reduced to 31%-47% using model 2, and to 39%-56% using model 3. The quality of the water image remains unchanged among the three models, whereas the primary difference in image quality is in the fat channel. The fat images from model 3 are consistent with those from model 1, but those from model 2 have higher normalized error, differing by up to 4.8%. CONCLUSION: Model 2 provides the fastest computation but exhibits higher error in the fat channel, particularly in the high field and with long acquisition window. Model 3, an abridged alternative, is also faster than the full model and can maintain high accuracy in reconstruction.


Subject(s)
Image Processing, Computer-Assisted , Water , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Brain/diagnostic imaging
9.
Magn Reson Med ; 89(3): 951-963, 2023 03.
Article in English | MEDLINE | ID: mdl-36321560

ABSTRACT

PURPOSE: The goal of this work is to present the implementation of 3D spiral high-resolution MPRAGE and to demonstrate that SNR and scan efficiency increase with the increment of readout time. THEORY: Simplified signal equations for MPRAGE indicate that the T1 contrast can be kept approximately the same by a simple relationship between the flip angle and the TR. Furthermore, if T1 contrast remains the same, image SNR depends on the square root of the product of the total scan time and the readout time. METHODS: MPRAGE spiral sequences were implemented with distributed spirals and spiral staircase on 3 Tesla scanners. Brain images of three volunteers were acquired with different readout times. Spiral images were processed with a joint water-fat separation and deblurring algorithm and compared to Cartesian images. Pure noise data sets were also acquired for SNR evaluation. RESULTS: Consistent T1 weighting can be achieved with various spiral readout lengths, and between spiral MPRAGE imaging and the traditional Cartesian MPRAGE imaging. Noise performance analysis demonstrates higher SNR efficiency of spiral MPRAGE imaging with matched T1 contrast compared to the Cartesian reference imaging. CONCLUSION: Fast, high SNR MPRAGE imaging is feasible with long readout spiral trajectories.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Brain/diagnostic imaging , Water , Algorithms
10.
Magn Reson Med ; 90(3): 1219-1227, 2023 09.
Article in English | MEDLINE | ID: mdl-37158313

ABSTRACT

PURPOSE: An accurate field map is essential to separate fat and water signals in a dual-echo chemical shift encoded spiral MRI scan. A rapid low-resolution B0 map prescan is usually performed before each exam. Occasional inaccuracy in these field map estimates can lead to misclassification of the water and fat signals as well as blurring artifacts in the reconstruction. The present work proposes a self-consistent model to evaluate residual field offsets according to the image data to improve the reconstruction quality and facilitate the scan efficiency. THEORY AND METHODS: The proposed method compares the phase differences of the two-echo data after correcting for fat frequency offsets. A more accurate field map is approximated according to the phase discrepancies and improved image quality. Experiments were conducted with simulated off-resonance on a numerical phantom, five volunteer head scans, and four volunteer abdominal scans for validation. RESULTS: The initial reconstruction of the demonstrated examples exhibit blurring artifacts and misregistration of fat and water because of the inaccuracy of the field map. The proposed method updates the field map to amend the fat and water estimation and improve image quality. CONCLUSIONS: This work presents a model to improve the quality of fat-water imaging of the spiral MRI by estimating a better field map from the acquired data. It allows reducing the field map pre-scans before each spiral scan under normal circumstances to increase scan efficiency.


Subject(s)
Magnetic Resonance Imaging , Water , Humans , Magnetic Resonance Imaging/methods , Algorithms , Phantoms, Imaging , Body Water/diagnostic imaging , Image Processing, Computer-Assisted/methods , Artifacts
11.
Molecules ; 27(10)2022 May 15.
Article in English | MEDLINE | ID: mdl-35630639

ABSTRACT

Over the past few years, conjugated polymers (CPs) have aroused much attention owing to their rigid conjugated structures, which can perform well in light harvesting and energy transfer and offer great potential in materials chemistry. In this article, we fabricate a new luminescent linear CP p(P[5](OTf)2-co-9,10-dea) via the Sonogashira coupling of 9,10-diethynylanthracene and trifluoromethanesulfonic anhydride (OTf) modified pillar[5]arene, generating enhanced yellow-green fluorescence emission at around 552 nm. The reaction condition was screened to get a deeper understanding of this polymerization approach, resulting in an excellent yield as high as 92% ultimately. Besides the optical properties, self-assembly behaviors of the CP in low/high concentrations were studied, where interesting adjustable morphologies from tube to sheet were observed. In addition, the fluorescence performance and structural architecture can be disturbed by the host-guest reorganization between the host CP and the guest adiponitrile, suggesting great potential of this CP material in the field of sensing and detection.

12.
Magn Reson Med ; 84(2): 866-872, 2020 08.
Article in English | MEDLINE | ID: mdl-31967342

ABSTRACT

PURPOSE: To introduce a modified 3D stack-of-spirals trajectory and efficient SENSE reconstruction for improved through-plane undersampling, while maintaining SNR efficiency and other benefits of spiral acquisitions. METHODS: A novel spiral staircase trajectory is introduced. This trajectory is a modified stack of spirals, in which spiral arms are distributed between partitions along kz . The trajectory maintains the efficient separable reconstruction with a Cartesian fast Fourier transform along the kz direction, followed by a 2D slice-by-slice gridding reconstruction. An additional intermediate step introduces a phase correction to collapse the spiral arms into the prescribed slice planes. For data undersampled through plane, this produces aliasing with reduced coherence, controlled by the arm-ordering. Undersampled data can then be reconstructed with reduced g-factor using a conjugate gradient-based iterative SENSE algorithm. RESULTS: The trajectory significantly improves g-factor for through-plane accelerated acquisitions. Improvement manifests through both reduced overall g-factor and reduced structure in the g-factor maps. In the presented experiments, the mean g-factor decreased from 1.26 to 0.93 and the maximum g-factor decreased from 3.89 to 1.15 for R = 2 spiral staircase when compared with stack of spirals, and the mean g-factor decreased from 2.51 to 0.94 and the maximum g-factor decreased from 8.26 to 1.35 for R = 3 spiral staircase when compared with stack of spirals. CONCLUSION: The novel spiral staircase trajectory offers improved aliasing characteristics for through-plane parallel imaging acceleration in 3D spiral acquisitions.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Algorithms , Fourier Analysis , Image Enhancement , Image Processing, Computer-Assisted , Phantoms, Imaging
13.
BMC Cardiovasc Disord ; 20(1): 419, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938406

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is one of the commonest inherited metabolic disorders. Abnormally high level of low-density lipoprotein cholesterol (LDL-C) in blood leads to premature atherosclerosis onset and a high risk of cardiovascular disease (CVD). However, the specific mechanisms of the progression process are still unclear. Our study aimed to investigate the potential differently expressed genes (DEGs) and mechanism of FH using various bioinformatic tools. METHODS: GSE13985 and GSE6054 were downloaded from the Gene Expression Omnibus (GEO) database for bioinformatic analysis in this study. First, limma package of R was used to identify DEGs between blood samples of patients with FH and those from healthy individuals. Then, the functional annotation of DEGs was carried out by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology (GO) analysis. Based on Search Tool for the Retrieval of Interacting Genes (STRING) tool, we constructed the Protein-Protein Interactions (PPIs) network among DEGs and mined the core genes as well. RESULTS: A total of 102 communal DEGs (49 up-regulated and 53 down-regulated) are identified in FH samples compared with control samples. The functional changes of DEGs are mainly associated with the focal adhere and glucagon signaling pathway. Ten genes (ITGAL, TLN1, POLR2A, CD69, GZMA, VASP, HNRNPUL1, SF1, SRRM2, ITGAV) were identified as core genes. Bioinformatic analysis showed that the core genes are mainly enriched in numerous processes related to cell adhesion, integrin-mediated signaling pathway and cell-matrix adhesion. In the transcription factor (TF) target regulating network, 219 nodes were detected, including 214 DEGs and 5 TFs (SP1, EGR3, CREB, SEF1, HOX13). In conclusion, the DEGs and hub genes identified in this study may help us understand the potential etiology of the occurrence and development of AS. CONCLUSION: Up-regulated ITGAL, TLN1, POLR2A, VASP, HNRNPUL1, SF1, SRRM2, and down-regulated CD69, GZMA and ITGAV performed important promotional effects for the formation of atherosclerotic plaques those suffering from FH. Moreover, SP1, EGR3, CREB, SEF1 and HOX13 were the potential transcription factors for DEGs and could serve as underlying targets for AS rupture prevention. These findings provide a theoretical basis for us to understand the potential etiology of the occurrence and development of AS in FH patients and we may be able to find potential diagnostic and therapeutic targets.


Subject(s)
Atherosclerosis/genetics , Cholesterol, LDL/blood , Computational Biology , Gene Regulatory Networks , Hyperlipoproteinemia Type II/genetics , Atherosclerosis/blood , Atherosclerosis/diagnosis , Case-Control Studies , Databases, Genetic , Disease Progression , Gene Expression Regulation , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/diagnosis , Phenotype , Protein Interaction Maps , Signal Transduction
14.
Magn Reson Med ; 81(4): 2501-2513, 2019 04.
Article in English | MEDLINE | ID: mdl-30444004

ABSTRACT

PURPOSE: B0 eddy currents are a subtle but important source of artifacts in spiral MRI. This study illustrates the importance of addressing these artifacts and presents a system response-based eddy current correction strategy using B0 eddy current phase measurements on a phantom. METHODS: B0 and linear eddy current system response measurements were estimated from phantom-based measurement and used to predict residual eddy current effects in spiral acquisitions. The measurements were evaluated across multiple systems and gradient sets. The corresponding eddy current corrections were studied in both axial spiral-in/out TSE and sagittal spiral-out MPRAGE volunteer data. RESULTS: Correction of B0 eddy currents using the proposed method mitigated blurriness in the axial spiral-in/out images and artifacts in the sagittal spiral-out images. The system response measurement was found to yield repeatable results over time with some variation in the B0 eddy current responses measured between different systems. CONCLUSIONS: The proposed eddy current correction framework was effective in mitigating the effects of residual B0 and linear eddy currents. Any spiral acquisition should take residual eddy currents into account. This is particularly important in spiral-in/out acquisitions.


Subject(s)
Artifacts , Brain/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Computer Simulation , Healthy Volunteers , Humans , Image Enhancement/methods , Models, Statistical , Motion , Phantoms, Imaging , Reproducibility of Results , Signal-To-Noise Ratio
15.
Magn Reson Med ; 79(6): 3218-3228, 2018 06.
Article in English | MEDLINE | ID: mdl-28983966

ABSTRACT

PURPOSE: Most previous approaches to spiral Dixon water-fat imaging perform the water-fat separation and deblurring sequentially based on the assumption that the phase accumulation and blurring as a result of off-resonance are separable. This condition can easily be violated in regions where the B0 inhomogeneity varies rapidly. The goal of this work is to present a novel joint water-fat separation and deblurring method for spiral imaging. METHODS: The proposed approach is based on a more accurate signal model that takes into account the phase accumulation and blurring simultaneously. A conjugate gradient method is used in the image domain to reconstruct the deblurred water and fat iteratively. Spatially varying convolutions with a local convergence criterion are used to reduce the computational demand. RESULTS: Both simulation and high-resolution brain imaging have demonstrated that the proposed joint method consistently improves the quality of reconstructed water and fat images compared with the sequential approach, especially in regions where the field inhomogeneity changes rapidly in space. The loss of signal-to-noise-ratio as a result of deblurring is minor at optimal echo times. CONCLUSIONS: High-quality water-fat spiral imaging can be achieved with the proposed joint approach, provided that an accurate field map of B0 inhomogeneity is available. Magn Reson Med 79:3218-3228, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Adipose Tissue/diagnostic imaging , Body Water/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Brain/diagnostic imaging , Humans
16.
Magn Reson Med ; 75(2): 627-38, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25762118

ABSTRACT

PURPOSE: The goal of this work is to present a new three-point analytical approach with flexible even or uneven echo increments for water-fat separation and to evaluate its feasibility with spiral imaging. THEORY AND METHODS: Two sets of possible solutions of water and fat are first found analytically. Then, two field maps of the B0 inhomogeneity are obtained by linear regression. The initial identification of the true solution is facilitated by the root-mean-square error of the linear regression and the incorporation of a fat spectrum model. The resolved field map after a region-growing algorithm is refined iteratively for spiral imaging. The final water and fat images are recalculated using a joint water-fat separation and deblurring algorithm. RESULTS: Successful implementations were demonstrated with three-dimensional gradient-echo head imaging and single breathhold abdominal imaging. Spiral, high-resolution T1 -weighted brain images were shown with comparable sharpness to the reference Cartesian images. CONCLUSION: With appropriate choices of uneven echo increments, it is feasible to resolve the aliasing of the field map voxel-wise. High-quality water-fat spiral imaging can be achieved with the proposed approach.


Subject(s)
Abdomen/anatomy & histology , Brain/anatomy & histology , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adipose Tissue/anatomy & histology , Algorithms , Body Water , Humans
17.
Magn Reson Med ; 75(2): 729-38, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25753219

ABSTRACT

PURPOSE: T2 -weighted imaging is of great diagnostic value in neuroimaging. Three-dimensional (3D) Cartesian turbo spin echo (TSE) scans provide high signal-to-noise ratio (SNR) and contiguous slice coverage. The purpose of this preliminary work is to implement a novel 3D spiral TSE technique with image quality comparable to 2D/3D Cartesian TSE. METHODS: The proposed technique uses multislab 3D TSE imaging. To mitigate the slice boundary artifacts, a sliding-slab method is extended to spiral imaging. A spiral-in/out readout is adopted to minimize the artifacts that may be present with the conventional spiral-out readout. Phase errors induced by B0 eddy currents are measured and compensated to allow for the combination of the spiral-in and spiral-out images. A nonuniform slice encoding scheme is used to reduce the truncation artifacts while preserving the SNR performance. RESULTS: Preliminary results show that each of the individual measures contributes to the overall performance, and the image quality of the results obtained with the proposed technique is, in general, comparable to that of 2D or 3D Cartesian TSE. CONCLUSION: 3D sliding-slab TSE with a spiral-in/out readout provides good-quality T2 -weighted images, and, therefore, may become a promising alternative to Cartesian TSE.


Subject(s)
Brain/anatomy & histology , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Artifacts , Healthy Volunteers , Humans , Signal-To-Noise Ratio
18.
Magn Reson Med ; 75(1): 266-73, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25754947

ABSTRACT

PURPOSE: The three-dimensional (3D) spiral turbo spin echo (TSE) sequence is one of the preferred readout methods for arterial spin labeled (ASL) perfusion imaging. Conventional spiral TSE collects the data using a spiral-out readout on a stack of spirals trajectory. However, it may result in suboptimal image quality and is not flexible in protocol design. The goal of this study is to provide a more robust readout technique without such limitation. METHODS: The proposed technique incorporates a spiral-in/out readout into 3D TSE, and collects the data on a distributed spirals trajectory. The data set is split into the spiral-in and -out subsets that are reconstructed separately and combined after image deblurring. RESULTS: The volunteer results acquired with the proposed technique show no geometric distortion or signal pileup, as is present with GRASE, and no signal loss, as is seen with conventional spiral TSE. Examples also demonstrate the flexibility in changing the imaging parameters to satisfy various criteria. CONCLUSION: The 3D TSE with a distributed spiral-in/out trajectory provides a robust readout technique and allows for easy protocol design, thus is a promising alternative to GRASE or conventional spiral TSE for ASL perfusion imaging.


Subject(s)
Algorithms , Cerebral Arteries/physiology , Cerebrovascular Circulation , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Blood Flow Velocity/physiology , Cerebral Arteries/anatomy & histology , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , Spin Labels
19.
Front Cardiovasc Med ; 9: 927397, 2022.
Article in English | MEDLINE | ID: mdl-36158806

ABSTRACT

Background: In recent years, peri-organ fat has emerged as a diagnostic and therapeutic target in metabolic diseases, including diabetes mellitus. Here, we performed a comprehensive analysis of epicardial adipose tissue (EAT) transcriptome expression differences between diabetic and non-diabetic participants and explored the possible mechanisms using various bioinformatic tools. Methods: RNA-seq datasets GSE108971 and GSE179455 for EAT between diabetic and non-diabetic patients were obtained from the public functional genomics database Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) were identified using the R package DESeq2, then Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analyzed. Next, a PPI (protein-protein interaction) network was constructed, and hub genes were mined using STRING and Cytoscape. Additionally, CIBERSORT was used to analyze the immune cell infiltration, and key transcription factors were predicted based on ChEA3. Results: By comparing EAT samples between diabetic and non-diabetic patients, a total of 238 DEGs were identified, including 161 upregulated genes and 77 downregulated genes. A total of 10 genes (IL-1ß, CD274, PDCD1, ITGAX, PRDM1, LAG3, TNFRSF18, CCL20, IL1RN, and SPP1) were selected as hub genes. GO and KEGG analysis showed that DEGs were mainly enriched in the inflammatory response and cytokine activity. Immune cell infiltration analysis indicated that macrophage M2 and T cells CD4 memory resting accounted for the largest proportion of these immune cells. CSRNP1, RELB, NFKB2, SNAI1, and FOSB were detected as potential transcription factors. Conclusion: Comprehensive bioinformatic analysis was used to compare the difference in EAT between diabetic and non-diabetic patients. Several hub genes, transcription factors, and immune cell infiltration were identified. Diabetic EAT is significantly different in the inflammatory response and cytokine activity. These findings may provide new targets for the diagnosis and treatment of diabetes, as well as reduce potential cardiovascular complications in diabetic patients through EAT modification.

20.
Cell Death Discov ; 8(1): 381, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36088337

ABSTRACT

Forkhead box protein P1 (FoxP1) is essential for cardiac development and the regulation of neovascularization, but its potential for cardiac angiogenesis has not been explored. This study aims to investigate the angiogenic role of FoxP1 in a rat model of myocardial infarction (MI). Adult male rats were subjected to MI, and Foxp1 was knocked down with lentivirus FoxP1 siRNA. Endothelial cell proliferation, angiogenesis, and cardiac function were also assessed. Cell scratch assay and tubule formation analysis were used to detect the migration ability and tube formation ability of human umbilical vein endothelial cells (HUVECs). Compared with that in the sham group, results showed that the expression of FoxP1 was significantly increased in the MI group. Foxp1 knockdown decreases FoxP1 expression, reduces angiogenesis, and increases collagen deposition. When Foxp1 was knocked down in HUVECs using FoxP1 siRNA lentivirus, cell proliferation, migration, and tube formation abilities decreased significantly. Our study showed that FoxP1 elicits pleiotropic beneficial actions on angiogenesis in the post-MI heart by promoting the proliferation of endothelial cells. FoxP1 should be considered a candidate for therapeutic cardiac angiogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL