Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.327
Filter
Add more filters

Publication year range
1.
EMBO J ; 42(6): e111858, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36562188

ABSTRACT

Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.


Subject(s)
Solanum lycopersicum , Phosphorylation , Glutamate-Ammonia Ligase/metabolism , Peptides/metabolism , Plant Growth Regulators
2.
Proc Natl Acad Sci U S A ; 121(26): e2319623121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38889142

ABSTRACT

Solid organ transplantation mobilizes myeloid cells, including monocytes and macrophages, which are central protagonists of allograft rejection. However, myeloid cells can also be functionally reprogrammed by perioperative costimulatory blockade to promote a state of transplantation tolerance. Transplantation tolerance holds promise to reduce complications from chronic immunosuppression and promote long-term survival in transplant recipients. We sought to identify different mediators of transplantation tolerance by performing single-cell RNA sequencing of acute rejecting or tolerized cardiac allografts. This led to the unbiased identification of the transcription factor, hypoxia inducible factor (HIF)-2α, in a subset of tolerogenic monocytes. Using flow cytometric analyses and mice with conditional loss or gain of function, we uncovered that myeloid cell expression of HIF-2α was required for costimulatory blockade-induced transplantation tolerance. While HIF-2α was dispensable for mobilization of tolerogenic monocytes, which were sourced in part from the spleen, it promoted the expression of colony stimulating factor 1 receptor (CSF1R). CSF1R mediates monocyte differentiation into tolerogenic macrophages and was found to be a direct transcriptional target of HIF-2α in splenic monocytes. Administration of the HIF stabilizer, roxadustat, within micelles to target myeloid cells, increased HIF-2α in splenic monocytes, which was associated with increased CSF1R expression and enhanced cardiac allograft survival. These data support further exploration of HIF-2α activation in myeloid cells as a therapeutic strategy for transplantation tolerance.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Heart Transplantation , Macrophages , Monocytes , Transplantation Tolerance , Animals , Mice , Macrophages/metabolism , Macrophages/immunology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Transplantation Tolerance/immunology , Monocytes/immunology , Monocytes/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Graft Rejection/immunology , Graft Rejection/prevention & control , Graft Rejection/genetics , Mice, Inbred C57BL , Gene Expression Regulation/drug effects , Graft Survival/immunology , Graft Survival/drug effects , Male
3.
PLoS Pathog ; 19(11): e1011733, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37943805

ABSTRACT

Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.


Subject(s)
Plants , Sphingolipids , Humans , Animals , Sphingolipids/chemistry , Sphingolipids/metabolism , Plants/metabolism , Fungi/metabolism , Signal Transduction/physiology , Cell Membrane/metabolism , Mammals
4.
Plant Physiol ; 194(4): 2739-2754, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38214105

ABSTRACT

Phytosulfokine (PSK), a plant peptide hormone with a wide range of biological functions, is recognized by its receptor PHYTOSULFOKINE RECEPTOR 1 (PSKR1). Previous studies have reported that PSK plays important roles in plant growth, development, and stress responses. However, the involvement of PSK in fruit development and quality formation remains largely unknown. Here, using tomato (Solanum lycopersicum) as a research model, we show that exogenous application of PSK promotes the initiation of fruit ripening and quality formation, while these processes are delayed in pskr1 mutant fruits. Transcriptomic profiling revealed that molecular events and metabolic pathways associated with fruit ripening and quality formation are affected in pskr1 mutant lines and transcription factors are involved in PSKR1-mediated ripening. Yeast screening further identified that DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2F (DREB2F) interacts with PSKR1. Silencing of DREB2F delayed the initiation of fruit ripening and inhibited the promoting effect of PSK on fruit ripening. Moreover, the interaction between PSKR1 and DREB2F led to phosphorylation of DREB2F. PSK improved the efficiency of DREB2F phosphorylation by PSKR1 at the tyrosine-30 site, and the phosphorylation of this site increased the transcription level of potential target genes related to the ripening process and functioned in promoting fruit ripening and quality formation. These findings shed light on the involvement of PSK and its downstream signaling molecule DREB2F in controlling climacteric fruit ripening, offering insights into the regulatory mechanisms governing ripening processes in fleshy fruits.


Subject(s)
Peptide Hormones , Solanum lycopersicum , Solanum lycopersicum/genetics , Plant Proteins/metabolism , Fruit/metabolism , Phosphorylation , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Peptide Hormones/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Ethylenes/metabolism
5.
Plant Physiol ; 195(2): 1025-1037, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38447060

ABSTRACT

Global climate change is accompanied by carbon dioxide (CO2) enrichment and high temperature (HT) stress; however, how plants adapt to the combined environments and the underlying mechanisms remain largely unclear. In this study, we show that elevated CO2 alleviated plant sensitivity to HT stress, with significantly increased apoplastic glucose (Glc) levels in tomato (Solanum lycopersicum) leaves. Exogenous Glc treatment enhanced tomato resilience to HT stress under ambient CO2 conditions. Cell-based biolayer interferometry, subcellular localization, and Split-luciferase assays revealed that Glc bound to the tomato regulator of G protein signaling 1 (RGS1) and induced RGS1 endocytosis and thereby RGS1-G protein α subunit (GPA1) dissociation in a concentration-dependent manner. Using rgs1 and gpa1 mutants, we found that RGS1 negatively regulated thermotolerance and was required for elevated CO2-Glc-induced thermotolerance. GPA1 positively regulated the elevated CO2-Glc-induced thermotolerance. A combined transcriptome and chlorophyll fluorescence parameter analysis further revealed that GPA1 integrated photosynthesis- and photoprotection-related mechanisms to regulate thermotolerance. These results demonstrate that Glc-RGS1-GPA1 signaling plays a crucial role in the elevated CO2-induced thermotolerance in tomato. This information enhances our understanding of the Glc-G protein signaling function in stress resilience in response to global climate change and will be helpful for genetic engineering approaches to improve plant resilience.


Subject(s)
Carbon Dioxide , Glucose , Signal Transduction , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Carbon Dioxide/metabolism , Glucose/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Hot Temperature , Gene Expression Regulation, Plant , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Photosynthesis , Plant Leaves/metabolism , Plant Leaves/physiology , RGS Proteins/metabolism , RGS Proteins/genetics , Thermotolerance/physiology
6.
Nucleic Acids Res ; 51(7): 3270-3287, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36864746

ABSTRACT

Many prokaryotic viruses are temperate and their reactivation is tightly regulated. However, except for a few bacterial model systems, the regulatory circuits underlying the exit from lysogeny are poorly understood, especially in archaea. Here, we report a three-gene module which regulates the switch between lysogeny and replicative cycle in a haloarchaeal virus SNJ2 (family Pleolipoviridae). The SNJ2 orf4 encodes a winged helix-turn-helix DNA binding protein which maintains lysogeny through repressing the expression of the viral integrase gene intSNJ2. To switch to the induced state, two other SNJ2-encoded proteins, Orf7 and Orf8, are required. Orf8 is a homolog of cellular AAA+ ATPase Orc1/Cdc6, which is activated upon mitomycin C-induced DNA damage, possibly through posttranslational modification. Activated Orf8 initiates the expression of Orf7 which, in turn, antagonizes the function of Orf4, leading to the transcription of intSNJ2, thereby switching SNJ2 to the induced state. Comparative genomics analysis revealed that the SNJ2-like Orc1/Cdc6-centered three-gene module is common in haloarchaeal genomes, always present in the context of integrated proviruses. Collectively, our results uncover the first DNA damage signaling pathway encoded by a temperate archaeal virus and reveal an unexpected role of the widely distributed virus-encoded Orc1/Cdc6 homologs.


Subject(s)
Lysogeny , Viruses , Lysogeny/genetics , Viruses/genetics , Proviruses/genetics , DNA Viruses/genetics , DNA, Viral/genetics , DNA Damage , Signal Transduction/genetics
7.
Nano Lett ; 24(11): 3476-3483, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38445608

ABSTRACT

Experiments have demonstrated that mild humidity can enhance the stability of the CsPbBr3 perovskite, though the underlying mechanism remains unclear. Utilizing ab initio molecular dynamics, ring polymer molecular dynamics, and non-adiabatic molecular dynamics, our study reveals that nuclear quantum effects (NQEs) play a crucial role in stabilizing the lattice rigidity of the perovskite while simultaneously shortening the charge carrier lifetime. NQEs reduce the extent of geometric disorder and the number of atomic fluctuations, diminish the extent of hole localization, and thereby improve the electron-hole overlap and non-adiabatic coupling. Concurrently, these effects significantly suppress phonon modes and slow decoherence. As a result, these factors collectively accelerate charge recombination by a factor of 1.42 compared to that in scenarios excluding NQEs. The resulting sub-10 ns recombination time scales align remarkably well with experimental findings. This research offers novel insight into how moisture resistance impacts the stability and charge carrier lifetime in all-inorganic perovskites.

8.
Dev Biol ; 493: 80-88, 2023 01.
Article in English | MEDLINE | ID: mdl-36368521

ABSTRACT

Bones and articular cartilage are important load-bearing tissues. The fluid flow inside the bone cells and cell interaction with the extracellular matrix serve as the mechanical cues for bones and joints. Piezo1 is an ion channel found on the cell surface of many cell types, including osteocytes and chondrocytes. It is activated in response to mechanical stimulation, which subsequently mediates a variety of signaling pathways in osteoblasts, osteocytes, and chondrocytes. Piezo1 activation in osteoblastic cells positively regulates osteogenesis, while its activation in joints mediates cartilage degradation. This review focuses on the most recent research on Piezo1 in bone development and regeneration.


Subject(s)
Bone and Bones , Chondrocytes , Stress, Mechanical , Chondrocytes/physiology , Homeostasis , Biophysics
9.
J Am Chem Soc ; 146(1): 1109-1121, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38141046

ABSTRACT

The energy dissipative features of hydrogen bonds under conditions of mechanical strain have provided an ongoing incentive to explore hydrogen bonding units for the purpose of controlling and customizing the mechanical properties of polymeric materials. However, there remains a need for hydrogen bond units that (1) possess directionality, (2) provide selectivity, (3) dissipate energy effectively, and (4) can be incorporated readily into polymeric materials to regulate their mechanical properties. Here, we report mechanically interlocked hydrogen bond units that incorporate multiple hydrogen bonds within a [2]catenane structure. The conformational flexibility and associated spatial folding characteristics of the [2]catenane units allow for molecular scale motion under external stress, while the interlocked structure serves as a pivot that maintains the directionality and selectivity of the resultant hydrogen bonding units. When incorporated into polymers, these interlocked hydrogen bond motifs serve to strengthen and toughen the resulting materials. This study not only presents a novel hydrogen bond unit for creating polymeric materials with improved mechanical properties but also underscores the unique opportunities that mechanically interlocked hydrogen bond structures may provide across a diverse range of applications.

10.
Article in English | MEDLINE | ID: mdl-38961845

ABSTRACT

There are diverse pathophysiological mechanisms involved in acute kidney injury (AKI). Among them, overactivity of the renin angiotensin system (RAS) has been described. Angiotensin converting enzyme 2 (ACE2) is a tissue RAS enzyme expressed in the apical border of proximal tubules. Given the important role of ACE2 in the metabolism of Angiotensin II this study was aimed to characterize kidney and urinary ACE2 in amouse model of AKI. Ischemia reperfusion injury (IRI) was induced in C57BL/6 mice by clamping of the left renal artery followed by removal of the right kidney. In kidneys harvested 48 hours after IRI, immunostaining revealed a striking maldistribution of ACE2 including spillage into the tubular lumen and presence of ACE2 positive luminal casts in the medulla. In cortical membranes ACE2 protein and enzymatic activity were both markedly reduced (37±4 vs. 100±6 ACE2/ß-Actin, P=0.0004 and 96±14 vs. 152±6 RFU/µg protein/h P=0.006). In urine, the full-length membrane bound ACE2 protein (100kD) was markedly increased (1120±405 vs. 100±46 ACE2/µg Crea, P=0.04) and casts stained for ACE2 were recovered in the urine sediment. In AKI caused by IRI there is a marked loss of ACE2 from the apical tubular border with deposition of ACE2 positive material in the medulla and increased urinary excretion of the full length-membrane bound ACE2 protein. The deficiency of tubular ACE2 in AKI suggests that provision of this enzyme could have therapeutic applications and that its excretion in the urine may also serve as a diagnostic marker of severe proximal tubular injury.

11.
Anal Chem ; 96(22): 9244-9253, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38773697

ABSTRACT

Sensitive identification and effective inactivation of the virus are paramount for the early diagnosis and treatment of viral infections to prevent the risk of secondary transmission of viruses in the environment. Herein, we developed a novel two-step fluorescence immunoassay using antibody/streptavidin dual-labeled polystyrene nanobeads and biotin-labeled G-quadruplex/hemin DNAzymes with peroxidase-mimicking activity for sensitive quantitation and efficient inactivation of living Zika virus (ZIKV). The dual-labeled nanobeads can specifically bind ZIKV through E protein targeting and simultaneously accumulate DNAzymes, leading to the catalytic oxidation of Amplex Red indicators and generation of intensified aggregation-induced emission fluorescence signals, with a detection limit down to 66.3 PFU/mL and 100% accuracy. Furthermore, robust reactive oxygen species generated in situ by oxidized Amplex Red upon irradiation can completely kill the virus. This sensitive and efficient detection-inactivation integrated system will expand the viral diagnostic tools and reduce the risk of virus transmission in the environment.


Subject(s)
DNA, Catalytic , Zika Virus , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Immunoassay/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Limit of Detection , G-Quadruplexes , Virus Inactivation/radiation effects , Humans
12.
Anal Chem ; 96(6): 2651-2657, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38306178

ABSTRACT

In vivo sensing of the dynamics of ions with high selectivity is essential for gaining molecular insights into numerous physiological and pathological processes. In this work, we report an ion-selective micropipette sensor (ISMS) through the integration of functional crown ether-encapsulated metal-organic frameworks (MOFs) synthesized in situ within the micropipette tip. The ISMS features distinctive sodium ion (Na+) conduction and high selectivity toward Na+ sensing. The selectivity is attributed to the synergistic effects of subnanoconfined space and the specific coordination of 18-crown-6 toward potassium ions (K+), which largely increase the steric hindrance and transport resistance for K+ to pass through the ISMS. Furthermore, the ISMS exhibits high stability and sensitivity, facilitating real-time monitoring of Na+ dynamics in the living rat brain during spreading of the depression events process. In light of the diversity of crown ethers and MOFs, we believe this study paves the way for a nanofluidic platform for in vivo sensing and neuromorphic electrochemical sensing.


Subject(s)
Crown Ethers , Metal-Organic Frameworks , Crown Ethers/chemistry , Sodium/chemistry , Ions/chemistry , Potassium/chemistry
13.
Genome Res ; 31(4): 592-606, 2021 04.
Article in English | MEDLINE | ID: mdl-33687945

ABSTRACT

The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.


Subject(s)
Adaptation, Physiological/genetics , Climate Change , Genome, Plant/genetics , Genomics , Prunus persica/genetics
14.
J Transl Med ; 22(1): 206, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414027

ABSTRACT

BACKGROUND: The global cellular landscape of the tumor microenvironment (TME) combining primary and metastatic liver tumors has not been comprehensively characterized. METHODS: Based on the scRNA-seq and spatial transcriptomic data of non-tumor liver tissues (NTs), primary liver tumors (PTs) and metastatic liver tumors (MTs), we performed the tissue preference, trajectory reconstruction, transcription factor activity inference, cell-cell interaction and cellular deconvolution analyses to construct a comprehensive cellular landscape of liver tumors. RESULTS: Our analyses depicted the heterogeneous cellular ecosystems in NTs, PTs and MTs. The activated memory B cells and effector T cells were shown to gradually shift to inhibitory B cells, regulatory or exhausted T cells in liver tumors, especially in MTs. Among them, we characterized a unique group of TCF7+ CD8+ memory T cells specifically enriched in MTs that could differentiate into exhausted T cells likely driven by the p38 MAPK signaling. With regard to myeloid cells, the liver-resident macrophages and inflammatory monocyte/macrophages were markedly replaced by tumor-associated macrophages (TAMs), with TREM2+ and UBE2C+ TAMs enriched in PTs, while SPP1+ and WDR45B+ TAMs in MTs. We further showed that the newly identified WDR45B+ TAMs exhibit an M2-like polarization and are associated with adverse prognosis in patients with liver metastases. Additionally, we addressed that endothelial cells display higher immune tolerance and angiogenesis capacity, and provided evidence for the source of the mesenchymal transformation of fibroblasts in tumors. Finally, the malignant hepatocytes and fibroblasts were prioritized as the pivotal cell populations in shaping the microenvironments of PTs and MTs, respectively. Notably, validation analyses by using spatial or bulk transcriptomic data in clinical cohorts concordantly emphasized the clinical significance of these findings. CONCLUSIONS: This study defines the ontological and functional heterogeneities in cellular ecosystems of primary and metastatic liver tumors, providing a foundation for future investigation of the underlying cellular mechanisms.


Subject(s)
Endothelial Cells , Liver Neoplasms , Humans , Ecosystem , Liver Neoplasms/genetics , Gene Expression Profiling , Tumor Microenvironment
15.
J Med Virol ; 96(6): e29687, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783821

ABSTRACT

Pregnancy heightens susceptibility to influenza A virus (IAV) infection, thereby increasing the risk of severe pneumonia and maternal mortality. It also raises the chances of adverse outcomes in offspring, such as fetal growth restriction, preterm birth, miscarriage, and stillbirth in offsprings. However, the underlying mechanisms behind these effects remain largely unknown. Syncytiotrophoblast cells, crucial in forming the placental barrier, nutrient exchange and hormone secretion, have not been extensively studied for their responses to IAV. In our experiment, we used Forskolin-treated BeWo cells to mimic syncytiotrophoblast cells in vitro, and infected them with H1N1, H5N1 and H7N9 virus stains. Our results showed that syncytiotrophoblast cells, with their higher intensity of sialic acid receptors, strongly support IAV infection and replication. Notably, high-dose viral infection and prolonged exposure resulted in a significant decrease in fusion index, as well as gene and protein expression levels associated with trophoblast differentiation, ß-human chorionic gonadotropin secretion, estrogen and progesterone biosynthesis, and nutrient transport. In pregnant BALB/c mice infected with the H1N1 virus, we observed significant decreases in trophoblast differentiation and hormone secretion gene expression levels. IAV infection also resulted in preterm labor, fetal growth restriction, and increased maternal and fetal morbidity and mortality. Our findings indicate that IAV infection in syncytiotrophoblastic cells can result in adverse pregnancy outcomes by altering trophoblast differentiation, suppressing of ß-hCG secretion, and disrupting placental barrier function.


Subject(s)
Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Pregnancy Outcome , Trophoblasts , Female , Trophoblasts/virology , Pregnancy , Animals , Humans , Influenza A Virus, H1N1 Subtype/physiology , Mice , Orthomyxoviridae Infections/virology , Influenza, Human/virology , Cell Line , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza A Virus, H7N9 Subtype/pathogenicity , Pregnancy Complications, Infectious/virology , Placenta/virology , Virus Replication
16.
Osteoporos Int ; 35(4): 613-623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38062161

ABSTRACT

An independent correlation between pre-RDW and 1-year mortality after surgery in elderly hip fracture can be used to predict mortality in elderly hip fracture patients and has predictive significance in anemia patients. With further research, a treatment algorithm can be developed to potentially identify patients at high risk of preoperative mortality. INTRODUCTION: Red blood cell distribution width (RDW) is an independent predictor of various disease states in elderly individuals, but its association with the prognosis of elderly hip fracture patients is controversial. This study aimed to evaluate the prognostic value of RDW in such patients, construct a prediction model containing RDW using random survival forest (RSF) and Cox regression analysis, and compare RDW in patients with and without anemia. METHODS: We retrospectively analyzed the data of elderly patients who underwent hip fracture surgery, selected the best variables using RSF, stratified the independent variables by Cox regression analysis, constructed a 1-year mortality prediction model of elderly hip fracture with RDW, and conducted internal validation and external validation. RESULTS: Two thousand one hundred six patients were included in this study. The RSF algorithm selects 12 important influencing factors, and Cox regression analysis showed that eight variables including preoperative RDW (pre-RDW) were independent risk factors for death within 1-year after hip fracture surgery in elderly patients. Stratified analysis showed that pre-RDW was still independently associated with 1-year mortality in the non-anemia group and not in the anemia group. The nomogram prediction model had high differentiation and fit, and the prediction model constructed by the total cohort of patients was also used for validation of patients in the anemia patients and obtained good clinical benefits. CONCLUSION: An independent correlation between pre-RDW and 1-year mortality after surgery in elderly hip fracture can be used to predict mortality in elderly hip fracture patients and has predictive significance in anemia patients.


Subject(s)
Anemia , Hip Fractures , Humans , Aged , Erythrocyte Indices , Retrospective Studies , Odds Ratio , Anemia/complications , Prognosis
17.
Br J Psychiatry ; 224(6): 213-220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38328972

ABSTRACT

BACKGROUND: It remains unclear whether cognitive reserve can attenuate dementia risk among people with different genetic predispositions. AIMS: We aimed to examine the association between cognitive reserve and dementia, and further to explore whether and to what extent cognitive reserve may modify the risk effect of genetic factors on dementia. METHOD: Within the UK Biobank, 210 631 dementia-free participants aged ≥60 years were followed to detect incident dementia. Dementia was ascertained through medical and death records. A composite cognitive reserve indicator encompassing education, occupation and multiple cognitively loaded activities was created using latent class analysis, categorised as low, moderate and high level. Polygenic risk scores for Alzheimer's disease were constructed to evaluate genetic risk for dementia, categorised by tertiles (high, moderate and low). Data were analysed using Cox models and Laplace regression. RESULTS: In multi-adjusted Cox models, the hazard ratio (HR) of dementia was 0.66 (95% confidence interval (CI) 0.61-0.70) for high cognitive reserve compared with low cognitive reserve. In Laplace regression, participants with high cognitive reserve developed dementia 1.62 (95% CI 1.35-1.88) years later than those with low cognitive reserve. In stratified analysis by genetic risk, high cognitive reserve was related to more than 30% lower dementia risk compared with low cognitive reserve in each stratum. There was an additive interaction between low cognitive reserve and high genetic risk on dementia (attributable proportion 0.24, 95% CI 0.17-0.31). CONCLUSIONS: High cognitive reserve is associated with reduced risk of dementia and may delay dementia onset. Genetic risk for dementia may be mitigated by high cognitive reserve. Our findings underscore the importance of enhancing cognitive reserve in dementia prevention.


Subject(s)
Cognitive Reserve , Dementia , Multifactorial Inheritance , Aged , Female , Humans , Male , Middle Aged , Dementia/genetics , Dementia/epidemiology , Genetic Predisposition to Disease , Proportional Hazards Models , Risk Factors , UK Biobank , United Kingdom/epidemiology
18.
Virol J ; 21(1): 19, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38229145

ABSTRACT

BACKGROUND: This study aimed to investigate the epidemiology of high-risk human papillomavirus (HPV) in the female population in Beijing, China, and identify the relationship between HPV genotypes and host factors. METHODS: HPV testing was performed on women aged 15-89 (mean age 38.0 ± 10.9 years) from Beijing in 2020. High-risk HPV genotyping real-time polymerase chain reaction was used to determine HPV genotypes. The overall prevalence, age-specific prevalence, genotype distribution, and the correlation between HPV genotypes and cervical cytology were analyzed. RESULTS: Among the 25,344 study participants, the single and double infection rates were 18.8% (4,777/25,344) and 4.2% (1,072/25,344), respectively. A total of 6,119 HPV-positive individuals were found to have 91.6% negative results for intraepithelial lesion or malignancy (NILM), 5.8% atypical squamous cells of undetermined significance (ASC-US), 0.9% low-grade squamous intraepithelial lesion (LSIL), and 1.7% high-grade squamous intraepithelial lesion (HSIL). In single HPV infections, the HPV16 genotype was highly associated with cervical cytology severity (χ2 trend = 172.487, P < 0.001). Additionally, HPV infection rates increased gradually with age, and statistical differences were observed across age groups (χ2 = 180.575; P < 0.001). High-risk HPV genotypes were highly prevalent in women below 25 years of age and those aged 55-59 years. Cluster analysis revealed that the 13 HPV genotypes could be roughly divided into two groups in a single infection; however, patterns of infection consistent with biological characteristics were not observed. CONCLUSION: High-risk HPV was found in 24.1% of outpatients, with HPV52, HPV58, HPV16, HPV39, and HPV51 being the most common high-risk genotypes. Single high-risk HPV infection was predominant. HPV16, HPV39, HPV51, and HPV52 were associated with cervical lesion progression. HPV16 infection was especially worrying since it aggravates cervical lesions. Because the infection rates of the 13 HPV genotypes differed by age, the peak HPV infection rate should not guide vaccination, screening, and prevention programs. Instead, these initiatives should be tailored based on the regional HPV distribution characteristics. Moreover, it was determined that Beijing's populace needed to receive treatment for HPV39 infection.


Subject(s)
Alphapapillomavirus , Human Papillomavirus Viruses , Human papillomavirus 18 , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Adult , Middle Aged , Beijing/epidemiology , Uterine Cervical Neoplasms/diagnosis , China/epidemiology , Papillomaviridae/genetics , Genotype , Prevalence
19.
Cell Commun Signal ; 22(1): 19, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195499

ABSTRACT

The cell cycle is pivotal to cellular differentiation in plant pathogenic fungi. Cell wall integrity (CWI) signaling plays an essential role in coping with cell wall stress. Autophagy is a degradation process in which cells decompose their components to recover macromolecules and provide energy under stress conditions. However, the specific association between cell cycle, autophagy and CWI pathway remains unclear in model pathogenic fungi Magnaporthe oryzae. Here, we have identified MoSwe1 as the conserved component of the cell cycle in the rice blast fungus. We have found that MoSwe1 targets MoMps1, a conserved critical MAP kinase of the CWI pathway, through protein phosphorylation that positively regulates CWI signaling. The CWI pathway is abnormal in the ΔMoswe1 mutant with cell cycle arrest. In addition, we provided evidence that MoSwe1 positively regulates autophagy by interacting with MoAtg17 and MoAtg18, the core autophagy proteins. Moreover, the S phase initiation was earlier, the morphology of conidia and appressoria was abnormal, and septum formation and glycogen degradation were impaired in the ΔMoswe1 mutant. Our research defines that MoSWE1 regulation of G1/S transition, CWI pathway, and autophagy supports its specific requirement for appressorium development and virulence in plant pathogenic fungi. Video Abstract.


Subject(s)
Ascomycota , Cell Cycle , Autophagy , Cell Wall
20.
Diabetes Obes Metab ; 26(1): 32-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37722965

ABSTRACT

AIM: To investigate the therapeutic effects and immunomodulatory mechanisms of human placenta-derived mesenchymal stem cells (PMSCs) in diabetic kidney disease (DKD). METHODS: Streptozotocin-induced DKD rats were administered an equivalent volume of saline or PMSCs (1 × 106 in 2 mL phosphate-buffered saline per rat) for 3 weeks. Eight weeks after treatment, we examined the biochemical parameters in the blood and urine, the ratio of T helper 17 cells (Th17) and regulatory T cells (Treg) in the blood, cytokine levels in the kidney and blood, and renal histopathological changes. In addition, we performed PMSC tracing and renal transcriptomic analyses using RNA-sequencing. Finally, we determined whether PMSCs modulated the Th17/Treg balance by upregulating programmed death 1 (PD-1) in vitro. RESULTS: The PMSCs significantly improved renal function, which was assessed by serum creatinine levels, urea nitrogen, cystatin C levels, urinary albumin-creatinine ratio, and the kidney index. Further, PMSCs alleviated pathological changes, including tubular vacuolar degeneration, mesangial matrix expansion, and glomerular filtration barrier injury. In the DKD rats in our study, PMSCs were mainly recruited to immune organs, rather than to the kidney or pancreas. PMSCs markedly promoted the Th17/Treg balance and reduced the levels of pro-inflammatory cytokines (interleukin [IL]-17A and IL-1ß) in the kidney and blood of DKD rats. In vitro experiments showed that PMSCs significantly reduced the proportion of Th17 cells and increased the proportion of Treg cells by upregulating PD-1 in a cell-cell contact manner and downregulating programmed death-ligand 1 (PD-L1) expression in PMSCs, which reversed the Th17/Treg balance. CONCLUSION: We found that PMSCs improved renal function and pathological damage in DKD rats and modulated Th17/Treg balance through the PD-1/PD-L1 pathway. These findings provide a novel mechanism and basis for the clinical use of PMSCs in the treatment of DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mesenchymal Stem Cells , Humans , Rats , Animals , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/pharmacology , Diabetic Nephropathies/therapy , Diabetic Nephropathies/metabolism , Programmed Cell Death 1 Receptor/metabolism , Ligands , Immunologic Factors/pharmacology , Cytokines/metabolism , Cytokines/pharmacology , Mesenchymal Stem Cells/metabolism , Diabetes Mellitus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL