Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Immunol ; 212(1): 130-142, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37975680

ABSTRACT

Pigs are the most suitable model to study various therapeutic strategies and drugs for human beings, although knowledge about cell type-specific transcriptomes and heterogeneity is poorly available. Through single-cell RNA sequencing and flow cytometry analysis of the types in the jejunum of pigs, we found that innate lymphoid cells (ILCs) existed in the lamina propria lymphocytes (LPLs) of the jejunum. Then, through flow sorting of live/dead-lineage (Lin)-CD45+ cells and single-cell RNA sequencing, we found that ILCs in the porcine jejunum were mainly ILC3s, with a small number of NK cells, ILC1s, and ILC2s. ILCs coexpressed IL-7Rα, ID2, and other genes and differentially expressed RORC, GATA3, and other genes but did not express the CD3 gene. ILC3s can be divided into four subgroups, and genes such as CXCL8, CXCL2, IL-22, IL-17, and NCR2 are differentially expressed. To further detect and identify ILC3s, we verified the classification of ILCs in the porcine jejunum subgroup and the expression of related hallmark genes at the protein level by flow cytometry. For systematically characterizing ILCs in the porcine intestines, we combined our pig ILC dataset with publicly available human and mice ILC data and identified that the human and pig ILCs shared more common features than did those mouse ILCs in gene signatures and cell states. Our results showed in detail for the first time (to our knowledge) the gene expression of porcine jejunal ILCs, the subtype classification of ILCs, and the markers of various ILCs, which provide a basis for an in-depth exploration of porcine intestinal mucosal immunity.


Subject(s)
Immunity, Innate , Lymphocytes , Humans , Animals , Mice , Swine , Jejunum , Killer Cells, Natural , Mucous Membrane
2.
J Virol ; 98(8): e0103924, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39012142

ABSTRACT

In maintaining organismal homeostasis, gut immunity plays a crucial role. The coordination between the microbiota and the immune system through bidirectional interactions regulates the impact of microorganisms on the host. Our research focused on understanding the relationships between substantial changes in jejunal intestinal flora and metabolites and intestinal immunity during porcine epidemic diarrhea virus (PEDV) infection in piglets. We discovered that Lactobacillus rhamnosus GG (LGG) could effectively prevent PEDV infection in piglets. Further investigation revealed that LGG metabolites interact with type 3 innate lymphoid cells (ILC3s) in the jejunum of piglets through the aryl hydrocarbon receptor (AhR). This interaction promotes the activation of ILC3s and the production of interleukin-22 (IL-22). Subsequently, IL-22 facilitates the proliferation of IPEC-J2 cells and activates the STAT3 signaling pathway, thereby preventing PEDV infection. Moreover, the AhR receptor influences various cell types within organoids, including intestinal stem cells (ISCs), Paneth cells, and enterocytes, to promote their growth and development, suggesting that AhR has a broad impact on intestinal health. In conclusion, our study demonstrated the ability of LGG to modulate intestinal immunity and effectively prevent PEDV infection in piglets. These findings highlight the potential application of LGG as a preventive measure against viral infections in livestock.IMPORTANCEWe observed high expression of the AhR receptor on pig and human ILC3s, although its expression was negligible in mouse ILC3s. ILC3s are closely related to the gut microbiota, particularly the secretion of IL-22 stimulated by microbial signals, which plays a crucial regulatory role in intestinal immunity. In our study, we found that metabolites produced by beneficial gut bacteria interact with ILC3s through AhR, thereby maintaining intestinal immune homeostasis in pigs. Moreover, LGG feeding can enhance the activation of ILC3s and promote IL-22 secretion in the intestines of piglets, ultimately preventing PEDV infection.


Subject(s)
Coronavirus Infections , Immunity, Innate , Interleukin-22 , Interleukins , Lymphocytes , Porcine epidemic diarrhea virus , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/metabolism , Swine , Interleukins/metabolism , Porcine epidemic diarrhea virus/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Gastrointestinal Microbiome/immunology , Swine Diseases/immunology , Swine Diseases/virology , Swine Diseases/prevention & control , Swine Diseases/microbiology , Jejunum/immunology , Jejunum/metabolism , Signal Transduction , Ligands , Intestines/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism
3.
Small ; : e2402463, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39161188

ABSTRACT

Mass production of microalgae is a research focus owing to their promising aspects for sustainable food, biofunctional compounds, nutraceuticals, and biofuel feedstock. This study uses a novel approach to enhance microalgae-derived biomass and metabolites by using an aggregation-induced emission (AIE) photosensitizer (PS), CN-TPAQ-PF6 ([C32H23N4]+). The unique AIE features of CN-TPAQ-PF6 facilitate nano-aggregation in aquatic media for an effective light spectral shift for photosynthetic augmentation in a green microalga, Chlamydomonas reinhardtii. The high reactive oxygen species (ROS) production capacity and redox-based cellular modulations reveal its potential to upsurge algal growth and lipid biosynthesis and fabricate fatty acid profiles in the metabolic pathways. Algal cells are labeled with other AIE-based nanoprobes, which are suitable as an in vivo visualization toolkit with superior fluorescence. Furthermore, cytotoxicity analysis of CN-TPAQ-PF6 on the HaCat cell line confirms that this AIE PS is biocompatible without adverse impact on living cells. The results demonstrate the property of AIE PS for the first time in enhancing algal growth and lipid accumulation simultaneously.

4.
J Basic Microbiol ; : e2400030, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031597

ABSTRACT

Streptococcus suis is an important zoonotic pathogen, causing cytokine storms of Streptococcal toxic shock-like syndrome amongst humans after a wound infection into the bloodstream. To overcome the challenges of fever and leukocyte recruitment, invasive S. suis must deploy multiple stress responses forming a network and utilize proteases to degrade short-lived regulatory and misfolded proteins induced by adverse stresses, thereby adapting and evading host immune responses. In this study, we found that S. suis encodes multiple ATP-dependent proteases, including single-chain FtsH and double-subunit Clp protease complexes ClpAP, ClpBP, ClpCP, and ClpXP, which were activated as the fever of infected mice in vivo. The expression of genes ftsH, clpA/B/C, and clpP, but not clpX, were significantly upregulated in S. suis in response to heat stress, while were not changed notably under the treatments with several other stresses, including oxidative, acidic, and cold stimulation. FtsH and ClpP were required for S. suis survival within host blood under heat stress in vitro and in vivo. Deletion of ftsH or clpP attenuated the tolerance of S. suis to heat, oxidative and acidic stresses, and significantly impaired the bacterial survival within macrophages. Further analysis identified that repressor CtsR directly binds and controls the clpA/B/C and clpP operons and is relieved by heat stress. In summary, the deployments of multiple ATP-dependent proteases form a flexible heat stress response network that appears to allow S. suis to fine-tune the degradation or refolding of the misfolded proteins to maintain cellular homeostasis and optimal survival during infection.

5.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542846

ABSTRACT

In the quest to curtail the spread of healthcare-associated infections, this work showcases the fabrication of a cutting-edge antibacterial textile coating armoured with aggregation-induced emission photosensitisers (AIE PS) to prevent bacterial colonisation on textiles. The adopted methodology includes a multi-step process using plasma polymerisation and subsequent integration of AIE PS on their surface. The antibacterial effectiveness of the coating was tested against Pseudomonas aeruginosa and Staphylococcus aureus after light irradiation for 1 h. Furthermore, antibacterial mechanistic studies revealed their ability to generate reactive oxygen species that can damage bacterial cell membrane integrity. The results of this investigation can be used to develop ground-breaking explanations for infection deterrence, principally in situations where hospital fabrics play a critical part in the transmission of diseases. The antibacterial coating for textiles developed in this study holds great promise as an efficient strategy to promote public health and reduce the danger of bacterial diseases through regular contact with fabrics.


Subject(s)
Cross Infection , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Textiles , Delivery of Health Care
6.
Molecules ; 29(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543048

ABSTRACT

SYAUP-491 is a novel alkyl sulfonamide. In this study, in vivo and in vitro tests were performed along with a proteomic analysis to determine the effects and underlying mechanisms of the antibacterial activity of SYAUP-491 against the causative agent of bacterial leaf blight in rice. The antibacterial test results suggested that SYAUP-491 exhibited significant activities against Xanthomonas oryzae pv. oryzae (Xoo) in vitro and in vivo. The minimal EC50 values reached 6.96 µg/mL and the curative activity reached 74.1%. Detailed studies demonstrated that SYAUP-491 altered membrane permeability and caused morphological changes. Based on proteomics results, SYAUP-491 might inhibit bacterial protein synthesis. SYAUP-491 may disrupt and alter cell membrane permeability and could further act on ribosomes in the bacterial body. Given the above results, SYAUP-491 could serve as a new lead compound in the research of antibacterial control of plant pathogenic bacterial disease.


Subject(s)
Oryza , Xanthomonas , Proteomics , Anti-Bacterial Agents/pharmacology , Sulfonamides , Oryza/microbiology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Microbial Sensitivity Tests
7.
Cancer Biomark ; 39(4): 299-312, 2024.
Article in English | MEDLINE | ID: mdl-38250759

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is a relatively rare malignant bone tumor in teenagers; however, its molecular mechanisms are not yet understood comprehensively. OBJECTIVE: The study aimed to use necroptosis-related genes (NRGs) and their relationships with immune-related genes to construct a prognostic signature for OS. METHODS: TARGET-OS was used as the training dataset, and GSE 16091 and GSE 21257 were used as the validation datasets. Univariate regression, survival analysis, and Kaplan-Meier curves were used to screen for hub genes. The immune-related targets were screened using immune infiltration assays and immune checkpoints. The results were validated using nomogram and decision curve analyses (DCA). RESULTS: Using univariate Cox regression analysis, TNFRSF1A was screened from 14 NRGs as an OS prognostic signature. Functional enrichment was analyzed based on the median expression of TNFRSF1A. The prognosis of the TNFRSF1A low-expression group in the Kaplan-Meier curve was notably worse. Immunohistochemistry analysis showed that the number of activated T cells and tumor purity increased considerably. Furthermore, the immune checkpoint lymphocyte activation gene 3 (LAG-3) is a possible target for intervention. The nomogram accurately predicted 1-, 3-, and 5-year survival rates. DCA validated the model (C = 0.669). Conclusion: TNFRSF1A can be used to elucidate the potential relationship between the immune microenvironment and NRGs in OS pathogenesis.


Subject(s)
Biomarkers, Tumor , Bone Neoplasms , Osteosarcoma , Receptors, Tumor Necrosis Factor, Type I , Humans , Osteosarcoma/genetics , Osteosarcoma/mortality , Osteosarcoma/immunology , Osteosarcoma/pathology , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/mortality , Bone Neoplasms/immunology , Prognosis , Female , Male , Nomograms , Adolescent , Kaplan-Meier Estimate , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics
8.
Nat Prod Res ; : 1-7, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767178

ABSTRACT

A new chromone, angeliticin B (1) together with nine known compounds, psoralene (2), isoimperatorin (3), (S)-(-)-2'-methoxypeucedanin hydrate (4), (S)-(-)-oxypeucedanin (5), xanthotoxin (6), isopimpinellin (7), 1'-O-ß-D-glucopyranosyl-(2'S, 3'R)-3'-hydroxymarmesin (8), sec-O-glucosylhamaudol (9) and vanillin (10) were isolated from the methanol extract of Angelica polymorpha Maxim. The structures of these compounds were elucidated through a comprehensive analysis of standard spectral data (MS, IR, and NMR). Compound 1 exhibited antioxidant activity with IC50 = 198.57 µM in DPPH experiment and 31.71 µM in ABTS experiment. Compound 2, 6, 7 exhibited ABTS radical scavenging activity with IC50 ranging from 105.96 µM to 167.67 µM. Compound 3 demonstrated a synergistic induction effect on nigericin-activated NLRP3 inflammasome in THP-1 cell by LDH release method.

9.
Microbiol Spectr ; 12(3): e0340423, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38259091

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) could establish symbiosis with plant roots, which enhances plant resistance to various stresses, including drought stress and salt stress. Besides AMF, chemical stimulants such as trehalose (Tre) can also play an important role in helping plants alleviate damage of adversity. However, the mechanism of the effect of AMF combined with chemicals on plant stress resistance is unclear. The objective of this study was to explore the synergistic effects of Claroideoglomus etunicatum AMF and exogenous Tre on the antioxidant system, osmoregulation, and resistance-protective substance in plants in response to salt stress. Tomato seedlings were inoculated with Claroideoglomus etunicatum and combined with exogenous Tre in a greenhouse aseptic soil cultivation experiment. We measured the arbuscular mycorrhizal symbiont development, organic matter content, and antioxidant enzyme activity in tomato seedlings. Both AMF and Tre improved the synthesis of chlorophyll content in tomato seedlings; regulated the osmotic substance including soluble sugars, soluble protein, and proline of plants; and increased the activity of superoxide dismutase, peroxidase, and catalase. The combination of AMF and Tre also reduced the accumulation of malondialdehyde and alleviated the damage of harmful substances to plant cells in tomato seedlings. We studied the effects of AMF combined with extraneous Tre on salt tolerance in tomato seedlings, and the results showed that the synergistic treatment of AMF and Tre was more efficient than the effects of AMF inoculation or Tre spraying separately by regulating host substance synthesis, osmosis, and antioxidant enzymes. Our results indicated that the synergistic effects of AMF and Tre increased the plant adaptability against salt damage by enhancing cell osmotic protection and cell antioxidant capacity. IMPORTANCE: AMF improve the plant adaptability to salt resistance by increasing mineral absorption and reducing the damage of saline soil. Trehalose plays an important role in plant response to salt damage by regulating osmotic pressure. Together, the use of AMF and trehalose in tomato seedlings proved efficient in regulating host substance synthesis, osmosis, and antioxidant enzymes. These synergistic effects significantly improved seedling adaptability to salt stress by enhancing cell osmotic protection and cell antioxidant capacity, ultimately reducing losses to crops grown on land where salinization has occurred.


Subject(s)
Fungi , Mycorrhizae , Solanum lycopersicum , Mycorrhizae/physiology , Seedlings/microbiology , Trehalose/pharmacology , Antioxidants/metabolism , Salt Stress , Plants/metabolism , Soil
10.
Comput Biol Med ; 178: 108639, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878394

ABSTRACT

The optic cup (OC) and optic disc (OD) are two critical structures in retinal fundus images, and their relative positions and sizes are essential for effectively diagnosing eye diseases. With the success of deep learning in computer vision, deep learning-based segmentation models have been widely used for joint optic cup and disc segmentation. However, there are three prominent issues that impact the segmentation performance. First, significant differences among datasets collecting from various institutions, protocols, and devices lead to performance degradation of models. Second, we find that images with only RGB information struggle to counteract the interference caused by brightness variations, affecting color representation capability. Finally, existing methods typically ignored the edge perception, facing the challenges in obtaining clear and smooth edge segmentation results. To address these drawbacks, we propose a novel framework based on Style Alignment and Multi-Color Fusion (SAMCF) for joint OC and OD segmentation. Initially, we introduce a domain generalization method to generate uniformly styled images without damaged image content for mitigating domain shift issues. Next, based on multiple color spaces, we propose a feature extraction and fusion network aiming to handle brightness variation interference and improve color representation capability. Lastly, an edge aware loss is designed to generate fine edge segmentation results. Our experiments conducted on three public datasets, DGS, RIM, and REFUGE, demonstrate that our proposed SAMCF achieves superior performance to existing state-of-the-art methods. Moreover, SAMCF exhibits remarkable generalization ability across multiple retinal fundus image datasets, showcasing its outstanding generality.


Subject(s)
Deep Learning , Optic Disk , Humans , Optic Disk/diagnostic imaging , Color , Algorithms , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods
11.
Biochem Pharmacol ; 229: 116482, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134284

ABSTRACT

The emerging antibiotic-resistant bacteria, especially the "ESKAPE" pathogens, pose a continuous threat to global health. In this study, we explored metalloantibiotics as promising therapeutics and innovative antimicrobial agents. The role of metal in the antimicrobial activity of chloroxine (5,7-dichloro-8-hydroxyquinoline), as a metalloantibiotic, was investigated by minimal inhibit concentration (MIC) assay and a series of assays, including growth curve, time-killing, and UV-visible spectroscopy and PAR (4-(2-pyridylazo)-resorcinol) competition assays. Both chloroxine and its structural analogues exhibited increased antibacterial potency against Gram-positive bacteria compared to Gram-negative bacteria. The introduction of exogenous manganese or zinc ions significantly boosted chloroxine's antibacterial efficacy against Gram-negative bacteria, including the notorious ESKAPE pathogens. However, the enhanced antibacterial activity induced by zinc ions could be negated in the presence of copper or ferrous iron ions, as well as changes in oxygen availability, highlighting the involvement of proton motive force, oxidative and antioxidative systems. Notably, chloroxine effectively inhibited the enzymatic activity of superoxide dismutase (SOD). In addition, chloroxine could reverse polymyxin and carbapenem resistance in E. coli in vitro. Therefore, these results suggested that chloroxine with zinc ions are promising therapeutics and antibiotics potentiator to combat multidrug-resistant ESKAPE pathogens.

12.
Front Vet Sci ; 11: 1353775, 2024.
Article in English | MEDLINE | ID: mdl-38298449

ABSTRACT

Doxorubicin, a potent chemotherapeutic agent used extensively in cancer treatment, displays complex pharmacokinetic behavior, especially across various formulations. With a rising incidence of cancer cases in cats, understanding the drug's pharmacokinetics in feline subjects remains a critical yet unexplored area. Hence, this study investigated the pharmacokinetic profile of doxorubicin after slow intravenous administration of doxorubicin hydrochloride (DOX·HCl) or doxorubicin hydrochloride pegylated liposome (DOX·HCl-PLI) in twelve cats at a single dose of 20 mg/m2. Blood samples collected at pretreatment time (0 h) and over 192 h were analyzed using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). The obtained pharmacokinetic parameters of doxorubicin revealed significant differences between the two formulations and were as follows: elimination half-life (T1/2λz) of 5.00 ± 3.20 h (DOX·HCl) and 17.62 ± 8.13 h (DOX·HCl-PLI), area under the concentration/time curve from 0 to last point (AUClast) of 0.67 ± 0.12 µg hr./mL (DOX·HCl) and 783.09 ± 267.29 µg hr./mL (DOX·HCl-PLI), and total body clearance (CL_obs) of 27098.58 ± 5205.19 mL/h/m2 (DOX·HCl) and 28.65 ± 11.09 mL/h/m2 (DOX·HCl-PLI). Additionally, differences were also detected in the apparent volume of distribution (Vz_obs) with 178.56 ± 71.89 L/m2 (DOX·HCl) and 0.64 ± 0.20 L/m2 (DOX·HCl-PLI), and the maximum plasma concentration (Cmax) with 2.25 ± 0.30 µg/mL (DOX·HCl) and 24.02 ± 5.45 µg/mL (DOX·HCl-PLI). Notably, low concentration of doxorubicinol, the metabolite of doxorubicin, was detected in plasma after administration of DOX·HCl, with even less present when DOX·HCl-PLI was administered. This investigation provides valuable insights into the distinct pharmacokinetic behaviors of DOX·HCl and DOX·HCl-PLI in cats, contributing essential groundwork for future studies and potential clinical applications in feline oncology.

13.
ACS Appl Mater Interfaces ; 16(15): 18449-18458, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578282

ABSTRACT

Developing novel antibacterial strategies has become an urgent requisite to overcome the increasing pervasiveness of antimicrobial-resistant bacteria and the advent of biofilms. Aggregation-induced emission-based photosensitizers (AIE PSs) are promising candidates due to their unique photodynamic and photothermal properties. Bioengineering structure-inherent AIE PSs for developing thin film coatings is still an unexplored area in the field of nanoscience. We have adopted a synergistic approach combining plasma technology and AIE PS-based photodynamic therapy to develop coatings that can eradicate bacterial infections. Here, we loaded AIE PSs within biomimetic bacterium-like particles derived from a probiotic strain, Lactobacillus fermentum. These hybrid conjugates are then immobilized on polyoxazoline-coated substrates to develop a bioinspired coating to fight against implant-associated infections. These coatings could selectively kill Gram-positive and Gram-negative bacteria, but not damage mammalian cells. The mechanistic studies revealed that the coatings can generate reactive oxygen species that can rupture the bacterial cell membranes. The mRNA gene expression of proinflammatory cytokines confirmed that they can modulate infection-related immune responses. Thus, this nature-inspired design has opened a new avenue for the fabrication of a next-generation antibacterial coating to reduce infections and associated burdens.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Animals , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/chemistry , Biomimetics , Gram-Negative Bacteria , Gram-Positive Bacteria , Bacteria , Postoperative Complications , Mammals
14.
Viruses ; 16(4)2024 03 31.
Article in English | MEDLINE | ID: mdl-38675892

ABSTRACT

Canine distemper virus (CDV) can cause fatal infections in giant pandas. Vaccination is crucial to prevent CDV infection in giant pandas. In this study, two bacterium-like particle vaccines F3-GEM and H4-GEM displaying the trimeric F protein or tetrameric H protein of CDV were constructed based on the Gram-positive enhanced-matrix protein anchor (GEM-PA) surface display system. Electron microscopy and Western blot results revealed that the F or H protein was successfully anchored on the surface of GEM particles. Furthermore, one more bacterium-like particle vaccine F3 and H4-GEM was also designed, a mixture consisting of F3-GEM and H4-GEM at a ratio of 1:1. To evaluate the effect of the three vaccines, mice were immunized with F3-GEM, H4-GEM or F3 and H4-GEM. It was found that the level of IgG-specific antibodies and neutralizing antibodies in the F3 and H4-GEM group was higher than the other two groups. Additionally, F3 and H4-GEM also increased the secretion of Th1-related and Th2-related cytokines. Moreover, F3 and H4-GEM induce IgG and neutralizing antibodies' response in dogs. Conclusions: In summary, F3 and H4-GEM can provoke better immune responses to CDV in mice and dogs. The bacterium-like particle vaccine F3 and H4-GEM might be a potential vaccine candidate for giant pandas against CDV infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Distemper Virus, Canine , Distemper , Viral Vaccines , Animals , Distemper Virus, Canine/immunology , Dogs , Mice , Distemper/prevention & control , Distemper/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Female , Immunoglobulin G/blood , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Mice, Inbred BALB C , Cytokines/metabolism , Vaccination
15.
J Med Case Rep ; 18(1): 363, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39123243

ABSTRACT

BACKGROUND: Due to its unique anatomical characteristics, supracondylar fractures of the humerus are often difficult to achieve firm fixation with internal fixation equipment, resulting in delayed functional exercise, often leaving cubitus varus deformity, elbow stiffness, contractures, and other complications. Here, we report an adult patient with a supracondylar fracture of the humerus who underwent internal fixation through an anterior median incision in the humerus with our self-developed anterior anatomical locking plate of the distal humerus. CASE PRESENTATION: A 29-year-old male patient of Chinese ethnicity with trauma-induced right supracondylar fracture of the humerus and multiple soft tissue contusions, without nerve damage, blood vessel damage, or other injuries, underwent an internal incision in our hospital using a new anatomical locking plate for the anterior distal humerus fixed treatment. During the 16-month follow-up period, the patient's elbow range of motion was almost completely restored, functional scores were excellent, and there were no minor or major postoperative complications. CONCLUSION: In this study, we propose a surgical reconstruction strategy for adult patients with supracondylar humeral fractures. Through the anterior median incision of the humerus, open reduction and internal fixation were performed with an anatomic locking plate on the anterior side of the distal humerus to restore and fix the structure of the distal humerus, and satisfactory clinical results were achieved in our case.


Subject(s)
Bone Plates , Fracture Fixation, Internal , Humeral Fractures , Range of Motion, Articular , Humans , Male , Adult , Humeral Fractures/surgery , Fracture Fixation, Internal/methods , Elbow Joint/surgery , Treatment Outcome , Elbow Injuries
16.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-38123502

ABSTRACT

Anthocyanins are flavonoid-like substances that play important roles in plants' adaptation to various environmental stresses. In this research, we discovered that cytokinin (CK) alone could effectively induce the anthocyanin biosynthesis in Eucalyptus and many other perennial woody plant species, but not in tobacco and Arabidopsis, suggesting a diverse role of CK in regulating anthocyanin biosynthesis in different species. Transcriptomic and metabolomic strategies were used to further clarify the specific role of CK in regulating anthocyanin biosynthesis in Eucalyptus. The results showed that 801 and 2241 genes were differentially regulated at 6 and 24 h, respectively, after CK treatment. Pathway analysis showed that most of the differentially expressed genes were categorized into pathways related to cellular metabolism or transport of metabolites, including amino acids and sugars. The metabolomic results well supported the transcriptome data, which showed that most of the differentially regulated metabolites were related to the metabolism of sugar, amino acids and flavonoids. Moreover, CK treatment significantly induced the accumulation of sucrose in the CK-treated leaves, while sugar starvation mimicked by either defoliation or shading treatment of the basal leaves significantly reduced the sugar increase of the CK-treated leaves and thus inhibited CK-induced anthocyanin biosynthesis. The results of in vitro experiment also suggested that CK-induced anthocyanin in Eucalyptus was sugar-dependent. Furthermore, we identified an early CK-responsive transcription factor MYB113 in Eucalyptus, the expression of which was significantly upregulated by CK treatment in Eucalyptus, but was inhibited in Arabidopsis. Importantly, the overexpression of EgrMYB113 in the Eucalyptus hairy roots was associated with significant anthocyanin accumulation and upregulation of most of the anthocyanin biosynthetic genes. In conclusion, our study demonstrates a key role of CK in the regulation of anthocyanin biosynthesis in Eucalyptus, providing a molecular basis for further understanding the regulatory mechanism and diversity of hormone-regulated anthocyanin biosynthesis in different plant species.


Subject(s)
Arabidopsis , Eucalyptus , Anthocyanins/metabolism , Arabidopsis/genetics , Eucalyptus/genetics , Eucalyptus/metabolism , Sugars/metabolism , Cytokinins/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Microbiol Spectr ; 12(4): e0347723, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38456681

ABSTRACT

Canine distemper virus (CDV) poses a severe threat to both domesticated and wild animals, including multiple carnivores. With the continued expansion of its host range, there is an urgent need for the development of a safer and more effective vaccine. In this study, we developed subunit vaccines based on a bacterium-like particle (BLP) delivery platform containing BLPs-F and BLPs-H, which display the CDV F and H glycoprotein antigens, respectively, using the antigen-protein anchor fusions produced by a recombinant baculovirus insect cell expression system. The combination of BLPs-F and BLPs-H (CDV-BLPs), formulated with colloidal manganese salt [Mn jelly (MnJ)] adjuvant, triggered robust CDV-specific antibody responses and a substantial increase in the number of interferon gamma (IFN-γ)-secreting CD4+ and CD8+ T cells in mice. Dogs immunized intramuscularly with this vaccine not only produced CDV-specific IgG but also displayed elevated concentrations of IFN-γ and interleukin 6 in their serum, along with an increase of the CD3+CD4+ and CD3+CD8+ T cell subsets. Consequently, this heightened immune response provided effective protection against disease development and reduced viral shedding levels following challenge with a virulent strain. These findings suggest that this BLP-based subunit vaccine has the potential to become a novel canine distemper vaccine. IMPORTANCE: Many sensitive species require a safe and effective distemper vaccine. Non-replicating vaccines are preferred. We constructed subunit particles displaying canine distemper virus (CDV) antigens based on a bacterium-like particle (BLP) delivery platform. The CDV-BLPs formulated with theMn jelly adjuvant induced robust humoral and cell-mediated immune responses to CDV in mice and dogs, thereby providing effective protection against a virulent virus challenge. This work is an important step in developing a CDV subunit vaccine.


Subject(s)
Distemper Virus, Canine , Viral Vaccines , Dogs , Animals , Mice , Distemper Virus, Canine/genetics , Viral Vaccines/genetics , CD8-Positive T-Lymphocytes , Antibodies, Viral , Recombinant Proteins , Vaccines, Subunit/genetics
18.
Parasit Vectors ; 17(1): 277, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943202

ABSTRACT

BACKGROUND: Chicken coccidiosis is a protozoan disease that leads to considerable economic losses in the poultry industry. Live oocyst vaccination is currently the most effective measure for the prevention of coccidiosis. However, it provides limited protection with several drawbacks, such as poor immunological protection and potential reversion to virulence. Therefore, the development of effective and safe vaccines against chicken coccidiosis is still urgently needed. METHODS: In this study, a novel oral vaccine against Eimeria tenella was developed by constructing a recombinant Lactobacillus plantarum (NC8) strain expressing the E. tenella RON2 protein. We administered recombinant L. plantarum orally at 3, 4 and 5 days of age and again at 17, 18 and 19 days of age. Meanwhile, each chick in the commercial vaccine group was immunized with 3 × 102 live oocysts of coccidia. A total of 5 × 104 sporulated oocysts of E. tenella were inoculated in each chicken at 30 days. Then, the immunoprotection effect was evaluated after E. tenella infection. RESULTS: The results showed that the proportion of CD4+ and CD8+ T cells, the proliferative ability of spleen lymphocytes, inflammatory cytokine levels and specific antibody titers of chicks immunized with recombinant L. plantarum were significantly increased (P < 0.05). The relative body weight gains were increased and the number of oocysts per gram (OPG) was decreased after E. tenella challenge. Moreover, the lesion scores and histopathological cecum sections showed that recombinant L. plantarum can significantly relieve pathological damage in the cecum. The ACI was 170.89 in the recombinant L. plantarum group, which was higher than the 150.14 in the commercial vaccine group. CONCLUSIONS: These above results indicate that L. plantarum expressing RON2 improved humoral and cellular immunity and enhanced immunoprotection against E. tenella. The protective efficacy was superior to that of vaccination with the commercial live oocyst vaccine. This study suggests that recombinant L. plantarum expressing the RON2 protein provides a promising strategy for vaccine development against coccidiosis.


Subject(s)
Chickens , Coccidiosis , Eimeria tenella , Lactobacillus plantarum , Poultry Diseases , Protozoan Proteins , Protozoan Vaccines , Vaccination , Animals , Eimeria tenella/immunology , Eimeria tenella/genetics , Coccidiosis/prevention & control , Coccidiosis/veterinary , Coccidiosis/immunology , Poultry Diseases/prevention & control , Poultry Diseases/parasitology , Protozoan Vaccines/immunology , Protozoan Vaccines/genetics , Protozoan Vaccines/administration & dosage , Lactobacillus plantarum/genetics , Lactobacillus plantarum/immunology , Administration, Oral , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Vaccination/veterinary , Antibodies, Protozoan/blood , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics
19.
Plant Physiol Biochem ; 212: 108715, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761541

ABSTRACT

Light plays a pivotal role in regulating anthocyanin biosynthesis in plants, and the early light-responsive signals that initiate anthocyanin biosynthesis remain to be elucidated. In this study, we showed that the anthocyanin biosynthesis in Eucalyptus is hypersensitive to increased light intensity. The combined transcriptomic and metabolomic analyses were conducted on Eucalyptus leaves after moderate (ML; 100 µmol m-2 s-1) and high (HL; 300 µmol m-2 s-1) light intensity treatments. The results identified 1940, 1096, 1173, and 2756 differentially expressed genes at 6, 12, 24, and 36 h after HL treatment, respectively. The metabolomic results revealed the primary anthocyanin types, and other differentially accumulated flavonoids and phenylpropane intermediates that were produced in response to HL, which well aligned with the transcriptome results. Moreover, biochemical analysis showed that HL inhibited peroxidase activity and increased the ROS level in Eucalyptus leaves. ROS depletion through co-application of the antioxidants rutin, uric acid, and melatonin significantly reduced, and even abolished, anthocyanin biosynthesis induced by HL treatment. Additionally, exogenous application of hydrogen peroxide efficiently induced anthocyanin biosynthesis within 24 h, even under ML conditions, suggesting that ROS played a major role in activating anthocyanin biosynthesis. A HL-responsive MYB transcription factor EgrMYB113 was identified to play an important role in regulating anthocyanin biosynthesis by targeting multiple anthocyanin biosynthesis genes. Additionally, the results demonstrated that gibberellic acid and sugar signaling contributed to HL-induced anthocyanin biosynthesis. Conclusively, these results suggested that HL triggers multiple signaling pathways to induce anthocyanin biosynthesis, with ROS acting as indispensable mediators in Eucalyptus.


Subject(s)
Anthocyanins , Eucalyptus , Light , Reactive Oxygen Species , Eucalyptus/metabolism , Eucalyptus/genetics , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Gene Expression Regulation, Plant , Plant Leaves/metabolism
20.
Int Immunopharmacol ; 130: 111710, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38394888

ABSTRACT

Influenza virus is a kind of virus that poses several hazards of animal and human health. Therefore, it is important to develop an effective vaccine to prevent influenza. To this end we successfully packaged recombinant adenovirus rAd-NP-M2e-GFP expressing multiple copies of influenza virus conserved antigens NP and M2e and packaged empty vector adenovirus rAd-GFP. The effect of rAd-NP-M2e-GFP on the activation of dendritic cell (DC) in vitro and in vivo was detected by intranasal immunization. The results showed that rAd-NP-M2e-GFP promoted the activation of DC in vitro and in vivo. After the primary immunization and booster immunization of mice through the nasal immune way, the results showed that rAd-NP-M2e-GFP induced enhanced local mucosal-specific T cell responses, increased the content of SIgA in broncho alveolar lavage fluids (BALF) and triggered the differentiation of B cells in the germinal center. It is proved that rAd-NP-M2e-GFP can significantly elicit mucosal immunity and systemic immune response. In addition, rAd-NP-M2e-GFP could effectively protect mice after H1N1 influenza virus challenge. To lay the foundation and provide reference for further development of influenza virus mucosal vaccine in the future.


Subject(s)
Adenovirus Vaccines , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Animals , Mice , Humans , Adenoviridae/genetics , Immunization , Vaccines, Synthetic , Immunity, Mucosal , Mice, Inbred BALB C , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL