Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nat Rev Mol Cell Biol ; 12(10): 643-55, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21886187

ABSTRACT

Haematopoietic stem cells (HSCs) are multipotent, self-renewing progenitors that generate all mature blood cells. HSC function is tightly controlled to maintain haematopoietic homeostasis, and this regulation relies on specialized cells and factors that constitute the haematopoietic 'niche', or microenvironment. Recent discoveries, aided in part by technological advances in in vivo imaging, have engendered a new appreciation for the dynamic nature of the niche, identifying novel cellular and acellular niche components and uncovering fluctuations in the relative importance of these components over time. These new insights significantly improve our understanding of haematopoiesis and raise fundamental questions about what truly constitutes a stem cell niche.


Subject(s)
Hematopoietic Stem Cells/cytology , Animals , Cell Differentiation/physiology , Hematopoiesis/genetics , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Humans , Stem Cell Niche
2.
Curr Oncol Rep ; 25(8): 847-855, 2023 08.
Article in English | MEDLINE | ID: mdl-37160547

ABSTRACT

PURPOSE OF REVIEW: Correlative studies should leverage clinical trial frameworks to conduct biospecimen analyses that provide insight into the bioactivity of the intervention and facilitate iteration toward future trials that further improve patient outcomes. In pediatric cellular immunotherapy trials, correlative studies enable deeper understanding of T cell mobilization, durability of immune activation, patterns of toxicity, and early detection of treatment response. Here, we review the correlative science in adoptive cell therapy (ACT) for childhood central nervous system (CNS) tumors, with a focus on existing chimeric antigen receptor (CAR) and T cell receptor (TCR)-expressing T cell therapies. RECENT FINDINGS: We highlight long-standing and more recently understood challenges for effective alignment of correlative data and offer practical considerations for current and future approaches to multi-omic analysis of serial tumor, serum, and cerebrospinal fluid (CSF) biospecimens. We highlight the preliminary success in collecting serial cytokine and proteomics from patients with CNS tumors on ACT clinical trials.


Subject(s)
Central Nervous System Neoplasms , Receptors, Chimeric Antigen , Humans , Child , Immunotherapy, Adoptive , Central Nervous System Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
3.
EMBO J ; 37(24)2018 12 14.
Article in English | MEDLINE | ID: mdl-30446598

ABSTRACT

A finely tuned balance of self-renewal, differentiation, proliferation, and survival governs the pool size and regenerative capacity of blood-forming hematopoietic stem and progenitor cells (HSPCs). Here, we report that protein kinase C delta (PKCδ) is a critical regulator of adult HSPC number and function that couples the proliferative and metabolic activities of HSPCs. PKCδ-deficient mice showed a pronounced increase in HSPC numbers, increased competence in reconstituting lethally irradiated recipients, enhanced long-term competitive advantage in serial transplantation studies, and an augmented HSPC recovery during stress. PKCδ-deficient HSPCs also showed accelerated proliferation and reduced apoptosis, but did not exhaust in serial transplant assays or induce leukemia. Using inducible knockout and transplantation models, we further found that PKCδ acts in a hematopoietic cell-intrinsic manner to restrict HSPC number and bone marrow regenerative function. Mechanistically, PKCδ regulates HSPC energy metabolism and coordinately governs multiple regulators within signaling pathways implicated in HSPC homeostasis. Together, these data identify PKCδ as a critical regulator of HSPC signaling and metabolism that acts to limit HSPC expansion in response to physiological and regenerative demands.


Subject(s)
Apoptosis , Bone Marrow/enzymology , Cell Proliferation , Hematopoietic Stem Cells/enzymology , Protein Kinase C-delta/metabolism , Signal Transduction , Animals , Hematopoietic Stem Cells/cytology , Mice , Mice, Knockout , Protein Kinase C-delta/genetics
4.
Biol Blood Marrow Transplant ; 24(1): 185-189, 2018 01.
Article in English | MEDLINE | ID: mdl-28939451

ABSTRACT

Allogeneic stem cell transplantation (HCT) is curative in patients with severe sickle cell disease (SCD), but a significant number of patients lack an HLA-identical sibling or matched unrelated donor. Mismatched related (haploidentical) HCT with post-transplant cyclophosphamide (PTCY) allows expansion of the donor pool but is complicated by high rates of graft failure. In this report we describe a favorable haploidentical HCT approach in a limited cohort of SCD patients with significant comorbidities. To reduce the risk of graft failure we administered the conditioning regimen of rabbit antithymocyte globulin, busulfan, and fludarabine preceded with 2 courses of pretransplant immunosuppressive therapy (PTIS) with fludarabine and dexamethasone. Graft-versus-host disease (GVHD) prophylaxis consisted of PTCY on days +3 and +4 followed by tacrolimus and mycophenolate mofetil starting on day +5. Four patients (ages 13, 19, 19, and 23 years) received T cell-replete haploidentical stem cell infusion. All patients engrafted with 99.9% to 100% donor chimerism, and all patients continued with stable engraftment at the last follow-up (5 to 11 months post-transplant). Time to neutrophil engraftment was 14 to 26 days. Two patients had high levels of donor-specific anti-HLA antibodies, which required the implementation of an antibody management protocol. This facilitated neutrophil engraftment on day +16 and day +26, respectively. One patient developed grade I acute GVHD, which resolved. Three patients developed mild, limited skin GVHD that responded to conventional immunosuppressive therapy. Human herpesvirus-6 viremia was detected in 3 patients but resolved without treatment. One patient developed asymptomatic cytomegalovirus viremia that responded appropriately to standard therapy with ganciclovir. The prompt, stable engraftment and low toxicity in the post-transplant period makes PTIS with haploidentical transplant a promising option for patients with SCD.


Subject(s)
Anemia, Sickle Cell/therapy , Immunosuppression Therapy/methods , Transplantation, Haploidentical/methods , Adolescent , Antilymphocyte Serum/therapeutic use , Busulfan/therapeutic use , Cohort Studies , Dexamethasone/therapeutic use , Graft Survival , Humans , Immunosuppressive Agents/therapeutic use , Transplantation, Homologous/methods , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use , Young Adult
5.
Blood ; 128(11): 1465-74, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27365422

ABSTRACT

Protein phosphorylation is a central mechanism of signal transduction that both positively and negatively regulates protein function. Large-scale studies of the dynamic phosphorylation states of cell signaling systems have been applied extensively in cell lines and whole tissues to reveal critical regulatory networks, and candidate-based evaluations of phosphorylation in rare cell populations have also been informative. However, application of comprehensive profiling technologies to adult stem cell and progenitor populations has been challenging, due in large part to the scarcity of such cells in adult tissues. Here, we combine multicolor flow cytometry with highly efficient 3-dimensional high performance liquid chromatography/mass spectrometry to enable quantitative phosphoproteomic analysis from 200 000 highly purified primary mouse hematopoietic stem and progenitor cells (HSPCs). Using this platform, we identify ARHGAP25 as a novel regulator of HSPC mobilization and demonstrate that ARHGAP25 phosphorylation at serine 363 is an important modulator of its function. Our approach provides a robust platform for large-scale phosphoproteomic analyses performed with limited numbers of rare progenitor cells. Data from our study comprises a new resource for understanding the molecular signaling networks that underlie hematopoietic stem cell mobilization.


Subject(s)
Chemokine CXCL12/metabolism , GTPase-Activating Proteins/physiology , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/cytology , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Animals , Bone Marrow Transplantation , Cell Proliferation , Female , Flow Cytometry , Granulocyte Colony-Stimulating Factor/metabolism , Hematopoietic Stem Cells/metabolism , Male , Mice , Mice, Knockout , Phosphorylation , Proteomics
7.
Nat Med ; 30(4): 1001-1012, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454126

ABSTRACT

Chimeric antigen receptor T cell (CAR-T) therapy is an emerging strategy to improve treatment outcomes for recurrent high-grade glioma, a cancer that responds poorly to current therapies. Here we report a completed phase I trial evaluating IL-13Rα2-targeted CAR-T cells in 65 patients with recurrent high-grade glioma, the majority being recurrent glioblastoma (rGBM). Primary objectives were safety and feasibility, maximum tolerated dose/maximum feasible dose and a recommended phase 2 dose plan. Secondary objectives included overall survival, disease response, cytokine dynamics and tumor immune contexture biomarkers. This trial evolved to evaluate three routes of locoregional T cell administration (intratumoral (ICT), intraventricular (ICV) and dual ICT/ICV) and two manufacturing platforms, culminating in arm 5, which utilized dual ICT/ICV delivery and an optimized manufacturing process. Locoregional CAR-T cell administration was feasible and well tolerated, and as there were no dose-limiting toxicities across all arms, a maximum tolerated dose was not determined. Probable treatment-related grade 3+ toxicities were one grade 3 encephalopathy and one grade 3 ataxia. A clinical maximum feasible dose of 200 × 106 CAR-T cells per infusion cycle was achieved for arm 5; however, other arms either did not test or achieve this dose due to manufacturing feasibility. A recommended phase 2 dose will be refined in future studies based on data from this trial. Stable disease or better was achieved in 50% (29/58) of patients, with two partial responses, one complete response and a second complete response after additional CAR-T cycles off protocol. For rGBM, median overall survival for all patients was 7.7 months and for arm 5 was 10.2 months. Central nervous system increases in inflammatory cytokines, including IFNγ, CXCL9 and CXCL10, were associated with CAR-T cell administration and bioactivity. Pretreatment intratumoral CD3 T cell levels were positively associated with survival. These findings demonstrate that locoregional IL-13Rα2-targeted CAR-T therapy is safe with promising clinical activity in a subset of patients. ClinicalTrials.gov Identifier: NCT02208362 .


Subject(s)
Glioblastoma , Glioma , Receptors, Chimeric Antigen , Humans , Neoplasm Recurrence, Local , Glioma/therapy , T-Lymphocytes , Glioblastoma/therapy , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods
8.
Cancer Res Commun ; 3(1): 66-79, 2023 01.
Article in English | MEDLINE | ID: mdl-36968221

ABSTRACT

Chimeric antigen receptor (CAR) T cell immunotherapy is emerging as a powerful strategy for cancer therapy; however, an important safety consideration is the potential for off-tumor recognition of normal tissue. This is particularly important as ligand-based CARs are optimized for clinical translation. Our group has developed and clinically translated an IL13(E12Y) ligand-based CAR targeting the cancer antigen IL13Rα2 for treatment of glioblastoma (GBM). There remains limited understanding of how IL13-ligand CAR design impacts the activity and selectivity for the intended tumor-associated target IL13Rα2 versus the more ubiquitous unintended target IL13Rα1. In this study, we functionally compared IL13(E12Y)-CARs incorporating different intracellular signaling domains, including first-generation CD3ζ-containing CARs (IL13ζ), second-generation 4-1BB (CD137)-containing or CD28-containing CARs (IL13-BBζ or IL13-28ζ), and third-generation CARs containing both 4-1BB and CD28 (IL13-28BBζ). In vitro coculture assays at high tumor burden establish that second-generation IL13-BBζ or IL13-28ζ outperform first-generation IL13ζ and third-generation IL13-28BBζ CAR designs, with IL13-BBζ providing superior CAR proliferation and in vivo antitumor potency in human xenograft mouse models. IL13-28ζ displayed a lower threshold for antigen recognition, resulting in higher off-target IL13Rα1 reactivity both in vitro and in vivo. Syngeneic mouse models of GBM also demonstrate safety and antitumor potency of murine IL13-BBζ CAR T cells delivered systemically after lymphodepletion. These findings support the use of IL13-BBζ CARs for greater selective recognition of IL13Rα2 over IL13Rα1, higher proliferative potential, and superior antitumor responsiveness. This study exemplifies the potential of modulating factors outside the antigen targeting domain of a CAR to improve selective tumor recognition. Significance: This study reveals how modulating CAR design outside the antigen targeting domain improves selective tumor recognition. Specifically, this work shows improved specificity, persistence, and efficacy of 4-1BB-based IL13-ligand CARs. Human clinical trials evaluating IL13-41BB-CAR T cells are ongoing, supporting the clinical significance of these findings.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Receptors, Chimeric Antigen , Humans , Mice , Animals , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Immunotherapy, Adoptive/methods , Interleukin-13 Receptor alpha2 Subunit/genetics , Interleukin-13/genetics , CD28 Antigens/genetics , Ligands , Glioblastoma/therapy , Disease Models, Animal
9.
bioRxiv ; 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36711615

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapeutic responses are hampered by limited T cell trafficking, persistence, and durable anti-tumor activity in solid tumor microenvironments. However, these challenges can be largely overcome by relatively unconstrained synthetic engineering strategies, which are being harnessed to improve solid tumor CAR T cell therapies. Here, we describe fully optimized CAR T cells targeting tumor-associated glycoprotein-72 (TAG72) for the treatment of solid tumors, identifying the CD28 transmembrane domain upstream of the 4-1BB co-stimulatory domain as a driver of potent anti-tumor activity and IFNγ secretion. These findings have culminated into a phase 1 trial evaluating safety, feasibility, and bioactivity of TAG72-CAR T cells for the treatment of patients with advanced ovarian cancer ( NCT05225363 ). Preclinically, we found that CAR T cell-mediated IFNγ production facilitated by IL-12 signaling was required for tumor cell killing, which was recapitulated by expressing an optimized membrane-bound IL-12 (mbIL12) molecule on CAR T cells. Critically, mbIL12 cell surface expression and downstream signaling was induced and sustained only following CAR T cell activation. CAR T cells with mbIL12 demonstrated improved antigen-dependent T cell proliferation and potent cytotoxicity in recursive tumor cell killing assays in vitro and showed robust in vivo anti-tumor efficacy in human xenograft models of ovarian cancer peritoneal metastasis. Further, locoregional administration of TAG72-CAR T cells with antigen-dependent IL-12 signaling promoted durable anti-tumor responses against both regional and systemic disease in mice and was associated with improved systemic T cell persistence. Our study features a clinically-applicable strategy to improve the overall efficacy of locoregionally-delivered CAR T cells engineered with antigen-dependent immune-modulating cytokines in targeting both regional and systemic disease.

10.
Nat Med ; 29(4): 803-810, 2023 04.
Article in English | MEDLINE | ID: mdl-37024595

ABSTRACT

Cancer immunotherapies have unique toxicities. Establishment of grading scales and standardized grade-based treatment algorithms for toxicity syndromes can improve the safety of these treatments, as observed for cytokine release syndrome (CRS) and immune effector cell associated neurotoxicity syndrome (ICANS) in patients with B cell malignancies treated with chimeric antigen receptor (CAR) T cell therapy. We have observed a toxicity syndrome, distinct from CRS and ICANS, in patients treated with cell therapies for tumors in the central nervous system (CNS), which we term tumor inflammation-associated neurotoxicity (TIAN). Encompassing the concept of 'pseudoprogression,' but broader than inflammation-induced edema alone, TIAN is relevant not only to cellular therapies, but also to other immunotherapies for CNS tumors. To facilitate the safe administration of cell therapies for patients with CNS tumors, we define TIAN, propose a toxicity grading scale for TIAN syndrome and discuss the potential management of this entity, with the goal of standardizing both reporting and management.


Subject(s)
Neoplasms , Neurotoxicity Syndromes , Humans , Neoplasms/therapy , Immunotherapy, Adoptive/adverse effects , Immunotherapy , Inflammation , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Neurotoxicity Syndromes/etiology
11.
Nat Commun ; 14(1): 4737, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550294

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapeutic responses are hampered by limited T cell trafficking, persistence, and durable anti-tumor activity in solid tumors. However, these challenges can be largely overcome by relatively unconstrained synthetic engineering strategies. Here, we describe CAR T cells targeting tumor-associated glycoprotein-72 (TAG72), utilizing the CD28 transmembrane domain upstream of the 4-1BB co-stimulatory domain as a driver of potent anti-tumor activity and IFNγ secretion. CAR T cell-mediated IFNγ production facilitated by IL-12 signaling is required for tumor cell killing, which is recapitulated by engineering an optimized membrane-bound IL-12 (mbIL12) molecule in CAR T cells. These T cells show improved antigen-dependent T cell proliferation and recursive tumor cell killing in vitro, with robust in vivo efficacy in human ovarian cancer xenograft models. Locoregional administration of mbIL12-engineered CAR T cells promotes durable anti-tumor responses against both regional and systemic disease in mice. Safety and efficacy of mbIL12-engineered CAR T cells is demonstrated using an immunocompetent mouse model, with beneficial effects on the immunosuppressive tumor microenvironment. Collectively, our study features a clinically-applicable strategy to improve the efficacy of locoregionally-delivered CAR T cells engineered with antigen-dependent immune-modulating cytokines in targeting regional and systemic disease.


Subject(s)
Ovarian Neoplasms , Receptors, Chimeric Antigen , Female , Humans , Mice , Animals , Immunotherapy, Adoptive , Interleukin-12 , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Ovarian Neoplasms/therapy , Xenograft Model Antitumor Assays , Cell Line, Tumor , Tumor Microenvironment
12.
EBioMedicine ; 77: 103941, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35301179

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has emerged as a cancer treatment with enormous potential, demonstrating impressive antitumor activity in the treatment of hematological malignancies. However, CAR T cell exhaustion is a major limitation to their efficacy, particularly in the application of CAR T cells to solid tumors. CAR T cell exhaustion is thought to be due to persistent antigen stimulation, as well as an immunosuppressive tumor microenvironment, and mitigating exhaustion to maintain CAR T cell effector function and persistence and achieve clinical potency remains a central challenge. Here, we review the underlying mechanisms of exhaustion and discuss emerging strategies to prevent or reverse exhaustion through modifications of the CAR receptor or CAR independent pathways. Additionally, we discuss the potential of these strategies for improving clinical outcomes of CAR T cell therapy.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Immunotherapy , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/therapeutic use , Tumor Microenvironment
13.
Front Immunol ; 12: 765906, 2021.
Article in English | MEDLINE | ID: mdl-34899716

ABSTRACT

Vitamin C (VitC), in addition to its role as a general antioxidant, has long been considered to possess direct anti-cancer activity at high doses. VitC acts through oxidant and epigenetic mechanisms, which at high doses can exert direct killing of tumor cells in vitro and delay tumor growth in vivo. Recently, it has also been shown that pharmacologic-dose VitC can contribute to control of tumors by modulating the immune system, and studies have been done interrogating the role of physiologic-dose VitC on novel adoptive cellular therapies (ACTs). In this review, we discuss the effects of VitC on anti-tumor immune cells, as well as the mechanisms underlying those effects. We address important unanswered questions concerning both VitC and ACTs, and outline challenges and opportunities facing the use of VitC in the clinical setting as an adjunct to immune-based anti-cancer therapies.


Subject(s)
Ascorbic Acid/therapeutic use , Dietary Supplements , Immunotherapy , Neoplasms/therapy , Vitamins/therapeutic use , Animals , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Neoplasms/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
14.
Genome Biol ; 22(1): 288, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34635147

ABSTRACT

High-throughput biological data analysis commonly involves identifying features such as genes, genomic regions, and proteins, whose values differ between two conditions, from numerous features measured simultaneously. The most widely used criterion to ensure the analysis reliability is the false discovery rate (FDR), which is primarily controlled based on p-values. However, obtaining valid p-values relies on either reasonable assumptions of data distribution or large numbers of replicates under both conditions. Clipper is a general statistical framework for FDR control without relying on p-values or specific data distributions. Clipper outperforms existing methods for a broad range of applications in high-throughput data analysis.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Software , Chromatin Immunoprecipitation Sequencing/methods , Chromosomes , Computer Simulation , Data Interpretation, Statistical , Humans , Mass Spectrometry , Peptides/chemistry , Proteomics/methods , RNA-Seq/methods , Single-Cell Analysis
15.
iScience ; 24(9): 103026, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34522866

ABSTRACT

Age is the major risk factor in most carcinomas, yet little is known about how proteomes change with age in any human epithelium. We present comprehensive proteomes comprised of >9,000 total proteins and >15,000 phosphopeptides from normal primary human mammary epithelia at lineage resolution from ten women ranging in age from 19 to 68 years. Data were quality controlled and results were biologically validated with cell-based assays. Age-dependent protein signatures were identified using differential expression analyses and weighted protein co-expression network analyses. Upregulation of basal markers in luminal cells, including KRT14 and AXL, were a prominent consequence of aging. PEAK1 was identified as an age-dependent signaling kinase in luminal cells, which revealed a potential age-dependent vulnerability for targeted ablation. Correlation analyses between transcriptome and proteome revealed age-associated loss of proteostasis regulation. Age-dependent proteome changes in the breast epithelium identified heretofore unknown potential therapeutic targets for reducing breast cancer susceptibility.

16.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: mdl-34083417

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is refractory to immune checkpoint inhibitor (ICI) therapy. We sought to determine to what extent this immune evasion is due to intrinsic properties of the tumor cells versus the specialized immune context of the brain, and if it can be reversed. METHODS: We used CyTOF mass cytometry to compare the tumor immune microenvironments (TIME) of human tumors that are generally ICI-refractory (GBM and sarcoma) or ICI-responsive (renal cell carcinoma), as well as mouse models of GBM that are ICI-responsive (GL261) or ICI-refractory (SB28). We further compared SB28 tumors grown intracerebrally versus subcutaneously to determine how tumor site affects TIME and responsiveness to dual CTLA-4/PD-1 blockade. Informed by these data, we explored rational immunotherapeutic combinations. RESULTS: ICI-sensitivity in human and mouse tumors was associated with increased T cells and dendritic cells (DCs), and fewer myeloid cells, in particular PD-L1+ tumor-associated macrophages. The SB28 mouse model of GBM responded to ICI when grown subcutaneously but not intracerebrally, providing a system to explore mechanisms underlying ICI resistance in GBM. The response to ICI in the subcutaneous SB28 model required CD4 T cells and NK cells, but not CD8 T cells. Recombinant FLT3L expanded DCs, improved antigen-specific T cell priming, and prolonged survival of mice with intracerebral SB28 tumors, but at the cost of increased Tregs. Targeting PD-L1 also prolonged survival, especially when combined with stereotactic radiation. CONCLUSIONS: Our data suggest that a major obstacle for effective immunotherapy of GBM is poor antigen presentation in the brain, rather than intrinsic immunosuppressive properties of GBM tumor cells. Deep immune profiling identified DCs and PD-L1+ tumor-associated macrophages as promising targetable cell populations, which was confirmed using therapeutic interventions in vivo.


Subject(s)
Brain Neoplasms/therapy , CTLA-4 Antigen/metabolism , Glioblastoma/therapy , Immune Checkpoint Inhibitors/administration & dosage , Membrane Proteins/administration & dosage , Programmed Cell Death 1 Receptor/metabolism , Animals , Brain Neoplasms/immunology , CTLA-4 Antigen/antagonists & inhibitors , Cell Line, Tumor , Glioblastoma/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Membrane Proteins/pharmacology , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Regulatory/metabolism , Tumor Escape/drug effects , Xenograft Model Antitumor Assays
17.
Immunohorizons ; 4(5): 274-281, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32434881

ABSTRACT

Rho family GTPases are critical for normal B cell development and function, and their activity is regulated by a large and complex network of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). However, the role of GAPs in B cell development is poorly understood. In this study, we show that the novel Rac-GAP ARHGAP25 is important for B cell development in mice in a CXCR4-dependent manner. We show that Arhgap25 deficiency in mice leads to a significant decrease in peripheral blood B cell numbers as well as defects in mature B cell differentiation. Arhgap25-/- B cells respond to Ag stimulation in vitro and in vivo but have impaired germinal center formation and decreased IgG1 class switching. Additionally, Arhgap25-/- B cells show evidence of increased baseline motility and augmented chemotaxis to CXCL12. Taken together, these studies demonstrate an important role for Arhgap25 in peripheral B cell development and Ag response.


Subject(s)
B-Lymphocytes/metabolism , GTPase-Activating Proteins/metabolism , Germinal Center/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Animals , Chemotaxis , GTPase-Activating Proteins/deficiency , Germinal Center/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CXCR4/metabolism
18.
Cancer Res ; 80(15): 3157-3169, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32414754

ABSTRACT

Temporal dynamics of gene expression inform cellular and molecular perturbations associated with disease development and evolution. Given the complexity of high-dimensional temporal genomic data, an analytic framework guided by a robust theory is needed to interpret time-sequential changes and to predict system dynamics. Here we model temporal dynamics of the transcriptome of peripheral blood mononuclear cells in a two-dimensional state-space representing states of health and leukemia using time-sequential bulk RNA-seq data from a murine model of acute myeloid leukemia (AML). The state-transition model identified critical points that accurately predict AML development and identifies stepwise transcriptomic perturbations that drive leukemia progression. The geometry of the transcriptome state-space provided a biological interpretation of gene dynamics, aligned gene signals that are not synchronized in time across mice, and allowed quantification of gene and pathway contributions to leukemia development. Our state-transition model synthesizes information from multiple cell types in the peripheral blood and identifies critical points in the transition from health to leukemia to guide interpretation of changes in the transcriptome as a whole to predict disease progression. SIGNIFICANCE: These findings apply the theory of state transitions to model the initiation and development of acute myeloid leukemia, identifying transcriptomic perturbations that accurately predict time to disease development.See related commentary by Kuijjer, p. 3072 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/15/3157/F1.large.jpg.


Subject(s)
Leukemia, Myeloid, Acute , Leukocytes, Mononuclear , Animals , Disease Progression , Genomics , Leukemia, Myeloid, Acute/genetics , Mice , Transcriptome
19.
Nat Med ; 26(2): 200-206, 2020 02.
Article in English | MEDLINE | ID: mdl-31988463

ABSTRACT

Chronic granulomatous disease (CGD) is a rare inherited disorder of phagocytic cells1,2. We report the initial results of nine severely affected X-linked CGD (X-CGD) patients who received ex vivo autologous CD34+ hematopoietic stem and progenitor cell-based lentiviral gene therapy following myeloablative conditioning in first-in-human studies (trial registry nos. NCT02234934 and NCT01855685). The primary objectives were to assess the safety and evaluate the efficacy and stability of biochemical and functional reconstitution in the progeny of engrafted cells at 12 months. The secondary objectives included the evaluation of augmented immunity against bacterial and fungal infection, as well as assessment of hematopoietic stem cell transduction and engraftment. Two enrolled patients died within 3 months of treatment from pre-existing comorbidities. At 12 months, six of the seven surviving patients demonstrated stable vector copy numbers (0.4-1.8 copies per neutrophil) and the persistence of 16-46% oxidase-positive neutrophils. There was no molecular evidence of either clonal dysregulation or transgene silencing. Surviving patients have had no new CGD-related infections, and six have been able to discontinue CGD-related antibiotic prophylaxis. The primary objective was met in six of the nine patients at 12 months follow-up, suggesting that autologous gene therapy is a promising approach for CGD patients.


Subject(s)
Chromosomes, Human, X , Genetic Therapy/methods , Granulomatous Disease, Chronic/genetics , Lentivirus/genetics , Adolescent , Antigens, CD34/genetics , Child , Child, Preschool , Comorbidity , Gene Silencing , Genes, Regulator , Genetic Vectors , Granulomatous Disease, Chronic/therapy , Hematopoietic Stem Cells/cytology , Humans , Male , NADPH Oxidases/genetics , Neutrophils/metabolism , Patient Safety , Promoter Regions, Genetic , Transplantation Conditioning , Treatment Outcome , United Kingdom , United States , Young Adult
20.
Cell Rep ; 27(4): 1254-1264.e7, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31018138

ABSTRACT

In vivo delivery of genome-modifying enzymes holds significant promise for therapeutic applications and functional genetic screening. Delivery to endogenous tissue stem cells, which provide an enduring source of cell replacement during homeostasis and regeneration, is of particular interest. Here, we use a sensitive Cre/lox fluorescent reporter system to test the efficiency of genome modification following in vivo transduction by adeno-associated viruses (AAVs) in tissue stem and progenitor cells. We combine immunophenotypic analyses with in vitro and in vivo assays of stem cell function to reveal effective targeting of skeletal muscle satellite cells, mesenchymal progenitors, hematopoietic stem cells, and dermal cell subsets using multiple AAV serotypes. Genome modification rates achieved through this system reached >60%, and modified cells retained key functional properties. This study establishes a powerful platform to genetically alter tissue progenitors within their physiological niche while preserving their native stem cell properties and regulatory interactions.


Subject(s)
Cell Differentiation , Dependovirus/genetics , Genome , Hematopoietic Stem Cells/cytology , Satellite Cells, Skeletal Muscle/cytology , Skin/cytology , Animals , Cell Movement , Dependovirus/classification , Female , Gene Transfer Techniques , Genetic Therapy , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Inbred mdx , Satellite Cells, Skeletal Muscle/metabolism , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL