Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Cell Environ ; 47(8): 3030-3045, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38644762

ABSTRACT

The polar auxin transport is required for proper plant growth and development. D6 PROTEIN KINASE (D6PK) is required for the phosphorylation of PIN-FORMED (PIN) auxin efflux carriers to regulate auxin transport, while the regulation of D6PK stabilization is still poorly understood. Here, we found that Cytosolic ABA Receptor Kinases (CARKs) redundantly interact with D6PK, and the interactions are dependent on CARKs' kinase activities. Similarly, CARK3 also could interact with paralogs of D6PK, including D6PKL1, D6PKL2, and D6PKL3. The genetic analysis shows that D6PK acts the downstream of CARKs to regulate Arabidopsis growth, including hypocotyl, leaf area, vein formation, and the length of silique. Loss-of-function of CARK3 in overexpressing GFP-D6PK plants leads to reduce the level of D6PK protein, thereby rescues plant growth. In addition, the cell-free degradation assays indicate that D6PK is degraded through 26 S proteasome pathway, while the phosphorylation by CARK3 represses this process in cells. In summary, D6PK stabilization by the CARK family is required for auxin-mediated plant growth and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Phosphorylation , Indoleacetic Acids/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cytosol/metabolism , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Protein Kinases/metabolism , Protein Kinases/genetics , Proteasome Endopeptidase Complex/metabolism , Plants, Genetically Modified
2.
Blood ; 139(9): 1312-1317, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34019619

ABSTRACT

Recombinant factor VIII (FVIII) products represent a life-saving intervention for patients with hemophilia A. However, patients can develop antibodies against FVIII that prevent its function and directly increase morbidity and mortality. The development of anti-FVIII antibodies varies depending on the type of recombinant product used, with previous studies suggesting that second-generation baby hamster kidney (BHK)-derived FVIII products display greater immunogenicity than do third-generation Chinese hamster ovary (CHO)-derived FVIII products. However, the underlying mechanisms responsible for these differences remain incompletely understood. Our results demonstrate that BHK cells express higher levels of the nonhuman carbohydrate α1-3 galactose (αGal) than do CHO cells, suggesting that αGal incorporation onto FVIII may result in anti-αGal antibody recognition that could positively influence the development of anti-FVIII antibodies. Consistent with this, BHK-derived FVIII exhibits increased levels of αGal, which corresponds to increased reactivity with anti-αGal antibodies. Infusion of BHK-derived, but not CHO-derived, FVIII into αGal-knockout mice, which spontaneously generate anti-αGal antibodies, results in significantly higher anti-FVIII antibody formation, suggesting that the increased levels of αGal on BHK-derived FVIII can influence immunogenicity. These results suggest that posttranslational modifications of recombinant FVIII products with nonhuman carbohydrates may influence the development of anti-FVIII antibodies.


Subject(s)
Antibodies , Antibody Formation , Blood Coagulation Factor Inhibitors , Factor VIII , Polysaccharides , Protein Processing, Post-Translational/immunology , Animals , Antibodies/genetics , Antibodies/immunology , Blood Coagulation Factor Inhibitors/genetics , Blood Coagulation Factor Inhibitors/immunology , CHO Cells , Cricetinae , Cricetulus , Factor VIII/immunology , Factor VIII/pharmacology , Hemophilia A/genetics , Hemophilia A/immunology , Mice , Mice, Knockout , Polysaccharides/genetics , Polysaccharides/immunology , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology
3.
Int J Gynecol Pathol ; 43(3): 233-241, 2024 May 01.
Article in English | MEDLINE | ID: mdl-37733028

ABSTRACT

The studies on the molecular classification of endometrioid carcinoma (EC) with microcystic, elongated, and fragmented (MELF) pattern invasion are limited. In this study, 77 cases of ECs with MELF patterns in Chinese women were collected. The molecular classification of the fifth edition of the World Health Organization was used to classify the molecular subtypes using immunohistochemistry staining (mismatch repair [MMR]-immunohistochemistry: MSH2, MSH6, MLH1, and PMS2; p53) and Sanger sequencing targeted POLE . The results showed that the prevalence of the 4 molecular subtypes in EC with MELF pattern was 6.5% (5/77) for POLE mutation, 20.8% (16/77) for MMR deficient, 11.7% (9/77) for p53-mutant, and 61.0% (47/77) for no specific molecular profile. The clinicopathological characteristics of each subtype were compared. The p53-mutant and no specific molecular profile subgroups were associated with higher International Federation of Gynecology and Obstetrics stage and International Federation of Gynecology and Obstetrics grade, deeper myometrial invasion, lymphovascular space invasion, lymph node metastasis, and absence of tumor-infiltrating lymphocytes, whereas the POLE mutation and MMR deficient subgroups were associated with lower aggressive features and prominent tumor-infiltrating lymphocytes. Progression-free survival showed that the p53-mutant and no specific molecular profile subgroups had a poorer prognosis than the POLE mutation and MMR deficient subgroups. However, lymph node metastasis was an independent factor associated with a higher risk of disease recurrence in multivariate analysis. In conclusion, ECs with MELF patterns can be divided into 4 molecular subtypes with discrepancies in aggressive clinicopathological characteristics and tumor-infiltrating lymphocytes. Molecular classification has clinical significance in a morpho-molecular approach for ECs with MELF patterns.

4.
J Enzyme Inhib Med Chem ; 39(1): 2360063, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38873930

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease mainly caused by insulin resistance, which can lead to a series of complications such as cardiovascular disease, retinopathy, and its typical clinical symptom is hyperglycaemia. Glucosidase inhibitors, including Acarbose, Miglitol, are commonly used in the clinical treatment of hypoglycaemia. In addition, Protein tyrosine phosphatase 1B (PTP1B) is also an important promising target for the treatment of T2DM. Gynostemma pentaphyllum is a well-known oriental traditional medicinal herbal plant, and has many beneficial effects on glucose and lipid metabolism. In the present study, three new and nine known dammarane triterpenoids isolated from G. pentaphyllum, and their structures were elucidated by spectroscopic methods including HR-ESI-MS,1H and 13C NMR and X-ray crystallography. All these compounds were evaluated for inhibitory activity against α-glucosidase, α-amylase and PTP1B. The results suggested that compounds 7∼10 were potential antidiabetic agents with significantly inhibition activity against PTP1B in a dose-dependent manner.


Subject(s)
Dose-Response Relationship, Drug , Enzyme Inhibitors , Gynostemma , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Gynostemma/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Molecular Structure , Structure-Activity Relationship , alpha-Glucosidases/metabolism , Humans , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Models, Molecular , Crystallography, X-Ray , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification
5.
Curr Issues Mol Biol ; 45(4): 3375-3390, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37185745

ABSTRACT

As a drought-tolerant crop, Tartary buckwheat survives under adverse environmental conditions, including drought stress. Proanthocyanidins (PAs) and anthocyanins are flavonoid compounds, and they participate in the regulation of resistance to both biotic and abiotic stresses by triggering genes' biosynthesis of flavonoids. In this study, a basic leucine zipper, basic leucine zipper 85 (FtbZIP85), which was predominantly expressed in seeds, was isolated from Tartary buckwheat. Our study shows that the expressions of FtDFR, FtbZIP85 and FtSnRK2.6 were tissue-specific and located in both the nucleus and the cytosol. FtbZIP85 could positively regulate PA biosynthesis by binding to the ABA-responsive element (ABRE) in the promoter of dihydroflavonol 4-reductase (FtDFR), which is a key enzyme in the phenylpropanoid biosynthetic pathway. Additionally, FtbZIP85 was also involved in the regulation of PA biosynthesis via interactions with FtSnRK2.6 but not with FtSnRK2.2/2.3. This study reveals that FtbZIP85 is a positive regulator of PA biosynthesis in TB.

6.
BMC Med ; 21(1): 195, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37226166

ABSTRACT

BACKGROUND: Endometriosis is recognized as a complex gynecological disorder that can cause severe pain and infertility, affecting 6-10% of all reproductive-aged women. Endometriosis is a condition in which endometrial tissue, which normally lines the inside of the uterus, deposits in other tissues. The etiology and pathogenesis of endometriosis remain ambiguous. Despite debates, it is generally agreed that endometriosis is a chronic inflammatory disease, and patients with endometriosis appear to be in a hypercoagulable state. The coagulation system plays important roles in hemostasis and inflammatory responses. Therefore, the purpose of this study is to use publicly available GWAS summary statistics to examine the causal relationship between coagulation factors and the risk of endometriosis. METHODS: To investigate the causal relationship between coagulation factors and the risk of endometriosis, a two-sample Mendelian randomization (MR) analytic framework was used. A series of quality control procedures were followed in order to select eligible instrumental variables that were strongly associated with the exposures (vWF, ADAMTS13, aPTT, FVIII, FXI, FVII, FX, ETP, PAI-1, protein C, and plasmin). Two independent cohorts of European ancestry with endometriosis GWAS summary statistics were used: UK Biobank (4354 cases and 217,500 controls) and FinnGen (8288 cases and 68,969 controls). We conducted MR analyses separately in the UK Biobank and FinnGen, followed by a meta-analysis. The Cochran's Q test, MR-Egger intercept test, and leave-one-out sensitivity analyses were used to assess the heterogeneities, horizontal pleiotropy, and stabilities of SNPs in endometriosis. RESULTS: Our two-sample MR analysis of 11 coagulation factors in the UK Biobank suggested a reliable causal effect of genetically predicted plasma ADAMTS13 level on decreased endometriosis risk. A negative causal effect of ADAMTS13 and a positive causal effect of vWF on endometriosis were observed in the FinnGen. In the meta-analysis, the causal associations remained significant with a strong effect size. The MR analyses also identified potential causal effects of ADAMTS13 and vWF on different sub-phenotypes of endometrioses. CONCLUSIONS: Our MR analysis based on GWAS data from large-scale population studies demonstrated the causal associations between ADAMTS13/vWF and the risk of endometriosis. These findings suggest that these coagulation factors are involved in the development of endometriosis and may represent potential therapeutic targets for the management of this complex disease.


Subject(s)
Endometriosis , Female , Humans , Endometriosis/epidemiology , Endometriosis/genetics , Mendelian Randomization Analysis , von Willebrand Factor , Blood Coagulation Factors , Blood Coagulation/genetics
7.
BMC Cancer ; 23(1): 431, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173635

ABSTRACT

BACKGROUND: Neoadjuvant chemotherapy (NAC) has become the standard therapeutic option for early high-risk and locally advanced breast cancer. However, response rates to NAC vary between patients, causing delays in treatment and affecting the prognosis for patients who do not sensitive to NAC. MATERIALS AND METHODS: In total, 211 breast cancer patients who completed NAC (training set: 155, validation set: 56) were retrospectively enrolled. we developed a deep learning radiopathomics model(DLRPM) by Support Vector Machine (SVM) method based on clinicopathological features, radiomics features, and pathomics features. Furthermore, we comprehensively validated the DLRPM and compared it with three single-scale signatures. RESULTS: DLRPM had favourable performance for the prediction of pathological complete response (pCR) in the training set (AUC 0.933[95% CI 0.895-0.971]), and in the validation set (AUC 0.927 [95% CI 0.858-0.996]). In the validation set, DLRPM also significantly outperformed the radiomics signature (AUC 0.821[0.700-0.942]), pathomics signature (AUC 0.766[0.629-0.903]), and deep learning pathomics signature (AUC 0.804[0.683-0.925]) (all p < 0.05). The calibration curves and decision curve analysis also indicated the clinical effectiveness of the DLRPM. CONCLUSIONS: DLRPM can help clinicians accurately predict the efficacy of NAC before treatment, highlighting the potential of artificial intelligence to improve the personalized treatment of breast cancer patients.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy/methods , Artificial Intelligence , Retrospective Studies , Prognosis
8.
Phys Chem Chem Phys ; 25(7): 5510-5519, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36723186

ABSTRACT

The heat transfer between a nanotip and its substrate is extremely complex but is a key factor in determining the measurement accuracy in tip-assisted nanomanufacturing and thermometry. In this work, the heat transfer from the nanotip to the substrate during sliding is investigated using molecular dynamics simulations. Interfacial interaction and bond formation are analyzed during the sliding process. The results show that the increase of vertical force would greatly improve the interface thermal conductance between the nanotip and the substrate. It is found that more bonds are formed and there are larger contact areas at the interface. In addition, we found that the thermal conductivity of the nanotip is another obstacle for heat transfer between the tip and substrate and it is greatly limited by the nanotip diameter near contact which is close to or even smaller than the phonon mean free path. Meanwhile, the dynamic formation and breakage of the covalent bonds during the sliding could gradually smoothen the tip apex and enhance the thermal transport at the interface. This work provides guidance for the thermal design of a nanotip-substrate system for nanoscale thermal transport measurements.

9.
J Chem Phys ; 159(6)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37551806

ABSTRACT

Cats have an instinctive ability to use the connection governing parallel transport in the space of shapes to land safely on their feet. Here, we argue that the concept of connection, which is extensively used in general relativity and other parts of theoretical physics, also explains the impressive performance of molecular motors by enabling molecules to evade the conclusions of Feynman's ratchet-and-pawl analysis. First, we demonstrate the emergence of directed rotational motion from shape changes, which is independent of angular momentum. Then, we computationally design knotted polyalanine molecules and demonstrate the organization of individual atom thermal vibrations into collective rotational motion, which is independent of angular momentum. The motion occurs effortlessly even in ambient water and can be further enhanced through spontaneous symmetry breaking, rendering the molecule an effective theory time crystal. Our findings can be experimentally verified via nuclear magnetic resonance measurements and hold practical potential for molecular motor design and engineering.

10.
BMC Womens Health ; 23(1): 522, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794378

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) and periodontitis significantly affect women's oral and systemic health worldwide, and yet increase the risk of cardiovascular-metabolic diseases like diabetes and coronary heart disease. Regarding the PCOS-periodontitis connection, whether sex hormones, metabolic and inflammatory mediators could account for the underlying linking mechanism needs to be further investigated. This case-control study evaluated the hormonal, metabolic and inflammatory profiles in PCOS and non-PCOS subjects with various periodontal conditions, via assessing serum and saliva samples by Raman spectroscopy. METHODS: A total of 66 females with PCOS and 22 systemically healthy female volunteers were recruited in a single hospital. Full-mouth periodontal examination was undertaken for identifying the subjects with periodontal health, gingivitis or periodontitis. The datasets of sex hormones and metabolic indicators were retrieved from the hospital information system. Both serum and saliva samples were collected for detecting inflammatory mediators and Raman spectroscopic assessment. The subjects were categorized into four groups according to their conditions of PCOS and periodontitis for Raman spectroscopic analysis. Partial least squares discriminant analysis was performed to examine the inter-group differences in Raman spectra. RESULTS: PCOS patients exhibited greater mean probing depth (P < 0.05) and higher serum levels of triglycerides (P < 0.05) and matrix metalloproteinase-8 (P < 0.05) than those in non-PCOS participants. Both probing depth and triglyceride level were positively correlated with PCOS (P < 0.05). There was a significant difference in mean Raman spectra of saliva samples among the four groups with different conditions of PCOS and periodontitis (P < 0.05), while no significant inter-group difference existed in serum samples. CONCLUSIONS: The present study shows that periodontal condition may affect the biomolecular profiles of Raman spectra in serum and saliva of PCOS patients. It underscores the importance of the collaborative teamwork of dentists and gynecologists for enhancing women's oral health, general wellbeing and quality of life.


Subject(s)
Periodontitis , Polycystic Ovary Syndrome , Saliva , Female , Humans , Case-Control Studies , Gonadal Steroid Hormones , Inflammation Mediators , Periodontitis/blood , Periodontitis/complications , Periodontitis/diagnosis , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/diagnosis , Quality of Life , Saliva/chemistry , Spectrum Analysis, Raman
11.
Anim Genet ; 54(4): 500-509, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37194451

ABSTRACT

Sexually dimorphic plumage coloration is widespread in birds. The male possesses more brightly colored feathers than the female. Dark green head feathers comprise one of the most typical appearance characteristics of the male Ma duck compared with the female. However, there are noticeable individual differences observed in these characteristics. Herein, genome-wide association studies (GWAS) were employed to investigate the genetic basis of individual differences in male duck green head-related traits. Our results showed that 165 significant SNPs were associated with green head traits. Meanwhile, 71 candidate genes were detected near the significant SNPs, including four genes (CACNA1I, WDR59, GNAO1 and CACNA2D4) related to the individual differences in the green head traits of male ducks. Additionally, the eGWAS identified three SNPs located within two candidate genes (LOC101800026 and SYNPO2) associated with TYRP1 gene expression, and might be important regulators affecting the expression level of TYRP1 in the head skin of male ducks. Our data also suggested that transcription factor MXI1 might regulate the expression of TYRP1, thereby causing differences in the green head traits among male ducks. This study provided primary data for further analysis of the genetic regulation of duck feather color.


Subject(s)
Ducks , Genome-Wide Association Study , Female , Male , Animals , Ducks/genetics , Feathers/physiology , Phenotype , Polymorphism, Single Nucleotide
12.
J Enzyme Inhib Med Chem ; 38(1): 2281263, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37965892

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a key factor and regulator of glucose, lipid metabolism throughout the body, and a promising target for treatment of type 2 diabetes mellitus (T2DM). Gynostemma pentaphyllum is a famous oriental traditional medicinal herbal plant and functional food, which has shown many beneficial effects on glucose and lipid metabolism. The aim of the present study is to assess the inhibitory activity of five new and four known dammarane triterpenoids isolated from the hydrolysate product of total G. pentaphyllum saponins. The bioassay data showed that all the compounds exhibited significant inhibitory activity against PTP1B. The structure-activity relationship showed that the strength of PTP1B inhibitory activity was mainly related to the electron-donating group on its side chain. Molecular docking analysis suggested that its mechanism may be due to the formation of competitive hydrogen bonding between the electron-donating moiety and the Asp48 amino acid residues on the PTP1B protein.


Subject(s)
Diabetes Mellitus, Type 2 , Saponins , Triterpenes , Saponins/chemistry , Gynostemma/chemistry , Gynostemma/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Molecular Docking Simulation , Triterpenes/chemistry , Glucose , Dammaranes
13.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902246

ABSTRACT

Intramuscular fat contributes to the improvement of goat meat quality. N6-Methyladenosine (m6A)-modified circular RNAs play important roles in adipocyte differentiation and metabolism. However, the mechanisms by which m6A modifies circRNA before and after differentiation of goat intramuscular adipocytes remain poorly understood. Here, we performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and circRNA sequencing (circRNA-seq) to determine the distinctions in m6A-methylated circRNAs during goat adipocyte differentiation. The profile of m6A-circRNA showed a total of 427 m6A peaks within 403 circRNAs in the intramuscular preadipocytes group, and 428 peaks within 401 circRNAs in the mature adipocytes group. Compared with the intramuscular preadipocytes group, 75 peaks within 75 circRNAs were significantly different in the mature adipocytes group. Furthermore, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of intramuscular preadipocytes and mature adipocytes showed that the differentially m6A-modified circRNAs were enriched in the PKG signaling pathway, endocrine and other factor-regulated calcium reabsorption, lysine degradation, etc. m6A-circRNA-miRNA-mRNA interaction networks predicted the potential m6A-circRNA regulation mechanism in different goat adipocytes. Our results indicate that there is a complicated regulatory relationship between the 12 upregulated and 7 downregulated m6A-circRNAs through 14 and 11 miRNA mediated pathways, respectively. In addition, co-analysis revealed a positive association between m6A abundance and levels of circRNA expression, such as expression levels of circRNA_0873 and circRNA_1161, which showed that m6A may play a vital role in modulating circRNA expression during goat adipocyte differentiation. These results would provide novel information for elucidating the biological functions and regulatory characteristics of m6A-circRNAs in intramuscular adipocyte differentiation and could be helpful for further molecular breeding to improve meat quality in goats.


Subject(s)
MicroRNAs , RNA, Circular , Animals , RNA, Circular/genetics , Goats/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Adipocytes/metabolism
14.
BMC Genomics ; 23(1): 122, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35148676

ABSTRACT

BACKGROUND: Mammalian sex chromosomes provide dosage compensation, but avian lack a global mechanism of dose compensation. Herein, we employed nanopore sequencing to investigate the genetic basis of gene expression and gene dosage effects in avian Z chromosomes at the posttranscriptional level. RESULTS: In this study, the gonad and head skin of female and male duck samples (n = 4) were collected at 16 weeks of age for Oxford nanopore sequencing. Our results revealed a dosage effect and local regulation of duck Z chromosome gene expression. Additionally, AS and APA achieve tissue-specific gene expression, and male-biased lncRNA regulates its Z-linked target genes, with a positive regulatory role for gene dosage effects on the duck Z chromosome. In addition, GO enrichment and KEGG pathway analysis showed that the dosage effects of Z-linked genes were mainly associated with the cellular response to hormone stimulus, melanin biosynthetic, metabolic pathways, and melanogenesis, resulting in sex differences. CONCLUSIONS: Our data suggested that post transcriptional regulation (AS, APA and lncRNA) has a potential impact on the gene expression effects of avian Z chromosomes. Our study provides a new view of gene regulation underlying the dose effects in avian Z chromosomes at the RNA post transcriptional level.


Subject(s)
Dosage Compensation, Genetic , Sex Chromosomes , Animals , Birds , Female , Gene Dosage , Gene Expression Regulation , Male , Sex Chromosomes/genetics
15.
BMC Genomics ; 23(1): 236, 2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35346029

ABSTRACT

BACKGROUND: Skin pigmentation is a broadly appearing phenomenon of most animals and humans in nature. Here we used a bird model to investigate why melanin spot deposits on the skin. RESULTS: Our result showed that growth age and the sunlight might induce melanin deposition in bird beak skin which was determined by genetic factors. GWAS helped us to identify two major loci affecting melanin deposition, located on chromosomes 13 and 25, respectively. The fine mapping works narrowed the candidate regions to 0.98 Mb and 1.0 Mb on chromosomes 13 and 25. The MITF and POU2F3 may be the causative genes and synergistically affect melanin deposition during duck beak skin. Furthermore, our data strongly demonstrated that the pathway of melanin metabolism contributes to melanin deposition on the skin. CONCLUSIONS: We demonstrated that age and sunlight induce melanin deposition in bird beak skin, while heredity is fundamental. The MITF and POU2F3 likely played a synergistic effect on the regulation of melanin synthesis, and their mutations contribute to phenotypic differences in beak melanin deposition among individuals. It is pointed out that melanin deposition in the skin is related to the pathway of melanin metabolism, which provided insights into the molecular regulatory mechanisms and the genetic improvement of the melanin deposition in duck beak.


Subject(s)
Genome-Wide Association Study , Melanins , Animals , Beak/metabolism , Ducks/genetics , Ducks/metabolism , Melanins/metabolism , Skin Pigmentation/genetics
16.
BMC Plant Biol ; 22(1): 339, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35831794

ABSTRACT

BACKGROUND: Fagopyrum (Polygonaceae) is a small plant lineage comprised of more than fifteen economically and medicinally important species. However, the phylogenetic relationships of the genus are not well explored, and the characteristics of Fagopyrum chloroplast genomes (plastomes) remain poorly understood so far. It restricts the comprehension of species diversity in Fagopyrum. Therefore, a comparative plastome analysis and comprehensive phylogenomic analyses are required to reveal the taxonomic relationship among species of Fagopyrum. RESULTS: In the current study, 12 plastomes were sequenced and assembled from eight species and two varieties of Fagopyrum. In the comparative analysis and phylogenetic analysis, eight previously published plastomes of Fagopyrum were also included. A total of 49 plastomes of other genera in Polygonaceae were retrieved from GenBank and used for comparative analysis with Fagopyrum. The variation of the Fagopyrum plastomes is mainly reflected in the size and boundaries of inverted repeat/single copy (IR/SC) regions. Fagopyrum is a relatively basal taxon in the phylogenomic framework of Polygonaceae comprising a relatively smaller plastome size (158,768-159,985 bp) than another genus of Polygonaceae (158,851-170,232 bp). A few genera of Polygonaceae have nested distribution of the IR/SC boundary variations. Although most species of Fagopyrum show the same IRb/SC boundary with species of Polygonaceae, only a few species show different IRa/SC boundaries. The phylogenomic analyses of Fagopyrum supported the cymosum and urophyllum groups and resolved the systematic position of subclades within the urophyllum group. Moreover, the repeat sequence types and numbers were found different between groups of Fagopyrum. The plastome sequence identity showed significant differences between intra-group and inter-group. CONCLUSIONS: The deletions of intergenic regions cause a short length of Fagopyrum plastomes, which may be the main reason for plastome size diversity in Polygonaceae species. The phylogenomic reconstruction combined with the characteristics comparison of plastomes supports grouping within Fagopyrum. The outcome of these genome resources may facilitate the taxonomy, germplasm resources identification as well as plant breeding of Fagopyrum.


Subject(s)
Fagopyrum , Genome, Chloroplast , Polygonaceae , Evolution, Molecular , Fagopyrum/genetics , Genome, Chloroplast/genetics , Phylogeny , Plant Breeding , Polygonaceae/genetics
17.
New Phytol ; 235(2): 533-549, 2022 07.
Article in English | MEDLINE | ID: mdl-35388459

ABSTRACT

Cytosolic ABA Receptor Kinases (CARKs) play a pivotal role in abscisic acid (ABA)-dependent pathway in response to dehydration, but their regulatory mechanism in ABA signaling remains unexplored. In this study, we showed that CARK4/5 of CARK family physically interacted with ABA receptors (RCARs/PYR1/PYLs), including RCAR3, RCAR11-RCAR14, while CARK2/7/11 only interacted with RCAR11-RCAR14, but not RCAR3. It indicates that the members in CARK family function redundantly and differentially in ABA signaling. RCAR12 can form heterodimer with RCAR3 in vitro and in vivo. Moreover, the members of CARK family can form homodimer or heterodimer in a kinase activity dependent manner. ITC (isothermal titration calorimetry) analysis demonstrated that the phosphorylation of RCAR12 by CARK1 enhanced the ABA binding affinity. The phosphor-mimic RCAR12T105D significantly displayed ABA-induced inhibition of the phosphatase ABI1 (ABA insensitive 1) activity, leading to upregulation of ABA-responsive genes RD29A and RD29B in cark157:RCAR12T105D transgenic plants, which exhibited ABA hypersensitive phenotype. The transcription factor ABI5 (ABA insensitive 5) activates the transcriptions of CARK1 and CARK3 by binding to ABA-response elements (ABREs) of their promoters. Collectively, our data imply that the dimeric CARKs phosphorylate homodimer or heterodimer ABA receptors, leading to monomerization for triggering ABA responses in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Phosphorylation
18.
Pharmacol Res ; 180: 106238, 2022 06.
Article in English | MEDLINE | ID: mdl-35504356

ABSTRACT

Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary dysfunctional disease, characterized by progressive vascular remodeling. Inflammation is an increasingly recognized feature of PAH, which is important for the initiation and maintenance of vascular remodeling. High levels of various inflammatory mediators have been documented in both PAH patients and experimental models of PAH. Similarly, multiple immune cells were found to accumulate in and around the wall of remodeled pulmonary vessels and in the vicinity of plexiform lesions, respectively. On the other hand, inflammation is also a bridge from autoimmune diseases to PAH. Autoimmune diseases always lead to chronic inflammation, characterized by the low-level persistent infiltration of immune cells, and elevated levels of several pro-inflammatory cytokines and chemokines. In addition, circulating autoantibodies are found in the peripheral blood of patients, indicating a possible role of autoimmunity in the pathogenesis of PAH. Thus, anti-inflammatory and immunotherapy might be new strategies to prevent or even reverse the process of PAH. Many anti-inflammatory agents and immunotherapies have been confirmed in animal models while some clinical trials employing immunotherapies are completed or currently underway. Here, we review pathological mechanisms associated with inflammation and immunity in the development of PAH, and discuss potential interventions for the treatment of PAH.


Subject(s)
Autoimmune Diseases , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Anti-Inflammatory Agents/therapeutic use , Autoimmune Diseases/drug therapy , Familial Primary Pulmonary Hypertension/complications , Familial Primary Pulmonary Hypertension/drug therapy , Humans , Hypertension, Pulmonary/drug therapy , Inflammation , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Artery , Vascular Remodeling
19.
Mol Biol Rep ; 49(4): 3187-3196, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35124793

ABSTRACT

BACKGROUND: Bones and muscles originated together from the mesoderm during embryogenesis, and they can influence each other through mechanical stimulations and chemical signals. The sclerostin (SOST) is secreted from mature osteocytes. Here, we used a bird model to illustrate the potential roles of SOST on duck myoblasts to verify the hypothesis that SOST might play functions in coordinating the development of bones and muscles. METHODS AND RESULTS: Firstly, a recombinant adenovirus vector carrying duck SOST was constructed. Then, the adenovirus-mediated duck SOST was transfected into duck myoblasts. The results revealed by CCK-8 showed that the cell proliferation of myoblasts was inhibited after 12 h, 36 h, and 48 h treatment by transfection of SOST. The labeling rates of EdU positive cells in the Ad-duSOST group were significantly lower than the Ad-NC group (P < 0.05). However, the flow cytometry showed that the cells' G0/G1 phase number was not significantly different. Furthermore, the immunofluorescence results showed that the formation of myotubes was inhibited. Subsequent transcriptome revealed that, under the ectopic expression of SOST, the genes related to Cytokine-cytokine receptor interaction, muscle development (regulation of action cytoskeleton, Wnt signaling pathway), and intercellular regulation were changed. Six of the top 20 DEGs were related to morphogenesis. CONCLUSIONS: Our studies demonstrated that the SOST played critical roles in myoblasts differentiation by mediating the crosstalk among several pathways and transcription factors related to cell differentiation. Our data provided cellular evidence supporting the combined functions of SOST in coordinating bone and muscle co-development.


Subject(s)
Adaptor Proteins, Signal Transducing , Ducks , Adaptor Proteins, Signal Transducing/genetics , Adenoviridae/genetics , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Ducks/genetics , Muscle Development/genetics , Wnt Signaling Pathway
20.
Phys Chem Chem Phys ; 24(44): 27495-27504, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36343379

ABSTRACT

The knotted proteins are a class of rare but biologically important proteins, due to the special topology of their native structure. Here we present a simple in silico method to identify the key residues for knotting and unknotting in a knotted protein, using the trefoil protein MJ0366 as an example. We first simulate the folding process via the annealing molecular dynamics (AMD) simulations in the coarse-grained "Go"-like model. From the folding trajectories, we monitor the knotting process using the quantity "length of knot tails". In the meantime, we analyze the evolution of the local geometry of the Cα trace with the help of the Discrete Frenet Frame (DFF). We identify the key residues by correlating the local geometry at each residue with the variable "length of knot tails" in the folding process, where a higher correlation coefficient indicates that the residue is more important for knotting. We validate our method by comparing with the experimental results in the literature. With the same method, we further predict the key residues for unknotting MJ0366 using the AMD simulations in both the coarse-grained "Go"-like model and all-atom (AA) force field model, respectively. We find that the key residues for unknotting are partially overlapped with those for knotting, indicating that the pathways for unknotting and knotting are generally similar except for the existence of some non-native contact interactions in the unknotting process. This in silico method can provide a new insight for understanding the knotting and unknotting processes of a knotted protein.


Subject(s)
Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL