Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Pharmacol Exp Ther ; 362(1): 146-160, 2017 07.
Article in English | MEDLINE | ID: mdl-28473457

ABSTRACT

Potent and selective antagonists of the voltage-gated sodium channel NaV1.7 represent a promising avenue for the development of new chronic pain therapies. We generated a small molecule atropisomer quinolone sulfonamide antagonist AMG8379 and a less active enantiomer AMG8380. Here we show that AMG8379 potently blocks human NaV1.7 channels with an IC50 of 8.5 nM and endogenous tetrodotoxin (TTX)-sensitive sodium channels in dorsal root ganglion (DRG) neurons with an IC50 of 3.1 nM in whole-cell patch clamp electrophysiology assays using a voltage protocol that interrogates channels in a partially inactivated state. AMG8379 was 100- to 1000-fold selective over other NaV family members, including NaV1.4 expressed in muscle and NaV1.5 expressed in the heart, as well as TTX-resistant NaV channels in DRG neurons. Using an ex vivo mouse skin-nerve preparation, AMG8379 blocked mechanically induced action potential firing in C-fibers in both a time-dependent and dose-dependent manner. AMG8379 similarly reduced the frequency of thermally induced C-fiber spiking, whereas AMG8380 affected neither mechanical nor thermal responses. In vivo target engagement of AMG8379 in mice was evaluated in multiple NaV1.7-dependent behavioral endpoints. AMG8379 dose-dependently inhibited intradermal histamine-induced scratching and intraplantar capsaicin-induced licking, and reversed UVB radiation skin burn-induced thermal hyperalgesia; notably, behavioral effects were not observed with AMG8380 at similar plasma exposure levels. AMG8379 is a potent and selective NaV1.7 inhibitor that blocks sodium current in heterologous cells as well as DRG neurons, inhibits action potential firing in peripheral nerve fibers, and exhibits pharmacodynamic effects in translatable models of both itch and pain.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/drug effects , Sodium Channel Blockers/pharmacology , Action Potentials/drug effects , Animals , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Humans , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Myocardium/metabolism , Neurons/drug effects , Pain/prevention & control , Pain/psychology , Patch-Clamp Techniques , Pruritus/prevention & control , Pruritus/psychology , Quinolones/pharmacology , Small Molecule Libraries , Stereoisomerism , Sulfonamides/pharmacology
2.
Proc Natl Acad Sci U S A ; 108(37): 15426-31, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21876146

ABSTRACT

The α-scorpions toxins bind to the resting state of Na(+) channels and inhibit fast inactivation by interaction with a receptor site formed by domains I and IV. Mutants T1560A, F1610A, and E1613A in domain IV had lower affinities for Leiurus quinquestriatus hebraeus toxin II (LqhII), and mutant E1613R had ~73-fold lower affinity. Toxin dissociation was accelerated by depolarization and increased by these mutations, whereas association rates at negative membrane potentials were not changed. These results indicate that Thr1560 in the S1-S2 loop, Phe1610 in the S3 segment, and Glu1613 in the S3-S4 loop in domain IV participate in toxin binding. T393A in the SS2-S6 loop in domain I also had lower affinity for LqhII, indicating that this extracellular loop may form a secondary component of the receptor site. Analysis with the Rosetta-Membrane algorithm resulted in a model of LqhII binding to the voltage sensor in a resting state, in which amino acid residues in an extracellular cleft formed by the S1-S2 and S3-S4 loops in domain IV interact with two faces of the wedge-shaped LqhII molecule. The conserved gating charges in the S4 segment are in an inward position and form ion pairs with negatively charged amino acid residues in the S2 and S3 segments of the voltage sensor. This model defines the structure of the resting state of a voltage sensor of Na(+) channels and reveals its mode of interaction with a gating modifier toxin.


Subject(s)
Scorpion Venoms/metabolism , Sodium Channels/chemistry , Sodium Channels/metabolism , Amino Acids/metabolism , Ion Channel Gating , Kinetics , Models, Molecular , Mutation/genetics , Protein Structure, Tertiary , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Recombinant Proteins/metabolism
3.
J Biol Chem ; 286(40): 35209-17, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21832067

ABSTRACT

Neurotoxin receptor site-3 at voltage-gated Na(+) channels is recognized by various peptide toxin inhibitors of channel inactivation. Despite extensive studies of the effects of these toxins, their mode of interaction with the channel remained to be described at the molecular level. To identify channel constituents that interact with the toxins, we exploited the opposing preferences of LqhαIT and Lqh2 scorpion α-toxins for insect and mammalian brain Na(+) channels. Construction of the DIV/S1-S2, DIV/S3-S4, DI/S5-SS1, and DI/SS2-S6 external loops of the rat brain rNa(v)1.2a channel (highly sensitive to Lqh2) in the background of the Drosophila DmNa(v)1 channel (highly sensitive to LqhαIT), and examination of toxin activity on the channel chimera expressed in Xenopus oocytes revealed a substantial decrease in LqhαIT effect, whereas Lqh2 was as effective as at rNa(v)1.2a. Further substitutions of individual loops and specific residues followed by examination of gain or loss in Lqh2 and LqhαIT activities highlighted the importance of DI/S5-S6 (pore module) and the C-terminal region of DIV/S3 (gating module) of rNa(v)1.2a for Lqh2 action and selectivity. In contrast, a single substitution of Glu-1613 to Asp at DIV/S3-S4 converted rNa(v)1.2a to high sensitivity toward LqhαIT. Comparison of depolarization-driven dissociation of Lqh2 and mutant derivatives off their binding site at rNa(v)1.2a mutant channels has suggested that the toxin core domain interacts with the gating module of DIV. These results constitute the first step in better understanding of the way scorpion α-toxins interact with voltage-gated Na(+)-channels at the molecular level.


Subject(s)
Scorpion Venoms/metabolism , Scorpions/metabolism , Sodium Channels/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , Brain/metabolism , DNA, Complementary/metabolism , Drosophila , Molecular Conformation , Molecular Sequence Data , Mutagenesis , Mutation , Neurotoxins/metabolism , Rats , Sea Anemones , Sequence Homology, Amino Acid , Xenopus
4.
Chem Commun (Camb) ; (1): 88-9, 2004 Jan 07.
Article in English | MEDLINE | ID: mdl-14737345

ABSTRACT

A number of lithium bonding systems (X-LiY) have been found in which the X-Li bond is shortened due to the lithium bond formation.

5.
ACS Chem Neurosci ; 3(3): 186-192, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22448304

ABSTRACT

The ligand binding site of Cys-loop receptors is dominated by aromatic amino acids. In GABA(C) receptors, these are predominantly tyrosine residues, with a number of other aromatic residues located in or close to the binding pocket. Here we examine the roles of these residues using substitution with both natural and unnatural amino acids followed by functional characterization. Tyr198 (loop B) has previously been shown to form a cation-π interaction with GABA; the current data indicate that none of the other aromatic residues form such an interaction, although the data indicate that both Tyr102 and Phe138 may contribute to stabilization of the positively charged amine of GABA. Tyr247 (loop C) was very sensitive to substitution and, combined with data from a model of the receptor, suggest a π-π interaction with Tyr241 (loop C); here again functional data show aromaticity is important. In addition the hydroxyl group of Tyr241 is important, supporting the presence of a hydrogen bond with Arg104 suggested by the model. At position Tyr102 (loop D) size and aromaticity are important; this residue may play a role in receptor gating and/or ligand binding. The data also suggest that Tyr167, Tyr200, and Tyr208 have a structural role while Tyr106, Trp246, and Tyr251 are not critical. Comparison of the agonist binding site "aromatic box" across the superfamily of Cys-loop receptors reveals some interesting parallels and divergences.

6.
J Biol Chem ; 282(36): 26210-6, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17606618

ABSTRACT

gamma-Aminobutyric acid type A (GABA(A)) receptors are members of the Cys-loop superfamily of ligand-gated ion channels. Upon agonist binding, the receptor undergoes a structural transition from the closed to the open state, but the mechanism of gating is not well understood. Here we utilized a combination of conventional mutagenesis and the high precision methodology of unnatural amino acid incorporation to study the gating interface of the human homopentameric rho1 GABA(A) receptor. We have identified an ion pair interaction between two conserved charged residues, Glu(92) in loop 2 of the extracellular domain and Arg(258) in the pre-M1 region. We hypothesize that the salt bridge exists in the closed state by kinetic measurements and free energy analysis. Several other charged residues at the gating interface are not critical to receptor function, supporting previous conclusions that it is the global charge pattern of the gating interface that controls receptor function in the Cys-loop superfamily.


Subject(s)
Ion Channel Gating/physiology , Receptors, GABA-A/metabolism , Receptors, GABA-B/metabolism , Amino Acid Substitution , Animals , Humans , Kinetics , Mutation, Missense , Oocytes/chemistry , Oocytes/cytology , Oocytes/metabolism , Protein Structure, Secondary , Receptors, GABA-A/chemistry , Receptors, GABA-A/genetics , Receptors, GABA-B/chemistry , Receptors, GABA-B/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Xenopus laevis
7.
J Biol Chem ; 280(50): 41655-66, 2005 Dec 16.
Article in English | MEDLINE | ID: mdl-16216879

ABSTRACT

In the Cys loop superfamily of ligand-gated ion channels, a global conformational change, initiated by agonist binding, results in channel opening and the passage of ions across the cell membrane. The detailed mechanism of channel gating is a subject that has lent itself to both structural and electrophysiological studies. Here we defined a gating interface that incorporates elements from the ligand binding domain and transmembrane domain previously reported as integral to proper channel gating. An overall analysis of charged residues within the gating interface across the entire superfamily showed a conserved charging pattern, although no specific interacting ion pairs were conserved. We utilized a combination of conventional mutagenesis and the high precision methodology of unnatural amino acid incorporation to study extensively the gating interface of the mouse muscle nicotinic acetylcholine receptor. We found that charge reversal, charge neutralization, and charge introduction at the gating interface are often well tolerated. Furthermore, based on our data and a reexamination of previously reported data on gamma-aminobutyric acid, type A, and glycine receptors, we concluded that the overall charging pattern of the gating interface, and not any specific pairwise electrostatic interactions, controls the gating process in the Cys loop superfamily.


Subject(s)
Cysteine/chemistry , Acetylcholine/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Animals , Biochemistry/methods , Blotting, Western , Bungarotoxins/chemistry , Cations , Cell Membrane/metabolism , Cystine/chemistry , Databases, Protein , Dose-Response Relationship, Drug , Electrodes , Electrophysiology , Glycine/chemistry , Ions , Kinetics , Ligands , Mice , Models, Chemical , Models, Molecular , Molecular Sequence Data , Mutagenesis , Mutation , Oocytes/metabolism , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , RNA, Messenger/metabolism , Receptors, Nicotinic/chemistry , Sequence Homology, Amino Acid , Static Electricity , Torpedo , Xenopus laevis , gamma-Aminobutyric Acid/chemistry
8.
J Org Chem ; 69(9): 3129-38, 2004 Apr 30.
Article in English | MEDLINE | ID: mdl-15104452

ABSTRACT

High-level computations at G3, CBS-Q, and G3B3 levels were conducted, and good-quality C-H and N-H bond dissociation energies (BDEs) were obtained for a variety of saturated and unsaturated strained hydrocarbons and amines for the first time. From detailed NBO analyses, we found that the C-H BDEs of hydrocarbons are determined mainly by the hybridization of the parent compound, the hybridization of the radical, and the extent of spin delocalization of the radical. The ring strain has a significant effect on the C-H BDE because it forces the parent compound and radical to adopt certain undesirable hybridization. A structure-activity relationship equation (i.e., BDE (C-H) = 61.1-227.8 (p(parent)% - 0.75)(2) + 152.9 (p(radical)% - 1.00)(2) + 40.4 spin) was established, and it can predict the C-H BDEs of a variety of saturated and unsaturated strained hydrocarbons fairly well. For the C-H BDEs associated with the bridgehead carbons of the highly rigid strained compounds, we found that the strength of the C-H bond can also be predicted from the H-C-C bond angles of the bridgehead carbon. Finally, we found that N-H BDEs show less dependence on the ring strain than C-H BDEs.

9.
J Chem Inf Comput Sci ; 43(6): 2005-13, 2003.
Article in English | MEDLINE | ID: mdl-14632451

ABSTRACT

Composite ab initio CBS-Q and G3 methods were used to calculate the bond dissociation energies (BDEs) of over 200 compounds listed in CRC Handbook of Chemistry and Physics (2002 ed.). It was found that these two methods agree with each other excellently in the calculation of BDEs, and they can predict BDEs within 10 kJ/mol of the experimental values. Using these two methods, it was found that among the examined compounds 161 experimental BDEs are valid because the standard deviation between the experimental and theoretical values for them is only 8.6 kJ/mol. Nevertheless, 40 BDEs listed in the Handbook may be highly inaccurate as the experimental and theoretical values for them differ by over 20 kJ/mol. Furthermore, 11 BDEs listed in the Handbook may be seriously flawed as the experimental and theoretical values for them differ by over 40 kJ/mol. Using the 161 cautiously validated experimental BDEs, we then assessed the performances of the standard density functional (DFT) methods including B3LYP, B3P86, B3PW91, and BH&HLYP in the calculation of BDEs. It was found that the BH&HLYP method performed poorly for the BDE calculations. B3LYP, B3P86, and B3PW91, however, performed reasonably well for the calculation of BDEs with standard deviations of about 12.1-18.0 kJ/mol. Nonetheless, all the DFT methods underestimated the BDEs by 4-17 kJ/mol in average. Sometimes, the underestimation by the DFT methods could be as high as 40-60 kJ/mol. Therefore, the DFT methods were more reliable for relative BDE calculations than for absolute BDE calculations. Finally, it was observed that the basis set effects on the BDEs calculated by the DFT methods were usually small except for the heteroatom-hydrogen BDEs.

SELECTION OF CITATIONS
SEARCH DETAIL