Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.967
Filter
Add more filters

Publication year range
1.
Cell ; 187(9): 2194-2208.e22, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38552625

ABSTRACT

Effective treatments for complex central nervous system (CNS) disorders require drugs with polypharmacology and multifunctionality, yet designing such drugs remains a challenge. Here, we present a flexible scaffold-based cheminformatics approach (FSCA) for the rational design of polypharmacological drugs. FSCA involves fitting a flexible scaffold to different receptors using different binding poses, as exemplified by IHCH-7179, which adopted a "bending-down" binding pose at 5-HT2AR to act as an antagonist and a "stretching-up" binding pose at 5-HT1AR to function as an agonist. IHCH-7179 demonstrated promising results in alleviating cognitive deficits and psychoactive symptoms in mice by blocking 5-HT2AR for psychoactive symptoms and activating 5-HT1AR to alleviate cognitive deficits. By analyzing aminergic receptor structures, we identified two featured motifs, the "agonist filter" and "conformation shaper," which determine ligand binding pose and predict activity at aminergic receptors. With these motifs, FSCA can be applied to the design of polypharmacological ligands at other receptors.


Subject(s)
Cheminformatics , Drug Design , Polypharmacology , Animals , Mice , Humans , Cheminformatics/methods , Ligands , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/chemistry , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/chemistry , Male , Binding Sites
2.
Cell ; 187(21): 6035-6054.e27, 2024 Oct 17.
Article in English | MEDLINE | ID: mdl-39305902

ABSTRACT

m6A modification is best known for its critical role in controlling multiple post-transcriptional processes of the mRNAs. Here, we discovered elevated levels of m6A modification on centromeric RNA (cenRNA) in cancerous cells compared with non-cancerous cells. We then identified CENPA, an H3 variant, as an m6A reader of cenRNA. CENPA is localized at centromeres and is essential in preserving centromere integrity and function during mitosis. The m6A-modified cenRNA stabilizes centromeric localization of CENPA in cancer cells during the S phase of the cell cycle. Mutations of CENPA at the Leu61 and the Arg63 or removal of cenRNA m6A modification lead to loss of centromere-bound CENPA during S phase. This in turn results in compromised centromere integrity and abnormal chromosome separation and hinders cancer cell proliferation and tumor growth. Our findings unveil an m6A reading mechanism by CENPA that epigenetically governs centromere integrity in cancer cells, providing potential targets for cancer therapy.


Subject(s)
Centromere Protein A , Centromere , Centromere/metabolism , Humans , Centromere Protein A/metabolism , Centromere Protein A/genetics , Cell Line, Tumor , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Animals , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Mitosis , RNA/metabolism , Cell Proliferation , Epigenesis, Genetic , Chromosome Segregation , Chromosomal Proteins, Non-Histone/metabolism
3.
Cell ; 174(2): 481-496.e19, 2018 07 12.
Article in English | MEDLINE | ID: mdl-30007419

ABSTRACT

Dopamine (DA) is a central monoamine neurotransmitter involved in many physiological and pathological processes. A longstanding yet largely unmet goal is to measure DA changes reliably and specifically with high spatiotemporal precision, particularly in animals executing complex behaviors. Here, we report the development of genetically encoded GPCR-activation-based-DA (GRABDA) sensors that enable these measurements. In response to extracellular DA, GRABDA sensors exhibit large fluorescence increases (ΔF/F0 ∼90%) with subcellular resolution, subsecond kinetics, nanomolar to submicromolar affinities, and excellent molecular specificity. GRABDA sensors can resolve a single-electrical-stimulus-evoked DA release in mouse brain slices and detect endogenous DA release in living flies, fish, and mice. In freely behaving mice, GRABDA sensors readily report optogenetically elicited nigrostriatal DA release and depict dynamic mesoaccumbens DA signaling during Pavlovian conditioning or during sexual behaviors. Thus, GRABDA sensors enable spatiotemporally precise measurements of DA dynamics in a variety of model organisms while exhibiting complex behaviors.


Subject(s)
Dopamine/analysis , Drosophila/metabolism , Zebrafish/metabolism , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Behavior, Animal , Dopamine/metabolism , Female , Green Fluorescent Proteins/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Neurons/cytology , Neurons/metabolism , Optogenetics/methods , Receptors, G-Protein-Coupled/genetics , TRPV Cation Channels/genetics , Zebrafish Proteins/genetics
4.
Mol Cell ; 84(18): 3513-3529.e5, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39255795

ABSTRACT

Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.


Subject(s)
Acyltransferases , Adaptor Proteins, Signal Transducing , Immunity, Innate , Interferon Regulatory Factor-3 , Lipoylation , Palmitic Acid , Signal Transduction , Immunity, Innate/drug effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Humans , Animals , Palmitic Acid/pharmacology , Mice , HEK293 Cells , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Acyltransferases/genetics , Acyltransferases/immunology , Acyltransferases/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice, Inbred C57BL , Antiviral Agents/pharmacology , Neoplasm Proteins , Intracellular Signaling Peptides and Proteins
5.
Nature ; 627(8002): 196-203, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355805

ABSTRACT

It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1-3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion-a motor-powered process that generates DNA loops by pulling in chromatin5-leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments.


Subject(s)
Cell Movement , Cell Nucleus Shape , Neutrophils , Cell Cycle Checkpoints , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/metabolism , Chromatin/chemistry , Chromatin/metabolism , Chromosomes/chemistry , Chromosomes/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Nucleic Acid Conformation , Cell Differentiation/genetics , Inflammation/genetics , Enhancer Elements, Genetic , Cell Lineage/genetics
6.
Cell ; 153(1): 216-27, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23540699

ABSTRACT

Phospholipase Cε (PLCε) is a multifunctional enzyme implicated in cardiovascular, pancreatic, and inflammatory functions. Here we show that conditional deletion of PLCε in mouse cardiac myocytes protects from stress-induced pathological hypertrophy. PLCε small interfering RNA (siRNA) in ventricular myocytes decreases endothelin-1 (ET-1)-dependent elevation of nuclear calcium and activation of nuclear protein kinase D (PKD). PLCε scaffolded to muscle-specific A kinase-anchoring protein (mAKAP), along with PKCε and PKD, localizes these components at or near the nuclear envelope, and this complex is required for nuclear PKD activation. Phosphatidylinositol 4-phosphate (PI4P) is identified as a perinuclear substrate in the Golgi apparatus for mAKAP-scaffolded PLCε. We conclude that perinuclear PLCε, scaffolded to mAKAP in cardiac myocytes, responds to hypertrophic stimuli to generate diacylglycerol (DAG) from PI4P in the Golgi apparatus, in close proximity to the nuclear envelope, to regulate activation of nuclear PKD and hypertrophic signaling pathways.


Subject(s)
Cardiomegaly/metabolism , Cardiomegaly/pathology , Phosphatidylinositol Phosphates/metabolism , Phosphoinositide Phospholipase C/metabolism , Animals , Aorta/pathology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Golgi Apparatus/metabolism , Heart , Heart Ventricles/cytology , Male , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Nuclear Envelope/metabolism , Phosphoinositide Phospholipase C/genetics , Rats , Signal Transduction
7.
Nature ; 608(7923): 586-592, 2022 08.
Article in English | MEDLINE | ID: mdl-35859170

ABSTRACT

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Subject(s)
Basolateral Nuclear Complex , Learning , Neural Pathways , Neurotensin , Punishment , Reward , Basolateral Nuclear Complex/cytology , Basolateral Nuclear Complex/physiology , Calcium/metabolism , Cues , Neuronal Plasticity , Neurotensin/metabolism , Optogenetics , Thalamic Nuclei/cytology , Thalamic Nuclei/physiology
8.
Nat Methods ; 21(4): 680-691, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38036855

ABSTRACT

Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a large network of dopaminergic projections. To dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent G-protein-coupled receptor activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity and signal-to-noise ratio with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.


Subject(s)
Dopamine , Nucleus Accumbens , Mice , Animals , Nucleus Accumbens/physiology , Receptors, Dopamine , Brain , Receptors, G-Protein-Coupled
9.
Mol Cell ; 73(3): 458-473.e7, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30581148

ABSTRACT

Cholesterol is highly enriched at the plasma membrane (PM), and lipid transfer proteins may deliver cholesterol to the PM in a nonvesicular manner. Here, through a mini-screen, we identified the oxysterol binding protein (OSBP)-related protein 2 (ORP2) as a novel mediator of selective cholesterol delivery to the PM. Interestingly, ORP2-mediated enrichment of PM cholesterol was coupled with the removal of phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2) from the PM. ORP2 overexpression or deficiency impacted the levels of PM cholesterol and PI(4,5)P2, and ORP2 efficiently transferred both cholesterol and PI(4,5)P2in vitro. We determined the structure of ORP2 in complex with PI(4,5)P2 at 2.7 Å resolution. ORP2 formed a stable tetramer in the presence of PI(4,5)P2, and tetramerization was required for ORP2 to transfer PI(4,5)P2. Our results identify a novel pathway for cholesterol delivery to the PM and establish ORP2 as a key regulator of both cholesterol and PI(4,5)P2 of the PM.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Hepatocytes/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Receptors, Steroid/metabolism , Biological Transport , Cell Line, Tumor , HEK293 Cells , Humans , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary , Receptors, Steroid/chemistry , Receptors, Steroid/genetics , Structure-Activity Relationship
10.
Proc Natl Acad Sci U S A ; 121(14): e2313305121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527195

ABSTRACT

Aquatic locomotion is challenging for land-dwelling creatures because of the high degree of fluidity with which the water yields to loads. We surprisingly found that the Chinese rice grasshopper Oxya chinensis, known for its terrestrial acrobatics, could swiftly launch itself off the water's surface in around 25 ms and seamlessly transition into flight. Biological observations showed that jumping grasshoppers use their front and middle legs to tilt up bodies first and then lift off by propelling the water toward the lower back with hind legs at angular speeds of up to 18°/ms, whereas the swimming grasshoppers swing their front and middle legs in nearly horizontal planes and move hind legs less violently (~8°/ms). Force measurement and model analysis indicated that the weight support could be achieved by hydrostatics which are proportionate to the mass of the grasshoppers, while the propulsions for motion are derived from the controlled limb-water interactions (i.e., the hydrodynamics). After learning the structural and behavioral strategies of the grasshoppers, a robot was created and was capable of swimming and jumping on the water surface like the insects, further demonstrating the effectiveness of decoupling the challenges of aquatic locomotion by the combined use of the static and dynamic hydro forces. This work not only uncovered the combined mechanisms responsible for facilitating aquatic acrobatics in this species but also laid a foundation for developing bioinspired robots that can locomote across multiple media.


Subject(s)
Grasshoppers , Robotics , Animals , Locomotion , Insecta , Water , Biomechanical Phenomena
11.
Proc Natl Acad Sci U S A ; 121(28): e2314320121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38954540

ABSTRACT

Liquid-phase electron microscopy (LP-EM) imaging has revolutionized our understanding of nanosynthesis and assembly. However, the current closed geometry limits its application for open systems. The ubiquitous physical process of the coffee-ring phenomenon that underpins materials and engineering science remains elusive at the nanoscale due to the lack of experimental tools. We introduce a quartz nanopipette liquid cell with a tunable dimension that requires only standard microscopes. Depending on the imaging condition, the open geometry of the nanopipette allows the imaging of evaporation-induced pattern formation, but it can also function as an ordinary closed-geometry liquid cell where evaporation is negligible despite the nano opening. The nano coffee-ring phenomenon was observed by tracking individual nanoparticles in an evaporating nanodroplet created from a thin liquid film by interfacial instability. Nanoflows drive the assembly and disruption of a ring pattern with the absence of particle-particle correlations. With surface effects, nanoflows override thermal fluctuations at tens of nanometers, in which nanoparticles displayed a "drunken man trajectory" and performed work at a value much smaller than kBT.

12.
Proc Natl Acad Sci U S A ; 121(3): e2314797121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38194452

ABSTRACT

Assessing the ergodicity of graphene liquid cell electron microscope measurements, we report that loop states of circular DNA interconvert reversibly and that loop numbers follow the Boltzmann distribution expected for this molecule in bulk solution, provided that the electron dose is low (80-keV electron energy and electron dose rate 1-20 e- Å-2 s-1). This imaging technique appears to act as a "slow motion" camera that reveals equilibrated distributions by imaging the time average of a few molecules without the need to image a spatial ensemble.


Subject(s)
Electrons , Graphite , Microscopy, Electron , Motion , Nucleic Acid Conformation
13.
Proc Natl Acad Sci U S A ; 121(43): e2400920121, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39413134

ABSTRACT

B cell linker protein (BLNK) is crucial for orchestrating B cell receptor-associated spleen tyrosine kinase (Syk) signaling. However, the role of BLNK in Syk-coupled C-type lectin receptor (CLR) signaling in macrophages remains unclear. Here, we delineate that CLRs govern the Syk-mediated activation of BLNK, thereby impeding macrophage migration by disrupting podosome ring formation upon stimulation with fungal ß-glucans or α-mannans. Mechanistically, BLNK instigates its association with casitas B-lineage lymphoma (c-Cbl), competitively impeding the interaction between c-Cbl and Src-family kinase Fyn. This interference disrupts Fyn-mediated phosphorylation of c-Cbl and subsequent c-Cbl-associated F-actin assembly. Consequently, BLNK deficiency intensifies CLR-mediated recruitment of the c-Cbl/phosphatidylinositol 3-kinase complex to the F-actin cytoskeleton, thereby enhancing macrophage migration. Notably, mice with monocyte-specific BLNK deficiency exhibit heightened resistance to infection with Candida albicans, a prominent human fungal pathogen. This resistance is attributed to the increased infiltration of Ly6C+ macrophages into renal tissue. These findings unveil a previously unrecognized role of BLNK for the negative regulation of macrophage migration through inhibiting CLR-mediated podosome ring formation during fungal infections.


Subject(s)
Candida albicans , Candidiasis , Cell Movement , Immunity, Innate , Macrophages , Proto-Oncogene Proteins c-cbl , Syk Kinase , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Candida albicans/immunology , Candida albicans/physiology , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Podosomes/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins c-fyn/genetics , Signal Transduction , Syk Kinase/metabolism
14.
Proc Natl Acad Sci U S A ; 121(8): e2317796121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346201

ABSTRACT

Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm+) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm+ can induce the Zn2+ flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn2+ and direct the lateral diffusion, thus effectively avoiding the local Zn2+ accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm-2 over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g-1 and maintain a capacity of up to 12 mAh.

15.
Proc Natl Acad Sci U S A ; 120(21): e2301330120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186824

ABSTRACT

The hypothalamic suprachiasmatic nucleus (SCN) is the master mammalian circadian clock. Its cell-autonomous timing mechanism, a transcriptional/translational feedback loop (TTFL), drives daily peaks of neuronal electrical activity, which in turn control circadian behavior. Intercellular signals, mediated by neuropeptides, synchronize and amplify TTFL and electrical rhythms across the circuit. SCN neurons are GABAergic, but the role of GABA in circuit-level timekeeping is unclear. How can a GABAergic circuit sustain circadian cycles of electrical activity, when such increased neuronal firing should become inhibitory to the network? To explore this paradox, we show that SCN slices expressing the GABA sensor iGABASnFR demonstrate a circadian oscillation of extracellular GABA ([GABA]e) that, counterintuitively, runs in antiphase to neuronal activity, with a prolonged peak in circadian night and a pronounced trough in circadian day. Resolving this unexpected relationship, we found that [GABA]e is regulated by GABA transporters (GATs), with uptake peaking during circadian day, hence the daytime trough and nighttime peak. This uptake is mediated by the astrocytically expressed transporter GAT3 (Slc6a11), expression of which is circadian-regulated, being elevated in daytime. Clearance of [GABA]e in circadian day facilitates neuronal firing and is necessary for circadian release of the neuropeptide vasoactive intestinal peptide, a critical regulator of TTFL and circuit-level rhythmicity. Finally, we show that genetic complementation of the astrocytic TTFL alone, in otherwise clockless SCN, is sufficient to drive [GABA]e rhythms and control network timekeeping. Thus, astrocytic clocks maintain the SCN circadian clockwork by temporally controlling GABAergic inhibition of SCN neurons.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Circadian Rhythm/genetics , Circadian Clocks/genetics , GABA Plasma Membrane Transport Proteins/metabolism , Suprachiasmatic Nucleus/metabolism , gamma-Aminobutyric Acid/metabolism , Mammals/metabolism
16.
Proc Natl Acad Sci U S A ; 120(14): e2212387120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36996110

ABSTRACT

The purinergic signaling molecule adenosine (Ado) modulates many physiological and pathological functions in the brain. However, the exact source of extracellular Ado remains controversial. Here, utilizing a newly optimized genetically encoded GPCR-Activation-Based Ado fluorescent sensor (GRABAdo), we discovered that the neuronal activity-induced extracellular Ado elevation is due to direct Ado release from somatodendritic compartments of neurons, rather than from the axonal terminals, in the hippocampus. Pharmacological and genetic manipulations reveal that the Ado release depends on equilibrative nucleoside transporters but not the conventional vesicular release mechanisms. Compared with the fast-vesicular glutamate release, the Ado release is slow (~40 s) and requires calcium influx through L-type calcium channels. Thus, this study reveals an activity-dependent second-to-minute local Ado release from the somatodendritic compartments of neurons, potentially serving modulatory functions as a retrograde signal.


Subject(s)
Adenosine , Neurons , Adenosine/pharmacology , Nucleoside Transport Proteins/genetics , Signal Transduction/physiology , Guanine Nucleotide Exchange Factors/metabolism
17.
Proc Natl Acad Sci U S A ; 120(14): e2219043120, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36996112

ABSTRACT

Despite the various strategies for achieving metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) with different microenvironments for electrochemical carbon dioxide reduction reaction (CO2RR), the synthesis-structure-performance correlation remains elusive due to the lack of well-controlled synthetic approaches. Here, we employed Ni nanoparticles as starting materials for the direct synthesis of nickel (Ni) SACs in one spot through harvesting the interaction between metallic Ni and N atoms in the precursor during the chemical vapor deposition growth of hierarchical N-doped graphene fibers. By combining with first-principle calculations, we found that the Ni-N configuration is closely correlated to the N contents in the precursor, in which the acetonitrile with a high N/C ratio favors the formation of Ni-N3, while the pyridine with a low N/C ratio is more likely to promote the evolution of Ni-N2. Moreover, we revealed that the presence of N favors the formation of H-terminated edge of sp2 carbon and consequently leads to the formation of graphene fibers consisting of vertically stacked graphene flakes, instead of the traditional growth of carbon nanotubes on Ni nanoparticles. With a high capability in balancing the *COOH formation and *CO desorption, the as-prepared hierarchical N-doped graphene nanofibers with Ni-N3 sites exhibit a superior CO2RR performance compared to that with Ni-N2 and Ni-N4 ones.

18.
Plant J ; 118(6): 2068-2084, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531629

ABSTRACT

Bermudagrass (Cynodon dactylon) is a globally distributed, extensively used warm-season turf and forage grass with high tolerance to salinity and drought stress in alkaline environments. However, the origin of the species and genetic mechanisms for salinity tolerance in the species are basically unknown. Accordingly, we set out to study evolution divergence events in the Cynodon genome and to identify genes for salinity tolerance. We developed a 604.0 Mb chromosome-level polyploid genome sequence for bermudagrass 'A12359' (n = 18). The C. dactylon genome comprises 2 complete sets of homoeologous chromosomes, each with approximately 30 000 genes, and most genes are conserved as syntenic pairs. Phylogenetic study showed that the initial Cynodon species diverged from Oropetium thomaeum approximately 19.7-25.4 million years ago (Mya), the A and B subgenomes of C. dactylon diverged approximately 6.3-9.1 Mya, and the bermudagrass polyploidization event occurred 1.5 Mya on the African continent. Moreover, we identified 82 candidate genes associated with seven agronomic traits using a genome-wide association study, and three single-nucleotide polymorphisms were strongly associated with three salt resistance genes: RAP2-2, CNG channels, and F14D7.1. These genes may be associated with enhanced bermudagrass salt tolerance. These bermudagrass genomic resources, when integrated, may provide fundamental insights into evolution of diploid and tetraploid genomes and enhance the efficacy of comparative genomics in studying salt tolerance in Cynodon.


Subject(s)
Cynodon , Genome, Plant , Phylogeny , Salt Tolerance , Whole Genome Sequencing , Cynodon/genetics , Salt Tolerance/genetics , Genome, Plant/genetics , Tetraploidy , Polyploidy , Chromosomes, Plant/genetics , Genes, Plant/genetics
19.
Mol Biol Evol ; 41(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38318973

ABSTRACT

Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.


Subject(s)
Genetic Drift , Passeriformes , Animals , China , Phylogeography , Forests , Passeriformes/genetics , Phylogeny , Genetic Variation
20.
Plant Physiol ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325737

ABSTRACT

Indian jujube (Ziziphus mauritiana) holds a prominent position in the global fruit and pharmaceutical markets. Here, we report the assemblies of haplotype-resolved, telomere-to-telomere genomes of autotetraploid wild and cultivated Indian jujube plants using a two-stage assembly strategy. The generation of these genomes permitted in-depth investigations into the divergence and evolutionary history of this important fruit crop. Using a graph-based pan-genome constructed from eight monoploid genomes, we identified structural variation (SV)-FST hotspots and SV hotspots. Gap-free genomes provide a means to obtain a global view of centromere structures. We identified presence-absence variation-related genes in four monoploid genomes (cI, cIII, wI, and wIII) and resequencing populations. We also present the population structure and domestication trajectory of the Indian jujube based on the resequencing of 73 wild and cultivated accessions. Metabolomic and transcriptomic analyses of mature fruits of wild and cultivated accessions unveiled the genetic basis underlying loss of fruit astringency during domestication of Indian jujube. This study reveals mechanisms underlying the divergence, evolution, and domestication of the autotetraploid Indian jujube and provides rich and reliable genetic resources for future research.

SELECTION OF CITATIONS
SEARCH DETAIL