Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Pathol ; 263(1): 99-112, 2024 05.
Article in English | MEDLINE | ID: mdl-38411280

ABSTRACT

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/metabolism , Phosphorylation , Protein Kinase D2 , Esophageal Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Serine , Cell Movement/physiology , Gene Expression Regulation, Neoplastic , Desmoglein 2/genetics , Desmoglein 2/metabolism
2.
Nucleic Acids Res ; 50(D1): D421-D431, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34755848

ABSTRACT

tRNA-derived small RNA (tsRNA), a novel type of regulatory small noncoding RNA, plays an important role in physiological and pathological processes. However, the understanding of the functional mechanism of tsRNAs in cells and their role in the occurrence and development of diseases is limited. Here, we integrated multiomics data such as transcriptome, epitranscriptome, and targetome data, and developed novel computer tools to establish tsRFun, a comprehensive platform to facilitate tsRNA research (http://rna.sysu.edu.cn/tsRFun/ or http://biomed.nscc-gz.cn/DB/tsRFun/). tsRFun evaluated tsRNA expression profiles and the prognostic value of tsRNAs across 32 types of cancers, identified tsRNA target molecules utilizing high-throughput CLASH/CLEAR or CLIP sequencing data, and constructed the interaction networks among tsRNAs, microRNAs, and mRNAs. In addition to its data presentation capabilities, tsRFun offers multiple real-time online tools for tsRNA identification, target prediction, and functional enrichment analysis. In summary, tsRFun provides a valuable data resource and multiple analysis tools for tsRNA investigation.


Subject(s)
Databases, Nucleic Acid , MicroRNAs/genetics , Neoplasms/genetics , RNA, Messenger/genetics , RNA, Small Untranslated/genetics , RNA, Transfer/genetics , Software , Chromatin Immunoprecipitation Sequencing , Gene Expression Regulation, Neoplastic , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Internet , MicroRNAs/classification , MicroRNAs/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Neoplasms/mortality , Nucleic Acid Conformation , Prognosis , RNA, Messenger/classification , RNA, Messenger/metabolism , RNA, Small Untranslated/classification , RNA, Small Untranslated/metabolism , RNA, Transfer/classification , RNA, Transfer/metabolism , Survival Analysis , Transcriptome
3.
Brief Bioinform ; 22(4)2021 07 20.
Article in English | MEDLINE | ID: mdl-33313674

ABSTRACT

Although long noncoding RNAs (lncRNAs) have significant tissue specificity, their expression and variability in single cells remain unclear. Here, we developed ColorCells (http://rna.sysu.edu.cn/colorcells/), a resource for comparative analysis of lncRNAs expression, classification and functions in single-cell RNA-Seq data. ColorCells was applied to 167 913 publicly available scRNA-Seq datasets from six species, and identified a batch of cell-specific lncRNAs. These lncRNAs show surprising levels of expression variability between different cell clusters, and has the comparable cell classification ability as known marker genes. Cell-specific lncRNAs have been identified and further validated by in vitro experiments. We found that lncRNAs are typically co-expressed with the mRNAs in the same cell cluster, which can be used to uncover lncRNAs' functions. Our study emphasizes the need to uncover lncRNAs in all cell types and shows the power of lncRNAs as novel marker genes at single cell resolution.


Subject(s)
Databases, Nucleic Acid , Gene Expression Regulation , RNA, Long Noncoding , Single-Cell Analysis , Software , Animals , Humans , Molecular Sequence Annotation , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics
4.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6088-6092, 2023 Nov.
Article in Zh | MEDLINE | ID: mdl-38114216

ABSTRACT

To study the chemical constituents in the non-alkaloid part of stems of Dendrobium nobile. The macroporous adsorption resin, MCI, silica gel, RP-C_(18), and Sephadex LH-20 gel, preparative thin layer chromatography, and preparative high-performance liquid chromatography(HPLC) were used to isolate and purify the compounds. The structures of the compound were determined according to the spectra data, physicochemical properties, and relevant references. A total of 8 compounds were isolated from D. nobile, which were soltorvum F(1), p-hydroxyphenylpropionic acid(2), vanillic acid(3), p-hydroxybenzoic acid(4), N-trans-cinnamic acid acyl-p-hydroxybenzene ethylamine(5),(+)-(1R,2S,3R,4S,5R,6S,9R)-2,11,12-trihydroxypicrotoxane-3(15)-lactone(6), dendronobilin H(7), soltorvum E(8). Compound 1 was a novel compound, named as soltorvum F. Compound 8 was isolated from Dendrobium species for the first time.


Subject(s)
Dendrobium , Sesquiterpenes , Dendrobium/chemistry , Molecular Structure , Sesquiterpenes, Guaiane , Sesquiterpenes/chemistry
5.
Inflamm Res ; 71(4): 449-460, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35279736

ABSTRACT

OBJECTIVE: Chronic nonbacterial prostatitis (CNP) has remained one of the most prevalent urological diseases, particularly in older men. Dihydroartemisinin (DHA) has been identified as a semi-synthetic derivative of artemisinin that exhibits broad protective effects. However, the role of DHA in inhibiting CNP inflammation and prostatic epithelial cell proliferation remains largely unknown. MATERIALS AND METHODS: CNP animal model was induced by carrageenan in C57BL/6 mouse. Enzyme linked immunosorbent assay (ELISA), Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to examine inflammatory cytokines and proliferation genes expression. Immunofluorescence and immunochemistry staining were used to detect and E2F7 expression. Human prostatic epithelial cells (HPECs) and RWPE-1 was induced by lipopolysaccharide (LPS) to mimic CNP model in vitro. Cell proliferation was determined using MTS assay. RESULTS: DHA significantly alleviated the rough epithelium and inhibited multilamellar cell formation in the prostatic gland cavity and prostatic index induced by carrageenan. In addition, DHA decreased the expression of TNF-α and IL-6 inflammatory factors in prostatitis tissues and in LPS-induced epithelial cells. Upregulation of transcription factor E2F7, which expression was inhibited by DHA, was found in CNP tissues, human BPH tissues and LPS-induced epithelial cells inflammatory response. Mechanically, we found that depletion of E2F7 by shRNA inhibited epithelial cell proliferation and LPS-induced inflammation while DHA further enhance these effects. Furthermore, HIF1α was transcriptional regulated by E2F7 and involved in E2F7-inhibited CNP and cellular inflammatory response. Interestingly, we found that inhibition of HIF1α blocks E2F7-induced cell inflammatory response but does not obstruct E2F7-promoted cell growth. CONCLUSION: The results revealed that DHA inhibits the CNP and inflammation by blocking the E2F7/HIF1α pathway. Our findings provide new evidence for the mechanism of DHA and its key role in CNP, which may provide an alternative solution for the prevention and treatment of CNP.


Subject(s)
Prostatitis , Aged , Animals , Artemisinins , Carrageenan/adverse effects , E2F7 Transcription Factor , Epithelial Cells/metabolism , Humans , Inflammation/metabolism , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Prostatitis/chemically induced , Prostatitis/drug therapy , Prostatitis/genetics
6.
Eur J Clin Microbiol Infect Dis ; 41(6): 907-911, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35524829

ABSTRACT

Oral fluid specimens (OF) have been widely used to know the HIV prevalence in several key populations. Here, we aim to validate in OF specimens an existing HIV chemiluminiscence assay for serum specimens. Paired OF and serum specimens were collected from 83 known HIV-positives and 83 known HIV-negatives in order to validate the performance characteristics of the automated chemiluminiscence Liaison XL Murex HIV Ag/Ab assay (Diasorin Inc, Iberia) for HIV antibody detection in OF specimens. Among the previously known HIV-seropositive group, HIV antibodies were detected in 69 out of 83 OF specimens. All serum and OF specimens collected from 83 HIV seronegative individuals were negative. The sensitivity and specificity of this assay were 83.13% and 100% respectively in OF. The PPV and NPV values were 100% and 85.57% respectively. The correlation obtained between both specimens was (K: 0.83, [95% CI: 0.748-0.915]) according to the kappa index. The ROC curve analysing the optimal cut-off of the Liaison XL Murex HIV Ag/Ab to detect positive OF specimens revealed that a cut-off of 0.497 showed sensitivity and specificity values of 98.8% and 97.59% respectively. Taking into account this cut-off, the overall sensitivity and NPV of the Liaison XL Murex HIV Ag/Ab assay could rise from 83.1 to 98.8% and from 85.5 to 97.7%, respectively. Our results suggest that the Liaison XL HIV Ag/Ab assay is suitable for the detection of HIV antibodies in OF specimens.


Subject(s)
HIV Infections , HIV-1 , HIV Antibodies , HIV Infections/diagnosis , Humans , Sensitivity and Specificity
7.
J Am Chem Soc ; 143(40): 16641-16652, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34606264

ABSTRACT

Enzymatic microarchitectures with spatially controlled reactivity, engineered molecular sieving ability, favorable interior environment, and industrial productivity show great potential in synthetic protocellular systems and practical biotechnology, but their construction remains a significant challenge. Here, we proposed a Pickering emulsion interface-directed synthesis method to fabricate such a microreactor, in which a robust and defect-free MOF layer was grown around silica emulsifier stabilized droplet surfaces. The compartmentalized interior droplets can provide a biomimetic microenvironment to host free enzymes, while the outer MOF layer secludes active species from the surroundings and endows the microreactor with size-selective permeability. Impressively, the thus-designed enzymatic microreactor exhibited excellent size selectivity and long-term stability, as demonstrated by a 1000 h continuous-flow reaction, while affording completely equal enantioselectivities to the free enzyme counterpart. Moreover, the catalytic efficiency of such enzymatic microreactors was conveniently regulated through engineering of the type or thickness of the outer MOF layer or interior environments for the enzymes, highlighting their superior customized specialties. This study provides new opportunities in designing MOF-based artificial cellular microreactors for practical applications.


Subject(s)
Biocatalysis
8.
Inorg Chem ; 60(16): 12109-12115, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34313442

ABSTRACT

Chromium(III)-based metal-organic frameworks (Cr-MOFs) are highly robust and porous and have been very attractive in a wide range of investigations. However, the harsh direct synthetic conditions not only impede the synthesis of new Cr-MOFs but also restrict the introduction of functional groups into them. Postsynthetic modification has somewhat alleviated such difficulties; nevertheless, it still suffered from procedures that are tedious and conditions that are not mild, which often result in low concentration of the functional groups introduced. To overcome these shortcomings, here, in this paper, we supplied a new route and prepared a benzyl alcohol functionalized Cr-SXU-2 from the judiciously designed benzyl alcohol functionalized Fe-SXU-2 through solvent-assisted metal metathesis strategy. The functionalized Cr-SXU-2 shows well-preserved crystallinity, porosity, and high chemical stability. The benzyl alcohol group can be converted into a very active benzyl bromide group in an almost quantitative yield and thus for the first time produce the benzyl bromide functionalized MOF, Cr-SXU-2-Br, in which the -Br group can be exchanged by a nucleophilic group. As a proof of concept, -N3 was introduced and transformed into other active sites via "click reaction" to further tailor the interior of Cr-SXU-2. All these functionalized Cr-MOFs showed improved adsorption performance in contrast to the nonfunctionalized one. This step-by-step postmodification process not only diversifies the functionalization of robust MOFs but also opens a new route to employ many different functional groups in the demanding highly stable Cr-MOF platforms.

9.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3853-3858, 2021 Aug.
Article in Zh | MEDLINE | ID: mdl-34472259

ABSTRACT

Fifteen bibenzyls were isolated and purified from the ethyl acetate extract of the stems of Dendrobium officinale by macroporous resin, MCI, silica gel, Sephadex LH-20, and ODS column chromatographies, as well as preparative thin-layer chromatography and preparative HPLC. The structures of compounds were identified according to the spectra data of ~1H-NMR, ~(13)C-NMR, and MS, and the physical and physiochemical properties: dendrocandin X(1), 3,4'-dihydroxy-4,5-dimethoxybibenzyl(2), 6″-de-O-methyldendrofindlaphenol A(3), 3,4-dihydroxy-4',5-dimethoxybibenzyl(4), dendrosinen B(5), 3,4,4'-trihydroxy-5-methoxybibenzyl(6), 3,3'-dihydroxy-4,5-dimethoxybibenzyl(7), 3,4'-dihydroxy-5-methoxybibenzyl(8), moscatilin(9), gigantol(10), 4,4'-dihydroxy-3,5-dimethoxybibenzyl(11), 3,4',5-trihydroxy-3'-methoxybibenzyl(12), 3-O-methylgigantol(13), dendrocandin U(14), and dendrocandin N(15). Compound 1 was a novel compound. Compound 2 was isolated from Dendrobium species for the first time. Compounds 3-7 were isolated from D. officinale for the first time.


Subject(s)
Bibenzyls , Dendrobium , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy
10.
Inorg Chem ; 59(5): 2961-2968, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32039593

ABSTRACT

In this paper, we synthesized three Zr-MOFs (Zr-SXU-1, Zr-SXU-2, and Zr-SXU-3) composed of identical ligands and metal clusters by using tetratopic carboxylic ligand PBPTTBA as the ligand and benzoic acids as modulators. These three Zr-MOFs showed different structures and topologies, and the connectivity of the Zr clusters varied from 8 in Zr-SXU-3, to 10 in Zr-SXU-1, and finally to 12 in Zr-SXU-2 due to the modulators used. Among them, Zr-SXU-1 represents an unusual 6-node network and [6(10)(11)7] transitivity. Besides, Zr-SXU-2 can only be obtained by using ditopic carboxylic acid as a second modulator when using benzoic acid as the main modulator, which is not reported in other Zr-MOFs synthesis. The adsorption and luminescence tests demonstrated their potential as gas reservoirs, separators, and sensors and also showed the importance of structure topologies to the applications.

11.
J Am Chem Soc ; 139(36): 12346-12349, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28837326

ABSTRACT

Determining the total structure of metal nanoparticles is vital to understand their properties. In this work, the first all-alkynyl-protected Ag nanocluster, Ag74(C≡CPh)44, was synthesized and structurally characterized by single crystal diffraction. Ag atoms are arranged in a Ag4@Ag22@Ag48 three shell structure and all 44 phenylethynyl ligands coordinated with Ag in a µ3 mode. In spite of being absent in nanocluster, 31P NMR study reveals that bidentate phosphine first reacts with Ag(I) to form a dinuclear complex, from which Ag atoms are then released to phenylethynyl ligands. This phosphine mediated strategy may find general application in synthesis of alkynyl-protected Ag nanoclusters.

12.
Angew Chem Int Ed Engl ; 56(23): 6478-6482, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28374450

ABSTRACT

Chromium(III)-based metal-organic frameworks (Cr-MOFs) are very attractive in a wide range of investigations because of their robustness and high porosity. However, reports on Cr-MOFs are scarce owing to the difficulties in their direct synthesis. Recently developed postsynthetic routes to obtain Cr-MOFs suffered from complicated procedures and a lack of general applicability. Herein, we report a highly efficient and versatile strategy, namely solvent-assisted metal metathesis, to obtain Cr-MOFs from a variety of FeIII -MOFs, including several well-known MOFs and a newly synthesized one, through judicious selection of a coordinating solvent. The versatility of this strategy was demonstrated by producing Cr-MIL-100, Cr-MIL-142A/C, Cr-PCN-333, and Cr-PCN-600 from their FeIII analogues and Cr-SXU-1 from a newly synthesized MOF precursor, Fe-SXU-1, in acetone as the solvent under very mild conditions. We have thus developed a general approach for the preparation of robust Cr-MOFs, which are difficult to synthesize by direct methods.

13.
Chemistry ; 20(38): 12004-8, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25081943

ABSTRACT

A novel hydrophobic metal-organic framework (MOF), namely Cu2 L (L = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate), is synthesized through a stepwise method, and exhibits an unprecedented 3,4-c net. The exceptionally thermal, chemical, and air stability of this MOF, especially in water and under acidic or basic conditions, and its selective and fast sorption capacity for hydrocarbons over water warrant its direct use for efficient removal of trace organic wastes (e.g. benzene, toluene, xylene, and mixtures thereof) from contaminated water.

14.
Inorg Chem ; 53(21): 11604-15, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25338134

ABSTRACT

Luminescence mechanochromism of the well-known Cu3Pz3-type (Pz = pyrazolate) complexes is reported here, which is unusual for this family. Two types of new Cu3Pz3 complexes, namely Cu3(EBPz)3 (1; EBPz = ethyl-4'-benzoate-3,5-dimethylpyrazolate) and Cu3(MBPz)3 (polymorphs 2a-c; MBPz = methyl-4'-benzoate-3,5-dimethylpyrazolate), have been synthesized and characterized. Their crystal structures exhibit a similar chairlike dimer stacking supported by short Cu···Cu contacts, which would facilitate the formation of photoinduced excimers. The dual emission from the organic fluorophore and excimeric copper cluster phosphor is found to undergo mechanically induced intensity switching between their high-energy (HE) and low-energy (LE) bands. Specifically, the relative intensities of crystalline samples are HE > LE, while the ground solid samples show LE > HE, resulting in the overall emission color interchanging between bluish violet and red. This switching can be reversed by application of solvent to the ground samples, presumably due to recrystallization, and also by heating. TD-DFT calculations reveal that the emissive singlet ligand localized state (S1) and triplet cluster centered state (T8) lie close in energy (separated by a gap of 0.1788 eV), suggesting the feasibility of dual emission and the possibility of reverse intersystem crossing, consistent with the long fluorescent lifetimes (10(2) ns scale) of the HE bands.

15.
Front Neurosci ; 18: 1360935, 2024.
Article in English | MEDLINE | ID: mdl-38686327

ABSTRACT

Objective: According to the World Alzheimer's Disease Report in 2015,there were 9.9 million new cases of dementia in the world every year. At present, the number of patients suffering from dementia in China has exceeded 8 million, and it may exceed 26 million by 2040.Mild cognitive impairment (MCI) refers to the pathological state of pre-dementia with the manifestation of the progressive decline of memory or other cognitive functions but without decline of activities of daily life. It is particularly important to prevent or prolong the development of MCI into dementia. Research showing effects of rhythmic auditory stimulation based-movement training(RASMT) interventions on cognitive function is also emerging. Therefore, the present meta-analysis briefly summarize findings regarding the impacts of RASMT programs on cognitive impairment. Methods: Data from Pubmed, Embase, and Cochrane Library were utilized. The impact of RASMT on cognitive functions was evaluated using indicators such as overall cognitive status, memory, attention, and executive functions. The REVMAN5.3 software was employed to analyze bias risks integrated into the study and the meta-analysis results for each indicator. Results: A total of 1,596 studies were retrieved, of which 1,385 non-randomized controlled studies and 48 repetitive studies were excluded. After reviewing titles and abstracts of the remaining 163 articles, 133 irrelevant studies were excluded, 30 studies were downloaded and read the full text. Among 30 articles, 18 articles that did not meet the inclusion criteria were excluded, the other 12 studies were included in this meta-analysis. Utilizing the Cochrane Collaborative Network Bias Risk Assessment Scale, it was found that 11 studies explained the method of random sequence generation, nine studies did not describe allocation concealment, four were single-blinded to all researchers, and eight reported single-blinding in the evaluation of experimental results. In the meta-analysis, the main outcomes showed statistically significant differences in overall cognitive status [MD = 1.19, 95%CI (0.09, 2.29), (p < 0.05)], attention [MD = -1.86, 95%CI (-3.53, -0.19), (p < 0.05)], memory [MD = 0.71, 95%CI (0.33, 1.09), (p < 0.01)], and executive function [MD = -0.23, 95% CI (-0.44, -0.02), (p < 0.05)]. Secondary outcomes indicated no statistically significant differences in verbal fluency [MD = -0.51, 95%CI (-1.30, 0.27), (p = 0.20)], while depression [MD = -0.29, 95% CI (-0.42, -0.16), (p < 0.01)] and anxiety [MD = 0.19, 95% CI (0.06, 0.32), (p < 0.01)] exhibited statistically significant differences. The GRADEpro GDT online tool assessed the quality of evidence for the outcome measures, revealing one low-quality outcome, two moderate-quality outcomes, and one high-quality outcome in this review. Conclusion: This study shows that RASMT can improve the general cognitive status, memory, attention and executive function of patients with cognitive impairment. The quality of evidence revealed that MMSE was low, attention and memory were moderate, and executive function was high. The RAMST program (type of exercise: play percussion instruments; time of exercise: 30-60 min; frequency of exercise: 2-3 times/week; duration of exercise: more than 12 weeks) was proved to be more effective in improving cognitive function. However, the sample size is relatively insufficient, the future needs further study. Systematic review registration: PROSPERO, identifier: CRD42023483561.

16.
Eur J Pharm Sci ; 187: 106469, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37209999

ABSTRACT

Esculetin (ELT) is one of the best-known and simplest coumarins with powerful natural antioxidant effects but insoluble and difficult to absorb. In order to overcome the problems, cocrystal engineering was first applied to ELT in this paper. Nicotinamide (NAM) was selected as the coformer for its excellent water solubility and potential synergistic antioxidant effect with ELT. The structure of the ELT-NAM cocrystal was successfully prepared and characterized by IR, SCXRD, PXRD, and DSC-TG. Furthermore, the in vitro/vivo properties and antioxidant effects of the cocrystal were adequately studied. The results highlight that the ELT obtained tremendous improvements in water solubility and bioavailability after cocrystal formation. Meanwhile, the synergistic enhancement of ELT with NAM in antioxidant effect was demonstrated by the DPPH assay. Ultimately, the simultaneously optimized in vitro/vivo properties and antioxidant activity of the cocrystal created an improved practical effect of hepatoprotective in rat experiments. The investigation is significant for developing coumarin drugs represented by ELT.


Subject(s)
Antioxidants , Niacinamide , Rats , Animals , Antioxidants/pharmacology , Crystallization/methods , Niacinamide/pharmacology , Niacinamide/chemistry , Solubility , Water
17.
Nat Commun ; 14(1): 3536, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37321993

ABSTRACT

The solid-electrolyte interphase (SEI) plays crucial roles for the reversible operation of lithium metal batteries. However, fundamental understanding of the mechanisms of SEI formation and evolution is still limited. Herein, we develop a depth-sensitive plasmon-enhanced Raman spectroscopy (DS-PERS) method to enable in-situ and nondestructive characterization of the nanostructure and chemistry of SEI, based on synergistic enhancements of localized surface plasmons from nanostructured Cu, shell-isolated Au nanoparticles and Li deposits at different depths. We monitor the sequential formation of SEI in both ether-based and carbonate-based dual-salt electrolytes on a Cu current collector and then on freshly deposited Li, with dramatic chemical reconstruction. The molecular-level insights from the DS-PERS study unravel the profound influences of Li in modifying SEI formation and in turn the roles of SEI in regulating the Li-ion desolvation and the subsequent Li deposition at SEI-coupled interfaces. Last, we develop a cycling protocol that promotes a favorable direct SEI formation route, which significantly enhances the performance of anode-free Li metal batteries.


Subject(s)
Metal Nanoparticles , Nanostructures , Lithium , Gold , Spectrum Analysis, Raman , Electrolytes
18.
Mol Ther Nucleic Acids ; 27: 751-762, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35003892

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a serious impact on the world. In this study, small RNAs from the blood of COVID-19 patients with moderate or severe symptoms were extracted for high-throughput sequencing and analysis. Interestingly, the levels of a special group of tRNA-derived small RNAs (tsRNAs) were found to be dramatically upregulated after SARS-CoV-2 infection, particularly in coronavirus disease 2019 (COVID-19) patients with severe symptoms. In particular, the 3'CCA tsRNAs from tRNA-Gly were highly consistent with the inflammation indicator C-reactive protein (CRP). In addition, we found that the majority of significantly changed microRNAs (miRNAs) were associated with endoplasmic reticulum (ER)/unfolded protein response (UPR) sensors, which may lead to the induction of proinflammatory cytokine and immune responses. This study found that SARS-CoV-2 infection caused significant changes in the levels of stress-associated small RNAs in patient blood and their potential functions. Our research revealed that the cells of COVID-19 patients undergo tremendous stress and respond, which can be reflected or regulated by small non-coding RNA (sncRNAs), thus providing potential thought for therapeutic intervention in COVID-19 by modulating small RNA levels or activities.

19.
Microorganisms ; 10(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35630517

ABSTRACT

Our aim was to determine changes in the incidence of CD infection (CDI) following the introduction of a two-step diagnostic algorithm and to analyze CDI cases diagnosed in the study period. We retrospectively studied CDI (January 2009 to July 2018) in adults diagnosed by toxin enzyme immunoassay (EIA) (2009−2012) or toxin-EIA + polymerase chain reaction (PCR) algorithm (2013 onwards). A total of 443 patients with a first episode of CDI were included, 297 (67.1%) toxin-EIA-positive and 146 (32.9%) toxin-EIA-negative/PCR-positive were only identified through the two-step algorithm including the PCR test. The incidence of CDI increased from 0.9 to 4.7/10,000 patient-days (p < 0.01) and 146 (32.9%) toxin-negative CDI were diagnosed. Testing rate increased from 24.4 to 59.5/10,000 patient-days (p < 0.01) and the percentage of positive stools rose from 3.9% to 12.5% (p < 0.01). CD toxin-positive patients had a higher frequency of severe presentation and a lower rate of immunosuppressive drugs and inflammatory bowel disease. Mortality (16.3%) was significantly higher in patients with hematological neoplasm, intensive care unit admission and complicated disease. Recurrences (14.9%) were significantly higher with proton pump inhibitor exposure. The two-step diagnostic algorithm facilitates earlier diagnosis, potentially impacting patient outcomes and nosocomial spread. CD-toxin-positive patients had a more severe clinical presentation, probably due to increased CD bacterial load with higher toxin concentration. This early and easy marker should alert clinicians of potentially more severe outcomes.

20.
Antibiotics (Basel) ; 11(4)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35453236

ABSTRACT

Macrolide and fluoroquinolone resistance (MLr/FQr) in Mycoplasma genitalium (MG) infections is concerning worldwide. Current guidelines recommend performing MLr detection in MG-positive cases to adjust antimicrobial therapy. We aimed to evaluate the usefulness of PCR followed by pyrosequencing for MLr detection in comparison with a one-step commercial assay and to assess the prevalence of MLr and FQr in Badalona, Spain. A total of 415 MG-positive samples by Allplex STI-7 (Seegene) were analyzed for MLr detection by pyrosequencing. From those, 179 samples were further analyzed for MG and MLr by ResistancePlus® MG kit (SpeeDx) and 100 of them also for fluoroquinolone resistance (FQr) by sequencing the parC gene. Regarding MG detection, Allplex and Resistance Plus® showed an overall agreement of 87%, but this value rose to 95.4% if we compare them for MLr detection. Prevalence of MLr was 23.1% in Badalona, but this rate increased to 73.7% in the HIV-positive patients cohort. FQr detection showed 3% of resistant strains. Pyrosequencing is a convenient and cheap technique for MLr detection, but one-step tools should be considered in high-throughput laboratories. Despite the fact that MLr remained moderate and FQr was low in our study, simultaneous MG and MLr detection would improve patient's management applying resistance-guided treatment strategies.

SELECTION OF CITATIONS
SEARCH DETAIL