Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.564
Filter
Add more filters

Publication year range
1.
Cell ; 187(14): 3690-3711.e19, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38838669

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.


Subject(s)
Clonal Hematopoiesis , DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Periodontitis , Animals , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Mice , Clonal Hematopoiesis/genetics , Humans , Periodontitis/genetics , Periodontitis/pathology , Mutation , Male , Female , Inflammation/genetics , Inflammation/pathology , Osteoclasts/metabolism , Mice, Inbred C57BL , Adult , Interleukin-17/metabolism , Interleukin-17/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Hematopoiesis/genetics , Osteogenesis/genetics , Hematopoietic Stem Cells/metabolism , Bone Resorption/genetics , Bone Resorption/pathology , Middle Aged
2.
Cell ; 186(5): 1066-1085.e36, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868209

ABSTRACT

A generalizable strategy with programmable site specificity for in situ profiling of histone modifications on unperturbed chromatin remains highly desirable but challenging. We herein developed a single-site-resolved multi-omics (SiTomics) strategy for systematic mapping of dynamic modifications and subsequent profiling of chromatinized proteome and genome defined by specific chromatin acylations in living cells. By leveraging the genetic code expansion strategy, our SiTomics toolkit revealed distinct crotonylation (e.g., H3K56cr) and ß-hydroxybutyrylation (e.g., H3K56bhb) upon short chain fatty acids stimulation and established linkages for chromatin acylation mark-defined proteome, genome, and functions. This led to the identification of GLYR1 as a distinct interacting protein in modulating H3K56cr's gene body localization as well as the discovery of an elevated super-enhancer repertoire underlying bhb-mediated chromatin modulations. SiTomics offers a platform technology for elucidating the "metabolites-modification-regulation" axis, which is widely applicable for multi-omics profiling and functional dissection of modifications beyond acylations and proteins beyond histones.


Subject(s)
Chromatin , Proteome , Acylation , Chromosome Mapping , Histones , Cell Survival
3.
Cell ; 185(10): 1709-1727.e18, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35483374

ABSTRACT

Bone marrow (BM)-mediated trained innate immunity (TII) is a state of heightened immune responsiveness of hematopoietic stem and progenitor cells (HSPC) and their myeloid progeny. We show here that maladaptive BM-mediated TII underlies inflammatory comorbidities, as exemplified by the periodontitis-arthritis axis. Experimental-periodontitis-related systemic inflammation in mice induced epigenetic rewiring of HSPC and led to sustained enhancement of production of myeloid cells with increased inflammatory preparedness. The periodontitis-induced trained phenotype was transmissible by BM transplantation to naive recipients, which exhibited increased inflammatory responsiveness and disease severity when subjected to inflammatory arthritis. IL-1 signaling in HSPC was essential for their maladaptive training by periodontitis. Therefore, maladaptive innate immune training of myelopoiesis underlies inflammatory comorbidities and may be pharmacologically targeted to treat them via a holistic approach.


Subject(s)
Arthritis , Periodontitis , Animals , Hematopoietic Stem Cells , Immunity, Innate , Mice , Myelopoiesis
4.
Cell ; 182(3): 713-721.e9, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32778225

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health. The development of a vaccine is urgently needed for the prevention and control of COVID-19. Here, we report the pilot-scale production of an inactivated SARS-CoV-2 vaccine candidate (BBIBP-CorV) that induces high levels of neutralizing antibodies titers in mice, rats, guinea pigs, rabbits, and nonhuman primates (cynomolgus monkeys and rhesus macaques) to provide protection against SARS-CoV-2. Two-dose immunizations using 2 µg/dose of BBIBP-CorV provided highly efficient protection against SARS-CoV-2 intratracheal challenge in rhesus macaques, without detectable antibody-dependent enhancement of infection. In addition, BBIBP-CorV exhibits efficient productivity and good genetic stability for vaccine manufacture. These results support the further evaluation of BBIBP-CorV in a clinical trial.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Drug Evaluation, Preclinical/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Vaccines, Inactivated/therapeutic use , Viral Vaccines/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/virology , Disease Models, Animal , Female , Guinea Pigs , Immunogenicity, Vaccine , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Phylogeny , Pneumonia, Viral/virology , Rabbits , Rats , Rats, Wistar , SARS-CoV-2 , Vaccines, Inactivated/adverse effects , Vero Cells , Viral Vaccines/adverse effects
5.
Nat Immunol ; 20(11): 1530-1541, 2019 11.
Article in English | MEDLINE | ID: mdl-31591574

ABSTRACT

The activation of T cells by the T cell antigen receptor (TCR) results in the formation of signaling protein complexes (signalosomes), the composition of which has not been analyzed at a systems level. Here, we isolated primary CD4+ T cells from 15 gene-targeted mice, each expressing one tagged form of a canonical protein of the TCR-signaling pathway. Using affinity purification coupled with mass spectrometry, we analyzed the composition and dynamics of the signalosomes assembling around each of the tagged proteins over 600 s of TCR engagement. We showed that the TCR signal-transduction network comprises at least 277 unique proteins involved in 366 high-confidence interactions, and that TCR signals diversify extensively at the level of the plasma membrane. Integrating the cellular abundance of the interacting proteins and their interaction stoichiometry provided a quantitative and contextual view of each documented interaction, permitting anticipation of whether ablation of a single interacting protein can impinge on the whole TCR signal-transduction network.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Protein Interaction Maps/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Chromatography, Affinity/methods , Mass Spectrometry/methods , Mice , Mice, Transgenic , Primary Cell Culture , Protein Interaction Mapping/methods , Receptors, Antigen, T-Cell/immunology , Signal Transduction/genetics
6.
Mol Cell ; 83(8): 1280-1297.e11, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36924766

ABSTRACT

RNA polymerase II (RNA Pol II) has been recognized as a passively regulated multi-subunit holoenzyme. However, the extent to which RNA Pol II subunits might be important beyond the RNA Pol II complex remains unclear. Here, fractions containing disassociated RPB3 (dRPB3) were identified by size exclusion chromatography in various cells. Through a unique strategy, i.e., "specific degradation of disassociated subunits (SDDS)," we demonstrated that dRPB3 functions as a regulatory component of RNA Pol II to enable the preferential control of 3' end processing of ribosomal protein genes directly through its N-terminal domain. Machine learning analysis of large-scale genomic features revealed that the little elongation complex (LEC) helps to specialize the functions of dRPB3. Mechanistically, dRPB3 facilitates CBC-PCF11 axis activity to increase the efficiency of 3' end processing. Furthermore, RPB3 is dynamically regulated during development and diseases. These findings suggest that RNA Pol II gains specific regulatory functions by trapping disassociated subunits in mammalian cells.


Subject(s)
RNA Polymerase II , Transcription, Genetic , Animals , RNA Polymerase II/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Protein Subunits/genetics , Mammals/metabolism
7.
Nat Immunol ; 19(11): 1224-1235, 2018 11.
Article in English | MEDLINE | ID: mdl-30250187

ABSTRACT

Dendritic cells (DCs) play an integral role in regulating mucosal immunity and homeostasis, but the signaling network mediating this function of DCs is poorly defined. We identified the noncanonical NF-κB-inducing kinase (NIK) as a crucial mediator of mucosal DC function. DC-specific NIK deletion impaired intestinal immunoglobulin A (IgA) secretion and microbiota homeostasis, rendering mice sensitive to an intestinal pathogen, Citrobacter rodentium. DC-specific NIK was required for expression of the IgA transporter polymeric immunoglobulin receptor (pIgR) in intestinal epithelial cells, which in turn relied on the cytokine IL-17 produced by TH17 cells and innate lymphoid cells (ILCs). NIK-activated noncanonical NF-κB induced expression of IL-23 in DCs, contributing to the maintenance of TH17 cells and type 3 ILCs. Consistent with the dual functions of IL-23 and IL-17 in mucosal immunity and inflammation, NIK deficiency also ameliorated colitis induction. Thus, our data suggest a pivotal role for the NIK signaling axis in regulating DC functions in intestinal immunity and homeostasis.


Subject(s)
Dendritic Cells/immunology , Homeostasis/immunology , Immunity, Mucosal/immunology , Intestinal Mucosa/immunology , Protein Serine-Threonine Kinases/immunology , Animals , Colitis/immunology , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/immunology , NF-kappaB-Inducing Kinase
8.
Nature ; 626(7998): 411-418, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297130

ABSTRACT

Ferroptosis, a form of regulated cell death that is driven by iron-dependent phospholipid peroxidation, has been implicated in multiple diseases, including cancer1-3, degenerative disorders4 and organ ischaemia-reperfusion injury (IRI)5,6. Here, using genome-wide CRISPR-Cas9 screening, we identified that the enzymes involved in distal cholesterol biosynthesis have pivotal yet opposing roles in regulating ferroptosis through dictating the level of 7-dehydrocholesterol (7-DHC)-an intermediate metabolite of distal cholesterol biosynthesis that is synthesized by sterol C5-desaturase (SC5D) and metabolized by 7-DHC reductase (DHCR7) for cholesterol synthesis. We found that the pathway components, including MSMO1, CYP51A1, EBP and SC5D, function as potential suppressors of ferroptosis, whereas DHCR7 functions as a pro-ferroptotic gene. Mechanistically, 7-DHC dictates ferroptosis surveillance by using the conjugated diene to exert its anti-phospholipid autoxidation function and shields plasma and mitochondria membranes from phospholipid autoxidation. Importantly, blocking the biosynthesis of endogenous 7-DHC by pharmacological targeting of EBP induces ferroptosis and inhibits tumour growth, whereas increasing the 7-DHC level by inhibiting DHCR7 effectively promotes cancer metastasis and attenuates the progression of kidney IRI, supporting a critical function of this axis in vivo. In conclusion, our data reveal a role of 7-DHC as a natural anti-ferroptotic metabolite and suggest that pharmacological manipulation of 7-DHC levels is a promising therapeutic strategy for cancer and IRI.


Subject(s)
Dehydrocholesterols , Ferroptosis , Humans , Cell Membrane/metabolism , Cholesterol/biosynthesis , Cholesterol/metabolism , CRISPR-Cas Systems/genetics , Dehydrocholesterols/metabolism , Genome, Human , Kidney Diseases/metabolism , Mitochondrial Membranes/metabolism , Neoplasm Metastasis , Neoplasms/metabolism , Neoplasms/pathology , Phospholipids/metabolism , Reperfusion Injury/metabolism
9.
Mol Cell ; 82(20): 3943-3959.e11, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36113479

ABSTRACT

RNA polymerase II (RNA Pol II) subunits are thought to be involved in various transcription-associated processes, but it is unclear whether they play different regulatory roles in modulating gene expression. Here, we performed nascent and mature transcript sequencing after the acute degradation of 12 mammalian RNA Pol II subunits and profiled their genomic binding sites and protein interactomes to dissect their molecular functions. We found that RNA Pol II subunits contribute differently to RNA Pol II cellular localization and transcription processes and preferentially regulate RNA processing (such as RNA splicing and 3' end maturation). Genes sensitive to the depletion of different RNA Pol II subunits tend to be involved in diverse biological functions and show different RNA half-lives. Sequences, associated protein factors, and RNA structures are correlated with RNA Pol II subunit-mediated differential gene expression. These findings collectively suggest that the heterogeneity of RNA Pol II and different genes appear to depend on some of the subunits.


Subject(s)
RNA Polymerase II , RNA Splicing , Animals , RNA Polymerase II/metabolism , Proteolysis , RNA Processing, Post-Transcriptional , RNA/metabolism , Transcription, Genetic , Mammals/metabolism
10.
Immunity ; 52(1): 109-122.e6, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31882361

ABSTRACT

Recent work suggests that cholesterol metabolism impacts innate immune responses against infection. However, the key enzymes or the natural products and mechanisms involved are not well elucidated. Here, we have shown that upon DNA and RNA viral infection, macrophages reduced 7-dehydrocholesterol reductase (DHCR7) expression. DHCR7 deficiency or treatment with the natural product 7-dehydrocholesterol (7-DHC) could specifically promote phosphorylation of IRF3 (not TBK1) and enhance type I interferon (IFN-I) production in macrophages. We further elucidated that viral infection or 7-DHC treatment enhanced AKT3 expression and activation. AKT3 directly bound and phosphorylated IRF3 at Ser385, together with TBK1-induced phosphorylation of IRF3 Ser386, to achieve IRF3 dimerization. Deletion of DHCR7 and the DHCR7 inhibitors including AY9944 and the chemotherapy drug tamoxifen promoted clearance of Zika virus and multiple viruses in vitro or in vivo. Taken together, we propose that the DHCR7 inhibitors and 7-DHC are potential therapeutics against emerging or highly pathogenic viruses.


Subject(s)
Dehydrocholesterols/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Type I/biosynthesis , Macrophages/immunology , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Vesicular Stomatitis/immunology , A549 Cells , Animals , Cell Line , Cholesterol/metabolism , Enzyme Activation/immunology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , RAW 264.7 Cells , RNA Interference , RNA, Small Interfering/genetics , Vesicular stomatitis Indiana virus/immunology
11.
Mol Cell ; 78(1): 31-41.e5, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32126207

ABSTRACT

Cellular iron homeostasis is dominated by FBXL5-mediated degradation of iron regulatory protein 2 (IRP2), which is dependent on both iron and oxygen. However, how the physical interaction between FBXL5 and IRP2 is regulated remains elusive. Here, we show that the C-terminal substrate-binding domain of FBXL5 harbors a [2Fe2S] cluster in the oxidized state. A cryoelectron microscopy (cryo-EM) structure of the IRP2-FBXL5-SKP1 complex reveals that the cluster organizes the FBXL5 C-terminal loop responsible for recruiting IRP2. Interestingly, IRP2 binding to FBXL5 hinges on the oxidized state of the [2Fe2S] cluster maintained by ambient oxygen, which could explain hypoxia-induced IRP2 stabilization. Steric incompatibility also allows FBXL5 to physically dislodge IRP2 from iron-responsive element RNA to facilitate its turnover. Taken together, our studies have identified an iron-sulfur cluster within FBXL5, which promotes IRP2 polyubiquitination and degradation in response to both iron and oxygen concentrations.


Subject(s)
F-Box Proteins/chemistry , Iron Regulatory Protein 2/chemistry , Oxygen/chemistry , Ubiquitin-Protein Ligase Complexes/chemistry , Cell Line , F-Box Proteins/metabolism , Homeostasis , Humans , Iron/metabolism , Iron Regulatory Protein 2/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Models, Molecular , Protein Binding , Protein Stability , S-Phase Kinase-Associated Proteins/chemistry , Ubiquitin-Protein Ligase Complexes/metabolism
12.
Cell ; 150(3): 533-48, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22863007

ABSTRACT

Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina, and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as "ciliopathies." However, disease mechanisms remain poorly understood. Here, we identify by whole-exome resequencing, mutations of MRE11, ZNF423, and CEP164 as causing NPHP-RC. All three genes function within the DNA damage response (DDR) pathway. We demonstrate that, upon induced DNA damage, the NPHP-RC proteins ZNF423, CEP164, and NPHP10 colocalize to nuclear foci positive for TIP60, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. Our findings link degenerative diseases of the kidney and retina, disorders of increasing prevalence, to mechanisms of DDR.


Subject(s)
DNA Damage , DNA-Binding Proteins/metabolism , Exome , Kidney Diseases, Cystic/genetics , Microtubule Proteins/metabolism , Animals , Cilia/metabolism , Gene Knockdown Techniques , Genes, Recessive , Humans , MRE11 Homologue Protein , Mice , Proteins , Signal Transduction , Zebrafish/embryology , Zebrafish/metabolism
13.
Nature ; 595(7869): 730-734, 2021 07.
Article in English | MEDLINE | ID: mdl-34290403

ABSTRACT

Hepatocellular carcinoma (HCC)-the most common form of liver cancer-is an aggressive malignancy with few effective treatment options1. Lenvatinib is a small-molecule inhibitor of multiple receptor tyrosine kinases that is used for the treatment of patients with advanced HCC, but this drug has only limited clinical benefit2. Here, using a kinome-centred CRISPR-Cas9 genetic screen, we show that inhibition of epidermal growth factor receptor (EGFR) is synthetic lethal with lenvatinib in liver cancer. The combination of the EGFR inhibitor gefitinib and lenvatinib displays potent anti-proliferative effects in vitro in liver cancer cell lines that express EGFR and in vivo in xenografted liver cancer cell lines, immunocompetent mouse models and patient-derived HCC tumours in mice. Mechanistically, inhibition of fibroblast growth factor receptor (FGFR)  by lenvatinib treatment leads to feedback activation of the EGFR-PAK2-ERK5 signalling axis, which is blocked by EGFR inhibition. Treatment of 12 patients with advanced HCC who were unresponsive to lenvatinib treatment with the combination of lenvatinib plus gefitinib (trial identifier NCT04642547) resulted in meaningful clinical responses. The combination therapy identified here may represent a promising strategy for the approximately 50% of patients with advanced HCC who have high levels of EGFR.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Phenylurea Compounds/pharmacology , Quinolines/pharmacology , Animals , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Gefitinib/pharmacology , Humans , Liver Neoplasms/drug therapy , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Receptors, Fibroblast Growth Factor , Signal Transduction , Xenograft Model Antitumor Assays
14.
Nature ; 589(7841): 270-275, 2021 01.
Article in English | MEDLINE | ID: mdl-33116299

ABSTRACT

There is an urgent need to create novel models using human disease-relevant cells to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology and to facilitate drug screening. Here, as SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs). The hPSC-LOs (particularly alveolar type-II-like cells) are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines following SARS-CoV-2 infection, similar to what is seen in patients with COVID-19. Nearly 25% of these patients also have gastrointestinal manifestations, which are associated with worse COVID-19 outcomes1. We therefore also generated complementary hPSC-derived colonic organoids (hPSC-COs) to explore the response of colonic cells to SARS-CoV-2 infection. We found that multiple colonic cell types, especially enterocytes, express ACE2 and are permissive to SARS-CoV-2 infection. Using hPSC-LOs, we performed a high-throughput screen of drugs approved by the FDA (US Food and Drug Administration) and identified entry inhibitors of SARS-CoV-2, including imatinib, mycophenolic acid and quinacrine dihydrochloride. Treatment at physiologically relevant levels of these drugs significantly inhibited SARS-CoV-2 infection of both hPSC-LOs and hPSC-COs. Together, these data demonstrate that hPSC-LOs and hPSC-COs infected by SARS-CoV-2 can serve as disease models to study SARS-CoV-2 infection and provide a valuable resource for drug screening to identify candidate COVID-19 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/virology , Colon/cytology , Drug Evaluation, Preclinical/methods , Lung/cytology , Organoids/drug effects , Organoids/virology , SARS-CoV-2/drug effects , Animals , COVID-19/prevention & control , Colon/drug effects , Colon/virology , Drug Approval , Female , Heterografts/drug effects , Humans , In Vitro Techniques , Lung/drug effects , Lung/virology , Male , Mice , Organoids/cytology , Organoids/metabolism , SARS-CoV-2/genetics , United States , United States Food and Drug Administration , Viral Tropism , Virus Internalization/drug effects , COVID-19 Drug Treatment
15.
Proc Natl Acad Sci U S A ; 121(30): e2407146121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39018196

ABSTRACT

Surface reconstruction determines the fate of catalytic sites on the near-surface during the oxygen evolution reaction. However, deciphering the conversion mechanism of various intermediate-states during surface reconstruction remains a challenge. Herein, we employed an optical imaging technique to draw the landscape of dynamic surface reconstruction on individual Co3O4 nanoparticles. By regulating the surface states of Co3O4 nanoparticles, we explored dynamic growth of the CoOx(OH)y sublayer on single Co3O4 nanoparticles and directly identified the conversion between two dynamics. Rich oxygen vacancies induced more active sites on the surface and prolonged surface reconstruction, which enhanced electrochemical redox and oxygen evolution. These results were further verified by in situ electrochemical extinction spectroscopy of single Co3O4 nanoparticles. We elucidate the heterogeneous evolution of surface reconstruction on individual Co3O4 nanoparticles and present a unique perspective to understand the fate of catalytic species on the nanosurface, which is of enduring significance for investigating the heterogeneity of multielectron-transfer events.

16.
Proc Natl Acad Sci U S A ; 121(20): e2318384121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713627

ABSTRACT

The reaction kinetics of photocatalytic CO2 reduction is highly dependent on the transfer rate of electrons and protons to the CO2 molecules adsorbed on catalytic centers. Studies on uncovering the proton effect in catalysts on photocatalytic activity of CO2 reduction are significant but rarely reported. In this paper, we, from the molecular level, revealed that the photocatalytic activity of CO2 reduction is closely related to the proton availability in catalysts. Specifically, four dinuclear Co(II) complexes based on Robson-type ligands with different number of carboxylic groups (-nCOOH; n = 0, 2, 4, 6) were designed and synthesized. All these complexes show photocatalytic activity for CO2 reduction to CO in a water-containing system upon visible-light illumination. Interestingly, the CO yields increase positively with the increase of the carboxylic-group number in dinuclear Co(II) complexes. The one containing -6COOH shows the best photocatalytic activity for CO2 reduction to CO, with the TON value reaching as high as 10,294. The value is 1.8, 3.4, and 7.8 times higher than those containing -4COOH, -2COOH, and -0COOH, respectively. The high TON value also makes the dinuclear Co(II) complex with -6COOH outstanding among reported homogeneous molecular catalysts for photocatalytic CO2 reduction. Control experiments and density functional theory calculation indicated that more carboxylic groups in the catalyst endow the catalyst with more proton relays, thus accelerating the proton transfer and boosting the photocatalytic CO2 reduction. This study, at a molecular level, elucidates that more carboxylic groups in catalysts are beneficial for boosting the reaction kinetics of photocatalytic CO2 reduction.

17.
EMBO J ; 41(15): e110218, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35775648

ABSTRACT

Carnitine metabolism is thought to be negatively correlated with the progression of hepatocellular carcinoma (HCC) and the specific molecular mechanism is yet to be fully elucidated. Here, we report that little characterized cysteine-rich protein 1 (CRIP1) is upregulated in HCC and associated with poor prognosis. Moreover, CRIP1 promoted HCC cancer stem-like properties by downregulating carnitine energy metabolism. Mechanistically, CRIP1 interacted with BBOX1 and the E3 ligase STUB1, promoting BBOX1 ubiquitination and proteasomal degradation, and leading to the downregulation of carnitine. BBOX1 ubiquitination at lysine 240 is required for CRIP1-mediated control of carnitine metabolism and cancer stem-like properties. Further, our data showed that acetylcarnitine downregulation in CRIP1-overexpressing cells decreased beta-catenin acetylation and promoted nuclear accumulation of beta-catenin, thus facilitating cancer stem-like properties. Clinically, patients with higher CRIP1 protein levels had lower BBOX1 levels but higher nuclear beta-catenin levels in HCC tissues. Together, our findings identify CRIP1 as novel upstream control factor for carnitine metabolism and cancer stem-like properties, suggesting targeting of the CRIP1/BBOX1/ß-catenin axis as a promising strategy for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Carrier Proteins/metabolism , LIM Domain Proteins/metabolism , Liver Neoplasms , gamma-Butyrobetaine Dioxygenase/metabolism , Carcinoma, Hepatocellular/metabolism , Carnitine , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , beta Catenin/genetics , beta Catenin/metabolism
18.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38600663

ABSTRACT

Protein sequence design can provide valuable insights into biopharmaceuticals and disease treatments. Currently, most protein sequence design methods based on deep learning focus on network architecture optimization, while ignoring protein-specific physicochemical features. Inspired by the successful application of structure templates and pre-trained models in the protein structure prediction, we explored whether the representation of structural sequence profile can be used for protein sequence design. In this work, we propose SPDesign, a method for protein sequence design based on structural sequence profile using ultrafast shape recognition. Given an input backbone structure, SPDesign utilizes ultrafast shape recognition vectors to accelerate the search for similar protein structures in our in-house PAcluster80 structure database and then extracts the sequence profile through structure alignment. Combined with structural pre-trained knowledge and geometric features, they are further fed into an enhanced graph neural network for sequence prediction. The results show that SPDesign significantly outperforms the state-of-the-art methods, such as ProteinMPNN, Pifold and LM-Design, leading to 21.89%, 15.54% and 11.4% accuracy gains in sequence recovery rate on CATH 4.2 benchmark, respectively. Encouraging results also have been achieved on orphan and de novo (designed) benchmarks with few homologous sequences. Furthermore, analysis conducted by the PDBench tool suggests that SPDesign performs well in subdivided structures. More interestingly, we found that SPDesign can well reconstruct the sequences of some proteins that have similar structures but different sequences. Finally, the structural modeling verification experiment indicates that the sequences designed by SPDesign can fold into the native structures more accurately.


Subject(s)
Neural Networks, Computer , Proteins , Sequence Alignment , Amino Acid Sequence , Proteins/chemistry , Sequence Analysis, Protein/methods
19.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-39007592

ABSTRACT

High-throughput DNA sequencing technologies decode tremendous amounts of microbial protein-coding gene sequences. However, accurately assigning protein functions to novel gene sequences remain a challenge. To this end, we developed FunGeneTyper, an extensible framework with two new deep learning models (i.e., FunTrans and FunRep), structured databases, and supporting resources for achieving highly accurate (Accuracy > 0.99, F1-score > 0.97) and fine-grained classification of antibiotic resistance genes (ARGs) and virulence factor genes. Using an experimentally confirmed dataset of ARGs comprising remote homologous sequences as the test set, our framework achieves by-far-the-best performance in the discovery of new ARGs from human gut (F1-score: 0.6948), wastewater (0.6072), and soil (0.5445) microbiomes, beating the state-of-the-art bioinformatics tools and sequence alignment-based (F1-score: 0.0556-0.5065) and domain-based (F1-score: 0.2630-0.5224) annotation approaches. Furthermore, our framework is implemented as a lightweight, privacy-preserving, and plug-and-play neural network module, facilitating its versatility and accessibility to developers and users worldwide. We anticipate widespread utilization of FunGeneTyper (https://github.com/emblab-westlake/FunGeneTyper) for precise classification of protein-coding gene functions and the discovery of numerous valuable enzymes. This advancement will have a significant impact on various fields, including microbiome research, biotechnology, metagenomics, and bioinformatics.


Subject(s)
Deep Learning , Humans , Computational Biology/methods , Microbiota/genetics , Bacterial Proteins/genetics , Drug Resistance, Microbial/genetics , Software , High-Throughput Nucleotide Sequencing/methods , Virulence Factors/genetics
20.
PLoS Pathog ; 20(5): e1012020, 2024 May.
Article in English | MEDLINE | ID: mdl-38743761

ABSTRACT

Scrub typhus is an acute febrile disease due to Orientia tsutsugamushi (Ot) infection and can be life-threatening with organ failure, hemorrhage, and fatality. Yet, little is known as to how the host reacts to Ot bacteria at early stages of infection; no reports have addressed the functional roles of type I versus type II interferon (IFN) responses in scrub typhus. In this study, we used comprehensive intradermal (i.d.) inoculation models and two clinically predominant Ot strains (Karp and Gilliam) to uncover early immune events. Karp infection induced sequential expression of Ifnb and Ifng in inflamed skin and draining lymph nodes at days 1 and 3 post-infection. Using double Ifnar1-/-Ifngr1-/- and Stat1-/- mice, we found that deficiency in IFN/STAT1 signaling resulted in lethal infection with profound pathology and skin eschar lesions, which resembled to human scrub typhus. Further analyses demonstrated that deficiency in IFN-γ, but not IFN-I, resulted in impaired NK cell and macrophage activation and uncontrolled bacterial growth and dissemination, leading to metabolic dysregulation, excessive inflammatory cell infiltration, and exacerbated tissue damage. NK cells were found to be the major cellular source of innate IFN-γ, contributing to the initial Ot control in the draining lymph nodes. In vitro studies with dendritic cell cultures revealed a superior antibacterial effect offered by IFN-γ than IFN-ß. Comparative in vivo studies with Karp- and Gilliam-infection revealed a crucial role of IFN-γ signaling in protection against progression of eschar lesions and Ot infection lethality. Additionally, our i.d. mouse models of lethal infection with eschar lesions are promising tools for immunological study and vaccine development for scrub typhus.


Subject(s)
Interferon-gamma , Mice, Knockout , Orientia tsutsugamushi , Scrub Typhus , Signal Transduction , Animals , Scrub Typhus/immunology , Scrub Typhus/microbiology , Orientia tsutsugamushi/immunology , Mice , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice, Inbred C57BL , Disease Models, Animal , Skin/microbiology , Skin/pathology , Skin/immunology , STAT1 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL