Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(14): e2117899119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35344429

ABSTRACT

SignificanceDynamically understanding the microscopic processes governing ordering transformations has rarely been attained. The situation becomes even more challenging for nanoscale alloys, where the significantly increased surface-area-to-volume ratio not only opens up a variety of additional freedoms to initiate an ordering transformation but also allows for kinetic interplay between the surface and bulk due to their close proximity. We provide direct evidence of the microscopic processes controlling the ordering transformation through the surface-bulk interplay in Pt-Fe nanoalloys and new features rendered by variations in alloy composition and chemical stimuli. These results provide a mechanistic detail of ordering transformation phenomena which are widely relevant to nanoalloys as chemical ordering occurs in most multicomponent materials under suitable environmental bias.

2.
J Am Chem Soc ; 146(3): 2167-2173, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38214166

ABSTRACT

Due to the large multi-elemental space desired for property screening and optimization, high-entropy alloys (HEAs) hold greater potential over conventional alloys for a range of applications, such as structural materials, energy conversion, and catalysis. However, the relationship between the HEA composition and its local structural/elemental configuration is not well understood, particularly in noble-metal-based HEA nanomaterials, hindering the design and development of nano-HEAs in energy conversion and catalysis applications. Herein, we determined precise atomic-level structural and elemental arrangements in model HEAs composed of RhPtPdFeCo and RuPtPdFeCo to unveil their local characteristics. Notably, by changing just one constituent element in the HEA (Rh to Ru), we found dramatic changes in the elemental arrangement from complete random mixing to a local single elemental ordering feature. Additionally, we demonstrate that the local ordering in RuPtPdFeCo can be further controlled by varying the Ru concentration, allowing us to toggle between local Ru clustering and distinct heterostructures in multicomponent systems. Overall, our study presents a practical approach for manipulating local atomic structures and elemental arrangements in noble-metal-based HEA systems, which could provide in-depth knowledge to mechanistically understand the functionality of noble-metal-based HEA nanomaterials in practical applications.

3.
J Am Chem Soc ; 146(2): 1423-1434, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38171910

ABSTRACT

Cu-based catalysts hold promise for electrifying CO2 to produce methane, an extensively used fuel. However, the activity and selectivity remain insufficient due to the lack of catalyst design principles to steer complex CO2 reduction pathways. Herein, we develop a concept to design carbon-supported Cu catalysts by regulating Cu active sites' atomic-scale structures and engineering the carbon support's mesoscale architecture. This aims to provide a favorable local reaction microenvironment for a selective CO2 reduction pathway to methane. In situ X-ray absorption and Raman spectroscopy analyses reveal the dynamic reconstruction of nitrogen and hydroxyl-immobilized Cu3 (N,OH-Cu3) clusters derived from atomically dispersed Cu-N3 sites under realistic CO2 reduction conditions. The N,OH-Cu3 sites possess moderate *CO adsorption affinity and a low barrier for *CO hydrogenation, enabling intrinsically selective CO2-to-CH4 reduction compared to the C-C coupling with a high energy barrier. Importantly, a block copolymer-derived carbon fiber support with interconnected mesopores is constructed. The unique long-range mesochannels offer an H2O-deficient microenvironment and prolong the transport path for the CO intermediate, which could suppress the hydrogen evolution reaction and favor deep CO2 reduction toward methane formation. Thus, the newly developed catalyst consisting of in situ constructed N,OH-Cu3 active sites embedded into bicontinuous carbon mesochannels achieved an unprecedented Faradaic efficiency of 74.2% for the CO2 reduction to methane at an industry-level current density of 300 mA cm-2. This work explores effective concepts for steering desirable reaction pathways in complex interfacial catalytic systems via modulating active site structures at the atomic level and engineering pore architectures of supports on the mesoscale to create favorable microenvironments.

4.
Anal Chem ; 96(19): 7470-7478, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696229

ABSTRACT

MicroRNAs (miRNAs) are endogenous and noncoding single-stranded RNA molecules with a length of approximately 18-25 nucleotides, which play an undeniable role in early cancer screening. Therefore, it is very important to develop an ultrasensitive and highly specific method for detecting miRNAs. Here, we present a bottom-up assembly approach for modifying glass microtubes with silica nanowires (SiNWs) and develop a label-free sensing platform for miRNA-21 detection. The three-dimensional (3D) networks formed by SiNWs make them abundant and highly accessible sites for binding with peptide nucleic acid (PNA). As a receptor, PNA has no phosphate groups and exhibits an overall electrically neutral state, resulting in a relatively small repulsion between PNA and RNA, which can improve the hybridization efficiency. The SiNWs-filled glass microtube (SiNWs@GMT) sensor enables ultrasensitive, label-free detection of miRNA-21 with a detection limit as low as 1 aM at a detection range of 1 aM-100 nM. Noteworthy, the sensor can still detect miRNA-21 in the range of 102-108 fM in complex solutions containing 1000-fold homologous interference of miRNAs. The high anti-interference performance of the sensor enables it to specifically recognize target miRNA-21 in the presence of other miRNAs and distinguish 1-, 3-mismatch nucleotide sequences. Significantly, the sensor platform is able to detect miRNA-21 in the lysate of breast cancer cell lines (e.g., MCF-7 cells and MDA-MB-231 cells), indicating that it has good potential in the screening of early breast cancers.


Subject(s)
Glass , MicroRNAs , Nanowires , Peptide Nucleic Acids , Silicon Dioxide , MicroRNAs/analysis , Peptide Nucleic Acids/chemistry , Silicon Dioxide/chemistry , Humans , Nanowires/chemistry , Glass/chemistry , Biosensing Techniques/methods , Limit of Detection
5.
Small ; : e2404162, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958083

ABSTRACT

The synergistic effect of rare earth single-atoms and transition metal single-atoms may enable us to achieve some unprecedented performance and characteristics. Here, Co-Dy dual-atoms on black phosphorus with a P-Co-Dy charge-transfer bridge are designed and fabricated as the active center for the CO2 photoreduction reaction. The synergistic effect of Co-Dy on the performance of black phosphorus is studied by combining X-ray absorption spectroscopy, ultrafast spectral analysis, and in situ technology with DFT calculations. The results show that the Co and Dy bimetallic active site can promote charge transfer by the charge transfer bridge from P to Dy, and then to Co, thereby improving the photocatalytic activity of black phosphorus. The performance of catalysts excited at different wavelength light indicates that the 4G11/2/2I15/2/4F9/2→6H15/2 and 4F9/2→6H13/2 emissions of Dy can be absorbed by black phosphorus to improve the utilization of sunlight. The in situ DRIFTS and density functional theory (DFT) calculations are used to investigate the CO2 photoreduction pathway. This work provides an depth insight into the mechanism of dual-atom catalysts with enhanced photocatalytic performance, which helps to design novel atomic photocatalysts with excellent activity for CO2 reduction reactions.

6.
Small ; : e2400618, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644234

ABSTRACT

There are few reports on lanthanide single atom modified catalysts, as the role of the 4f levels in photocatalysis is difficult to explain clearly. Here, the synergistic effect of 4f levels of Nd and heterostructures is studied by combining steady-state, transient, and ultrafast spectral analysis techniques with DFT theoretical calculations based on the construction of Nd single atom modified black phosphorus/g-C3N4 (BP/CN) heterojunctions. As expected, the generation rates of CO and CH4 of the optimized heterostructure are 7.44 and 6.85 times higher than those of CN, and 8.43 and 9.65 times higher than those of BP, respectively. The Nd single atoms can not only cause surface reconstruction and regulate the active sites of BP, but also accelerate charge separation and transfer, further suppressing the recombination of electron-hole pairs. The electrons can transfer from g-C3N4:Nd to BP:Nd, with a transfer time of ≈11.4 ps, while the radiation recombination time of electron-hole pairs of g-C3N4 is ≈26.13 µs, indicating that the construction of heterojunctions promotes charge transfer. The 2P1/2/2G9/2/4G7/2/2H11/2/4F7/2→4I9/2 emissions from Nd3+ can also be absorbed by heterostructures, which improves the utilization of light. The energy change of the key rate measurement step CO2 *→COOH* decreases through Nd single atom modification.

7.
Nat Mater ; 22(1): 100-108, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36266572

ABSTRACT

Iridium-based electrocatalysts remain the only practical anode catalysts for proton exchange membrane (PEM) water electrolysis, due to their excellent stability under acidic oxygen evolution reaction (OER), but are greatly limited by their high cost and low reserves. Here, we report a nickel-stabilized, ruthenium dioxide (Ni-RuO2) catalyst, a promising alternative to iridium, with high activity and durability in acidic OER for PEM water electrolysis. While pristine RuO2 showed poor acidic OER stability and degraded within a short period of continuous operation, the incorporation of Ni greatly stabilized the RuO2 lattice and extended its durability by more than one order of magnitude. When applied to the anode of a PEM water electrolyser, our Ni-RuO2 catalyst demonstrated >1,000 h stability under a water-splitting current of 200 mA cm-2, suggesting potential for practical applications. Density functional theory studies, coupled with operando differential electrochemical mass spectroscopy analysis, confirmed the adsorbate-evolving mechanism on Ni-RuO2, as well as the critical role of Ni dopants in stabilization of surface Ru and subsurface oxygen for improved OER durability.

8.
Langmuir ; 40(22): 11745-11756, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768262

ABSTRACT

Interfacial solar desalination is a method for desalinating seawater using solar energy, and the long-term use of this technology requires a stable evaporation rate and some ability to prevent salt crystallization. To address these issues, carbonized polydopamine-coated bentonite (C@PBT), poly(vinyl alcohol), and cellulose nanofibers were used to construct a three-dimensional oriented hydrogel evaporator with a multilayered honeycomb porous structure for long-term desalination. Carbon nanoparticles transferred between the layers of the bentonite, which increases the spacing of the layers and confers a more effective solar light trapping ability. The evaporation rate was 2.26 kg m-2 h-1 in 20 wt % NaCl solution, and no salt crystals were precipitated from the surface of the evaporator in 12 h of continuous operation. This phenomenon occurs due to the wide distribution of pore sizes and the large size of the pores within the evaporator, which create ample space for salt ions to move freely. Furthermore, after undergoing 300 cycles of compression, its internal pore structure remains intact, and the rate of evaporation remains stable. It ensures the evaporator stability during outdoor cycles. The research work provides an effective method to solve the salt accumulation problem and shows its great potential for application.

9.
Mikrochim Acta ; 191(6): 341, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38795199

ABSTRACT

The construction of gating system in artificial channels is a cutting-edge research direction in understanding biological process and application sensing. Here, by mimicking the gating system, we report a device that easily synthesized single-glass micropipettes functionalized by three-dimensional (3D) DNA network, which triggers the gating mechanism for the detection of biomolecules. Based on this strategy, the gating mechanism shows that single-glass micropipette assembled 3D DNA network is in the "OFF" state, and after collapsing in the presence of ATP, they are in the "ON" state, at which point they exhibit asymmetric response times. In the "ON" process of the gating mechanism, the ascorbic acid phosphate (AAP) can be encapsulated by a 3D DNA network and released in the presence of adenosine triphosphate (ATP), which initiates a catalyzed cascade reaction under the influence of alkaline phosphatase (ALP). Ultimately, the detection of ALP can be responded to form the fluorescence signal generated by terephthalic acid that has captured hydroxyl radicals, which has a detection range of 0-250 mU/mL and a limit of detection of 50 mU/mL. This work provides a brand-new way and application direction for research of gating mechanism.


Subject(s)
Adenosine Triphosphate , Alkaline Phosphatase , DNA , Adenosine Triphosphate/analysis , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/chemistry , DNA/chemistry , Glass/chemistry , Biosensing Techniques/methods , Limit of Detection , Ascorbic Acid/chemistry , Ascorbic Acid/analogs & derivatives
10.
Nano Lett ; 23(2): 514-522, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36633548

ABSTRACT

A 5-fold twin is usually observed in nanostructured metals after mechanical tests and/or annealing treatment. However, the formation mechanism of a 5-fold twin has not been fully elaborated, due to the lack of direct time-resolved atomic-scale observation. Here, by using in situ nanomechanical testing combined with atomistic simulations, we show that sequential twinning slip in varying slip systems and decomposition of high-energy grain boundaries account for the 5-fold twin formation in a nanoscale gold single crystal under bending as well as the reversible formation and dissolution of a 5-fold twin in a nanocrystal with a preexisting twin under tension and shearing. Moreover, we find that the complex stress state in the neck area results in the breakdown of Schmid's law, causing 5-fold twin formation in a gold nanocrystal with a twin boundary parallel to the loading direction. These findings enrich our understanding of the formation process of high-order twin structures in nanostructured metals.

11.
Nano Lett ; 23(16): 7733-7742, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37379097

ABSTRACT

Electrochemical reduction of nitrate to ammonia (NH3) converts an environmental pollutant to a critical nutrient. However, current electrochemical nitrate reduction operations based on monometallic and bimetallic catalysts are limited in NH3 selectivity and catalyst stability, especially in acidic environments. Meanwhile, catalysts with dispersed active sites generally exhibit a higher atomic utilization and distinct activity. Herein, we report a multielement alloy nanoparticle catalyst with dispersed Ru (Ru-MEA) with other synergistic components (Cu, Pd, Pt). Density functional theory elucidated the synergy effect of Ru-MEA than Ru, where a better reactivity (NH3 partial current density of -50.8 mA cm-2) and high NH3 faradaic efficiency (93.5%) is achieved in industrially relevant acidic wastewater. In addition, the Ru-MEA catalyst showed good stability (e.g., 19.0% decay in FENH3 in three hours). This work provides a potential systematic and efficient catalyst discovery process that integrates a data-guided catalyst design and novel catalyst synthesis for a range of applications.

12.
Int Wound J ; 21(4): e14852, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584310

ABSTRACT

This study aims to evaluate the effects of electromagnetic therapy (EMT) on the treatment of venous leg ulcers (VLUs) by synthesising and appraising available meta-analyses (MAs) and systematic reviews (SRs). A comprehensive literature search was conducted across major databases up to 10 January 2024, focusing on SRs/MAs that investigated the use of EMT for VLUs. Selection criteria followed the PICO framework, and dual-author extraction was used for accuracy. Quality assessment tools included AMSTAR2, ROBIS, PRISMA, and GRADE. The search yielded five eligible studies. The reviews collectively presented moderate methodological quality and a low risk of bias in several domains. Reporting quality was high, albeit with inconsistencies in fulfilling certain PRISMA checklist items. The evidence quality, primarily downgraded due to small sample sizes, was rated as moderate. Whilst some studies suggest potential benefits of EMT in the treatment of VLUs, the overall evidence is inconclusive due to methodological limitations and limited sample sizes. This review underscores the need for future research with more rigorous methodologies and larger cohorts to provide clearer insights into the efficacy of EMT for VLUs.


Subject(s)
Magnetic Field Therapy , Varicose Ulcer , Humans , Varicose Ulcer/therapy , Checklist
13.
J Am Chem Soc ; 145(32): 17643-17655, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37540107

ABSTRACT

Developing low platinum-group-metal (PGM) catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs) for heavy-duty vehicles (HDVs) remains a great challenge due to the highly demanded power density and long-term durability. This work explores the possible synergistic effect between single Mn site-rich carbon (MnSA-NC) and Pt nanoparticles, aiming to improve intrinsic activity and stability of PGM catalysts. Density functional theory (DFT) calculations predicted a strong coupling effect between Pt and MnN4 sites in the carbon support, strengthening their interactions to immobilize Pt nanoparticles during the ORR. The adjacent MnN4 sites weaken oxygen adsorption at Pt to enhance intrinsic activity. Well-dispersed Pt (2.1 nm) and ordered L12-Pt3Co nanoparticles (3.3 nm) were retained on the MnSA-NC support after indispensable high-temperature annealing up to 800 °C, suggesting enhanced thermal stability. Both PGM catalysts were thoroughly studied in membrane electrode assemblies (MEAs), showing compelling performance and durability. The Pt@MnSA-NC catalyst achieved a mass activity (MA) of 0.63 A mgPt-1 at 0.9 ViR-free and maintained 78% of its initial performance after a 30,000-cycle accelerated stress test (AST). The L12-Pt3Co@MnSA-NC catalyst accomplished a much higher MA of 0.91 A mgPt-1 and a current density of 1.63 A cm-2 at 0.7 V under traditional light-duty vehicle (LDV) H2-air conditions (150 kPaabs and 0.10 mgPt cm-2). Furthermore, the same catalyst in an HDV MEA (250 kPaabs and 0.20 mgPt cm-2) delivered 1.75 A cm-2 at 0.7 V, only losing 18% performance after 90,000 cycles of the AST, demonstrating great potential to meet the DOE targets.

14.
Small ; 19(27): e2208118, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36965021

ABSTRACT

The development of sp2 -carbon-linked covalent organic frameworks (sp2 c-COFs) as artificial photocatalysts for solar-driven conversion of CO2 into chemical feedstock has captured growing attention, but catalytic performance has been significantly limited by their intrinsic organic linkages. Here, a simple, yet efficient approach is reported to improve the CO2 photoreduction on metal-free sp2 c-COFs by rationally regulating their intrinsic π-conjugation. The incorporation of ethynyl groups into conjugated skeletons affords a significant improvement in π-conjugation and facilitates the photogenerated charge separation and transfer, thereby boosting the CO2 photoreduction in a solid-gas mode with only water vapor and CO2 . The resultant CO production rate reaches as high as 382.0 µmol g-1  h-1 , ranking at the top among all additive-free CO2 photoreduction catalysts. The simple modulation approach not only enables to achieve enhanced CO2 reduction performance but also simultaneously gives a rise to extend the understanding of structure-property relationship and offer new possibilities for the development of new π-conjugated COF-based artificial photocatalysts.

15.
Nat Mater ; 21(2): 173-180, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34621059

ABSTRACT

The field of nanotribology has long suffered from the inability to directly observe what takes place at a sliding interface. Although techniques based on atomic force microscopy have identified many friction phenomena at the nanoscale, many interpretative pitfalls still result from the indirect or ex situ characterization of contacting surfaces. Here we combined in situ high-resolution transmission electron microscopy and atomic force microscopy measurements to provide direct real-time observations of atomic-scale interfacial structure during frictional processes and discovered the formation of a loosely packed interfacial layer between two metallic asperities that enabled a low friction under tensile stress. This finding is corroborated by molecular dynamic simulations. The loosely packed interfacial layer became an ordered layer at equilibrium distances under compressive stress, which led to a transition from a low-friction to a dissipative high-friction motion. This work directly unveils a unique role of atomic diffusion in the friction of metallic contacts.

16.
Anal Bioanal Chem ; 415(27): 6701-6709, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37755488

ABSTRACT

A triangular-shaped flat plastic substrate probe was prepared for direct electrospray ionization mass spectrometry (ESI-MS) for analysis of untreated chemical and biological samples including liquids (Met-Arg-Phe-Ala peptide, reserpine, and dodecyl aldehyde), solids (biological samples, traditional Chinese medicine), and powders (roasted coffee, rhizoma coptidis, lotus plumule, and Schisandra sphenanthera). Quantitative analysis of reserpine in water yielded a detection limit of 1 ng mL-1, dynamic response range within 1-500 ng mL-1, and linearity of signal response ˃0.9925. Compared to the conventional capillary ESI, this plastic probe ESI offers lower cost of analysis (US $0.0056 per probe), higher sensitivity, lower sample consumption, longer signal duration (>6 min), better reproducibility, signal stability, and higher speed of analysis (<10 s per sample, including sample loading). Overall, the results indicate the potential of ESI-MS based on flat plastic probes as a versatile method for simple, sensitive, and stable analysis of untreated biological sample analysis.

17.
J Chem Phys ; 158(19)2023 May 21.
Article in English | MEDLINE | ID: mdl-37184006

ABSTRACT

In this study, a machine learning based computational approach has been developed to investigate the cation distribution in spinel crystals. The computational approach integrates the construction of datasets consisting of the energies calculated from density functional theory, the training of machine learning models to derive the relationship between system energy and structural features, and atomistic Monte Carlo simulations to sample the thermodynamic equilibrium structures of spinel crystals. It is found that the support vector machine model yields excellent performance in energy predictions based on spinel crystal structures. Furthermore, the developed computational approach has been applied to predict the cation distribution in single spinel MgAl2O4 and MgFe2O4 and double spinel MgAl2-aFeaO4. Agreeing with the available experimental data, the computational approach correctly predicts that the equilibrium degree of inversion of MgAl2O4 increases with temperature, whereas the degree of inversion of MgFe2O4 decreases with temperature. Additionally, it is predicted that the equilibrium occupancy of Mg cations at the tetrahedral and octahedral sites in MgAl2-aFeaO4 could be tuned as a function of chemical composition. Therefore, this study presents a reliable computational approach that can be extended to study the variation of cation distribution with processing temperature and chemical composition in a wide range of complex multi-cation spinel oxides with numerous applications.

18.
Clin Lab ; 69(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36649509

ABSTRACT

BACKGROUND: COVID-19 and malaria share some similar symptoms such as fever, difficulty in breathing, fatigue, and headaches of acute onset. With overlapping symptoms and travel history significant for COVID-19 and malaria, healthcare systems and professionals will face a great challenge in the case of COVID-19 and malaria co-infection. METHODS: Here we presented a patient with COVID-19 infection and refractory anemia of unknown reason. A diagnostic test for malaria was later performed. RESULTS: The patient was ultimately diagnosed with COVID-19 and plasmodium falciparum malaria co-infection. He recovered gradually after receiving anti-malaria treatment. CONCLUSIONS: The present case highlights the danger of focusing only on a diagnosis of COVID-19, reminding clinicians to be vigilant about the possibility of co-infections.


Subject(s)
Anemia , COVID-19 , Coinfection , Malaria, Falciparum , Malaria , Humans , Male , Anemia/diagnosis , Coinfection/diagnosis , COVID-19/complications , East Asian People , Malaria, Falciparum/complications , Malaria, Falciparum/diagnosis , Plasmodium falciparum , China
19.
BMC Surg ; 23(1): 78, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016346

ABSTRACT

BACKGROUND: The purpose of this retrospective study was to evaluate the causes and risk factors of an unplanned second craniotomy in patients with traumatic brain injury (TBI). METHODS: A total of 219 patients with TBI who underwent initial unilateral intracranial supratentorial surgery between January 2016 to November 2021 were included. We evaluated the causes of an unplanned second craniotomy in 40 patients, and analyzed the risk factors for a contralateral second craniotomy in 21 patients using a multivariate logistic regression analysis. RESULTS: The most common cause for an unplanned second craniotomy was delayed or enlarged hematoma in the non-operation area (26/40; 65%), followed by recurrent hematoma in the operation area (8/40; 20%), ipsilateral massive cerebral infarction (3/40; 7.5%), diffuse brain swelling (2/40; 5%) and enlarged cerebral contusion (1/40; 2.5%). Multivariate logistic regression analysis showed that a contralateral craniocerebral injury feature (CCIF) (OR = 13.175), defined on preoperative computerized tomography scanning, was independent risk factor for a contralateral second craniotomy. CONCLUSIONS: An unplanned second craniotomy in patients with TBI was mainly related to delayed or enlarged hematoma. An increased risk of a contralateral second craniotomy occurs in patients with CCIF.


Subject(s)
Brain Injuries, Traumatic , Craniotomy , Humans , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/surgery , Craniotomy/adverse effects , Craniotomy/methods , Hematoma/etiology , Retrospective Studies , Risk Factors , Treatment Outcome
20.
Sensors (Basel) ; 23(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36904746

ABSTRACT

In emergency communication scenarios, unmanned aerial vehicles (UAVs) can be used as an air relay to provide higher-quality communication for indoor users. When bandwidth resources are scarce, the use of free space optics (FSO) technology will greatly improve the resource utilization of the communication system. Therefore, we introduce FSO technology into the backhaul link of outdoor communication, and use free space optical/radio frequency (FSO/RF) technology to realize the access link of outdoor indoor communication. The deployment location of UAVs will affect not only the through wall loss of outdoor-indoor communication but also the quality of FSO communication, and, therefore, it needs to be optimized. In addition, by optimizing the power and bandwidth allocation of UAVs, we realize the efficient utilization of resources and improve the system throughput on the premise of considering information causality constraints and user fairness. The simulation results show that, by optimizing the location and power bandwidth allocation of UAVs, the system throughput is maximized, and the throughput between each user is fair.

SELECTION OF CITATIONS
SEARCH DETAIL