Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.339
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 24(3): 423-438, 2023 03.
Article in English | MEDLINE | ID: mdl-36807642

ABSTRACT

Respiratory viral infections reprogram pulmonary macrophages with altered anti-infectious functions. However, the potential function of virus-trained macrophages in antitumor immunity in the lung, a preferential target of both primary and metastatic malignancies, is not well understood. Using mouse models of influenza and lung metastatic tumors, we show here that influenza trains respiratory mucosal-resident alveolar macrophages (AMs) to exert long-lasting and tissue-specific antitumor immunity. Trained AMs infiltrate tumor lesions and have enhanced phagocytic and tumor cell cytotoxic functions, which are associated with epigenetic, transcriptional and metabolic resistance to tumor-induced immune suppression. Generation of antitumor trained immunity in AMs is dependent on interferon-γ and natural killer cells. Notably, human AMs with trained immunity traits in non-small cell lung cancer tissue are associated with a favorable immune microenvironment. These data reveal a function for trained resident macrophages in pulmonary mucosal antitumor immune surveillance. Induction of trained immunity in tissue-resident macrophages might thereby be a potential antitumor strategy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Influenza, Human , Lung Neoplasms , Mice , Animals , Humans , Macrophages, Alveolar , Lung Neoplasms/metabolism , Lung , Tumor Microenvironment
2.
Cell ; 174(5): 1082-1094.e12, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30057117

ABSTRACT

Although animals have evolved multiple mechanisms to suppress transposons, "leaky" mobilizations that cause mutations and diseases still occur. This suggests that transposons employ specific tactics to accomplish robust propagation. By directly tracking mobilization, we show that, during a short and specific time window of oogenesis, retrotransposons achieve massive amplification via a cell-type-specific targeting strategy. Retrotransposons rarely mobilize in undifferentiated germline stem cells. However, as oogenesis proceeds, they utilize supporting nurse cells-which are highly polyploid and eventually undergo apoptosis-as factories to massively manufacture invading products. Moreover, retrotransposons rarely integrate into nurse cells themselves but, instead, via microtubule-mediated transport, they preferentially target the DNA of the interconnected oocytes. Blocking microtubule-dependent intercellular transport from nurse cells significantly alleviates damage to the oocyte genome. Our data reveal that parasitic genomic elements can efficiently hijack a host developmental process to propagate robustly, thereby driving evolutionary change and causing disease.


Subject(s)
Drosophila melanogaster/genetics , Long Interspersed Nucleotide Elements , Oogenesis , RNA, Small Interfering , Retroelements , Retroviridae/genetics , Animals , Drosophila Proteins , Female , Gene Library , Gene Silencing , Germ Cells , Green Fluorescent Proteins/metabolism , In Situ Hybridization, Fluorescence , Male , Oocytes/metabolism , Stem Cells/metabolism
3.
Cell ; 175(3): 766-779.e17, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340042

ABSTRACT

The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms, Experimental/drug therapy , Positive Transcriptional Elongation Factor B/metabolism , Repressor Proteins/metabolism , Transcription Elongation, Genetic/drug effects , Transcriptional Elongation Factors/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Drosophila , Female , HCT116 Cells , HEK293 Cells , Heat-Shock Response , Humans , Male , Mice , Mice, Inbred BALB C , Protein Binding/drug effects , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Polymerase II/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
4.
Mol Cell ; 83(16): 2896-2910.e4, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37442129

ABSTRACT

The BET family protein BRD4, which forms the CDK9-containing BRD4-PTEFb complex, is considered to be a master regulator of RNA polymerase II (Pol II) pause release. Because its tandem bromodomains interact with acetylated histone lysine residues, it has long been thought that BRD4 requires these bromodomains for its recruitment to chromatin and transcriptional regulatory function. Here, using rapid depletion and genetic complementation with domain deletion mutants, we demonstrate that BRD4 bromodomains are dispensable for Pol II pause release. A minimal, bromodomain-less C-terminal BRD4 fragment containing the PTEFb-interacting C-terminal motif (CTM) is instead both necessary and sufficient to mediate Pol II pause release in the absence of full-length BRD4. Although BRD4-PTEFb can associate with chromatin through acetyl recognition, our results indicate that a distinct, active BRD4-PTEFb population functions to regulate transcription independently of bromodomain-mediated chromatin association. These findings may enable more effective pharmaceutical modulation of BRD4-PTEFb activity.


Subject(s)
Nuclear Proteins , Transcription Factors , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Histones/metabolism , Gene Expression Regulation , Chromatin/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
6.
Nature ; 631(8022): 826-834, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987597

ABSTRACT

Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke1,2, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms3-7. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke4. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels4-7. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.


Subject(s)
Acid Sensing Ion Channels , Brain Ischemia , Glutamic Acid , Animals , Female , Humans , Male , Mice , 2-Amino-5-phosphonovalerate/adverse effects , 2-Amino-5-phosphonovalerate/metabolism , 2-Amino-5-phosphonovalerate/pharmacology , Acid Sensing Ion Channels/chemistry , Acid Sensing Ion Channels/deficiency , Acid Sensing Ion Channels/drug effects , Acid Sensing Ion Channels/genetics , Acid Sensing Ion Channels/metabolism , Allosteric Regulation/drug effects , Binding Sites/genetics , Brain Ischemia/chemically induced , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Glutamic Acid/analogs & derivatives , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Glutamic Acid/toxicity , Mice, Knockout , Mutagenesis, Site-Directed , Protons , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism
7.
Cell ; 157(4): 979-991, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24813617

ABSTRACT

The reprogramming of parental methylomes is essential for embryonic development. In mammals, paternal 5-methylcytosines (5mCs) have been proposed to be actively converted to oxidized bases. These paternal oxidized bases and maternal 5mCs are believed to be passively diluted by cell divisions. By generating single-base resolution, allele-specific DNA methylomes from mouse gametes, early embryos, and primordial germ cell (PGC), as well as single-base-resolution maps of oxidized cytosine bases for early embryos, we report the existence of 5hmC and 5fC in both maternal and paternal genomes and find that 5mC or its oxidized derivatives, at the majority of demethylated CpGs, are converted to unmodified cytosines independent of passive dilution from gametes to four-cell embryos. Therefore, we conclude that paternal methylome and at least a significant proportion of maternal methylome go through active demethylation during embryonic development. Additionally, all the known imprinting control regions (ICRs) were classified into germ-line or somatic ICRs.


Subject(s)
DNA Methylation , Embryonic Development , Gene Expression Regulation, Developmental , Genomic Imprinting , 5-Methylcytosine/metabolism , Animals , CpG Islands , Cytosine/analogs & derivatives , Cytosine/metabolism , Embryo, Mammalian/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Promoter Regions, Genetic
8.
Nature ; 620(7972): 218-225, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37438532

ABSTRACT

Retrotransposons are highly enriched in the animal genome1-3. The activation of retrotransposons can rewrite host DNA information and fundamentally impact host biology1-3. Although developmental activation of retrotransposons can offer benefits for the host, such as against virus infection, uncontrolled activation promotes disease or potentially drives ageing1-5. After activation, retrotransposons use their mRNA as templates to synthesize double-stranded DNA for making new insertions in the host genome1-3,6. Although the reverse transcriptase that they encode can synthesize the first-strand DNA1-3,6, how the second-strand DNA is generated remains largely unclear. Here we report that retrotransposons hijack the alternative end-joining (alt-EJ) DNA repair process of the host for a circularization step to synthesize their second-strand DNA. We used Nanopore sequencing to examine the fates of replicated retrotransposon DNA, and found that 10% of them achieve new insertions, whereas 90% exist as extrachromosomal circular DNA (eccDNA). Using eccDNA production as a readout, further genetic screens identified factors from alt-EJ as essential for retrotransposon replication. alt-EJ drives the second-strand synthesis of the long terminal repeat retrotransposon DNA through a circularization process and is therefore necessary for eccDNA production and new insertions. Together, our study reveals that alt-EJ is essential in driving the propagation of parasitic genomic retroelements. Our study uncovers a conserved function of this understudied DNA repair process, and provides a new perspective to understand-and potentially control-the retrotransposon life cycle.


Subject(s)
DNA End-Joining Repair , DNA Replication , DNA, Circular , Parasites , Retroelements , Animals , Retroelements/genetics , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Templates, Genetic , DNA, Circular/biosynthesis , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Single-Stranded/biosynthesis , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Parasites/genetics , Genome/genetics
9.
Nature ; 619(7971): 801-810, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438528

ABSTRACT

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.


Subject(s)
Cellular Microenvironment , Heart , Multiomics , Myocardium , Humans , Cell Communication , Fibroblasts/cytology , Glutamic Acid/metabolism , Heart/anatomy & histology , Heart/innervation , Ion Channels/metabolism , Myocardium/cytology , Myocardium/immunology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Neuroglia/cytology , Pericardium/cytology , Pericardium/immunology , Plasma Cells/immunology , Receptors, G-Protein-Coupled/metabolism , Sinoatrial Node/anatomy & histology , Sinoatrial Node/cytology , Sinoatrial Node/physiology , Heart Conduction System/anatomy & histology , Heart Conduction System/cytology , Heart Conduction System/metabolism
10.
Nature ; 615(7950): 134-142, 2023 03.
Article in English | MEDLINE | ID: mdl-36470304

ABSTRACT

Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Receptors, Virus , Ursodeoxycholic Acid , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/prevention & control , Receptors, Virus/genetics , Receptors, Virus/metabolism , Retrospective Studies , SARS-CoV-2/metabolism , COVID-19 Drug Treatment , Cricetinae , Transcription, Genetic , Ursodeoxycholic Acid/pharmacology , Lung/drug effects , Lung/metabolism , Organoids/drug effects , Organoids/metabolism , Liver/drug effects , Liver/metabolism , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Registries , Reproducibility of Results , Liver Transplantation
11.
Cell ; 153(4): 773-84, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23663777

ABSTRACT

5-methylcytosine is a major epigenetic modification that is sometimes called "the fifth nucleotide." However, our knowledge of how offspring inherit the DNA methylome from parents is limited. We generated nine single-base resolution DNA methylomes, including zebrafish gametes and early embryos. The oocyte methylome is significantly hypomethylated compared to sperm. Strikingly, the paternal DNA methylation pattern is maintained throughout early embryogenesis. The maternal DNA methylation pattern is maintained until the 16-cell stage. Then, the oocyte methylome is gradually discarded through cell division and is progressively reprogrammed to a pattern similar to that of the sperm methylome. The passive demethylation rate and the de novo methylation rate are similar in the maternal DNA. By the midblastula stage, the embryo's methylome is virtually identical to the sperm methylome. Moreover, inheritance of the sperm methylome facilitates the epigenetic regulation of embryogenesis. Therefore, besides DNA sequences, sperm DNA methylome is also inherited in zebrafish early embryos.


Subject(s)
DNA Methylation , Embryo, Nonmammalian/metabolism , Oocytes/metabolism , Spermatozoa/metabolism , Zebrafish/embryology , Zebrafish/genetics , 5-Methylcytosine/analysis , Animals , Epigenesis, Genetic , Female , Germ Cells/metabolism , Male , Zebrafish/metabolism
12.
Genes Dev ; 34(21-22): 1493-1502, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33033055

ABSTRACT

Catalytic-inactivating mutations within the Drosophila enhancer H3K4 mono-methyltransferase Trr and its mammalian homologs, MLL3/4, cause only minor changes in gene expression compared with whole-gene deletions for these COMPASS members. To identify essential histone methyltransferase-independent functions of Trr, we screened to identify a minimal Trr domain sufficient to rescue Trr-null lethality and demonstrate that this domain binds and stabilizes Utx in vivo. Using the homologous MLL3/MLL4 human sequences, we mapped a short ∼80-amino-acid UTX stabilization domain (USD) that promotes UTX stability in the absence of the rest of MLL3/4. Nuclear UTX stability is enhanced when the USD is fused with the MLL4 HMG-box. Thus, COMPASS-dependent UTX stabilization is an essential noncatalytic function of Trr/MLL3/MLL4, suggesting that stabilizing UTX could be a therapeutic strategy for cancers with MLL3/4 loss-of-function mutations.


Subject(s)
Conserved Sequence/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genes, Lethal/genetics , Histone-Lysine N-Methyltransferase/genetics , Oxidoreductases, N-Demethylating/genetics , Animals , Gene Deletion , Gene Expression Regulation/genetics , HCT116 Cells , Humans , Protein Domains , Protein Stability
13.
Plant Cell ; 36(9): 3562-3583, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38842382

ABSTRACT

Plants are increasingly vulnerable to environmental stresses because of global warming and climate change. Stress-induced reactive oxygen species (ROS) accumulation results in plant cell damage, even cell death. Anthocyanins are important antioxidants that scavenge ROS to maintain ROS homeostasis. However, the mechanism underlying ROS-induced anthocyanin accumulation is unclear. In this study, we determined that the HD-Zip I family member transcription factor PuHB40 mediates ROS-dependent anthocyanin biosynthesis under high-light stress in pear (Pyrus ussuriensis). Specifically, PuHB40 induces the PuMYB123-like-PubHLH3 transcription factor complex for anthocyanin biosynthesis. The PuHB40-mediated transcriptional activation depends on its phosphorylation level, which is regulated by protein phosphatase PP2A. Elevated ROS content maintains high PuHB40 phosphorylation levels while also enhancing the PuHB40-induced PuMYB123-like transcription by decreasing the PuPP2AA2 expression, ultimately leading to increased anthocyanin biosynthesis. Our study reveals a pathway regulating the ROS-induced anthocyanin biosynthesis in pears, further clarifying the mechanism underlying the abiotic stress-induced anthocyanin biosynthesis, which may have implications for improving plant stress tolerance.


Subject(s)
Anthocyanins , Gene Expression Regulation, Plant , Light , Plant Proteins , Pyrus , Reactive Oxygen Species , Transcription Factors , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Pyrus/metabolism , Pyrus/genetics , Pyrus/radiation effects , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Phosphorylation , Plant Proteins/metabolism , Plant Proteins/genetics , Plants, Genetically Modified
14.
Mol Cell ; 75(6): 1188-1202.e11, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31399345

ABSTRACT

The maternal-to-zygotic transition (MZT) is a conserved and fundamental process during which the maternal environment is converted to an environment of embryonic-driven development through dramatic reprogramming. However, how maternally supplied transcripts are dynamically regulated during MZT remains largely unknown. Herein, through genome-wide profiling of RNA 5-methylcytosine (m5C) modification in zebrafish early embryos, we found that m5C-modified maternal mRNAs display higher stability than non-m5C-modified mRNAs during MZT. We discovered that Y-box binding protein 1 (Ybx1) preferentially recognizes m5C-modified mRNAs through π-π interactions with a key residue, Trp45, in Ybx1's cold shock domain (CSD), which plays essential roles in maternal mRNA stability and early embryogenesis of zebrafish. Together with the mRNA stabilizer Pabpc1a, Ybx1 promotes the stability of its target mRNAs in an m5C-dependent manner. Our study demonstrates an unexpected mechanism of RNA m5C-regulated maternal mRNA stabilization during zebrafish MZT, highlighting the critical role of m5C mRNA modification in early development.


Subject(s)
5-Methylcytosine/metabolism , Embryo, Nonmammalian/embryology , Embryonic Development/physiology , RNA Stability/physiology , RNA, Messenger, Stored/metabolism , Zebrafish/embryology , Animals , HeLa Cells , Humans , Mice , RNA, Messenger, Stored/genetics , Zebrafish/genetics
15.
Proc Natl Acad Sci U S A ; 121(27): e2402143121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38923993

ABSTRACT

The non-neural cholinergic system plays a critical role in regulating immune equilibrium and tissue homeostasis. While the expression of choline acetyltransferase (ChAT), the enzyme catalyzing acetylcholine biosynthesis, has been well documented in lymphocytes, its role in the myeloid compartment is less understood. Here, we identify a significant population of macrophages (Mϕs) expressing ChAT and synthesizing acetylcholine in the resolution phase of acute peritonitis. Using Chat-GFP reporter mice, we observed marked upregulation of ChAT in monocyte-derived small peritoneal Mϕs (SmPMs) in response to Toll-like receptor agonists and bacterial infections. These SmPMs, phenotypically and transcriptionally distinct from tissue-resident large peritoneal macrophages, up-regulated ChAT expression through a MyD88-dependent pathway involving MAPK signaling. Notably, this process was attenuated by the TRIF-dependent TLR signaling pathway, and our tests with a range of neurotransmitters and cytokines failed to induce a similar response. Functionally, Chat deficiency in Mϕs led to significantly decreased peritoneal acetylcholine levels, reduced efferocytosis of apoptotic neutrophils, and a delayed resolution of peritonitis, which were reversible with exogenous ACh supplementation. Intriguingly, despite B lymphocytes being a notable ChAT-expressing population within the peritoneal cavity, Chat deletion in B cells did not significantly alter the resolution process. Collectively, these findings underscore the crucial role of Mϕ-derived acetylcholine in the resolution of inflammation and highlight the importance of the non-neuronal cholinergic system in immune regulation.


Subject(s)
Acetylcholine , Choline O-Acetyltransferase , Macrophages, Peritoneal , Peritonitis , Animals , Choline O-Acetyltransferase/metabolism , Choline O-Acetyltransferase/genetics , Peritonitis/immunology , Peritonitis/metabolism , Mice , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/immunology , Acetylcholine/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Mice, Inbred C57BL , Signal Transduction , Inflammation/metabolism , Inflammation/pathology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Toll-Like Receptors/metabolism , Phagocytosis , Macrophages/metabolism , Macrophages/immunology , Mice, Knockout
16.
Genes Dev ; 33(1-2): 61-74, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30573454

ABSTRACT

Chromosomal translocations of the Mixed-lineage leukemia 1 (MLL1) gene generate MLL chimeras that drive the pathogenesis of acute myeloid and lymphoid leukemia. The untranslocated MLL1 is a substrate for proteolytic cleavage by the endopeptidase threonine aspartase 1 (taspase1); however, the biological significance of MLL1 cleavage by this endopeptidase remains unclear. Here, we demonstrate that taspase1-dependent cleavage of MLL1 results in the destabilization of MLL. Upon loss of taspase1, MLL1 association with chromatin is markedly increased due to the stabilization of its unprocessed version, and this stabilization of the uncleaved MLL1 can result in the displacement of MLL chimeras from chromatin in leukemic cells. Casein kinase II (CKII) phosphorylates MLL1 proximal to the taspase1 cleavage site, facilitating its cleavage, and pharmacological inhibition of CKII blocks taspase1-dependent MLL1 processing, increases MLL1 stability, and results in the displacement of the MLL chimeras from chromatin. Accordingly, inhibition of CKII in a MLL-AF9 mouse model of leukemia delayed leukemic progression in vivo. This study provides insights into the direct regulation of the stability of MLL1 through its cleavage by taspase1, which can be harnessed for targeted therapeutic approaches for the treatment of aggressive leukemia as the result of MLL translocations.


Subject(s)
Endopeptidases/metabolism , Leukemia/therapy , Myeloid-Lymphoid Leukemia Protein/genetics , Animals , Chromatin/metabolism , Disease Models, Animal , Disease Progression , Endopeptidases/genetics , Enzyme Inhibitors/pharmacology , Gene Knockout Techniques , HCT116 Cells , HEK293 Cells , Humans , Leukemia/enzymology , Leukemia/genetics , MCF-7 Cells , Mice , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Stability , Survival Analysis
17.
Hum Mol Genet ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39251229

ABSTRACT

α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.

18.
J Cell Sci ; 137(6)2024 03 15.
Article in English | MEDLINE | ID: mdl-38345101

ABSTRACT

Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates. Interestingly, we found that softer substrates increased the incidence of myoblasts with a wrinkled nucleus, and that the extent of wrinkling could predict Ki67 (also known as MKI67) expression. Nuclear wrinkling and Ki67 expression could be controlled by pharmacological manipulation of cellular contractility, offering a potential cellular mechanism. These results provide new insights into the regulation of human myoblast stiffness-dependent contractility response by ECM ligands and highlight a link between myoblast contractility and proliferation.


Subject(s)
Extracellular Matrix , Nuclear Envelope , Humans , Ki-67 Antigen/metabolism , Extracellular Matrix/metabolism , Myoblasts/metabolism , Cell Proliferation
19.
Development ; 150(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37874038

ABSTRACT

In vertebrates, the earliest hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of specialized endothelial cells, hemogenic endothelial cells, in the aorta-gonad-mesonephros region through endothelial-to-hematopoietic transition. HSPC generation is efficiently and accurately regulated by a variety of factors and signals; however, the precise control of these signals remains incompletely understood. Post-transcriptional regulation is crucial for gene expression, as the transcripts are usually bound by RNA-binding proteins (RBPs) to regulate RNA metabolism. Here, we report that the RBP protein Csde1-mediated translational control is essential for HSPC generation during zebrafish early development. Genetic mutants and morphants demonstrated that depletion of csde1 impaired HSPC production in zebrafish embryos. Mechanistically, Csde1 regulates HSPC generation through modulating Wnt/ß-catenin signaling activity. We demonstrate that Csde1 binds to ctnnb1 mRNAs (encoding ß-catenin, an effector of Wnt signaling) and regulates translation but not stability of ctnnb1 mRNA, which further enhances ß-catenin protein level and Wnt signal transduction activities. Together, we identify Csde1 as an important post-transcriptional regulator and provide new insights into how Wnt/ß-catenin signaling is precisely regulated at the post-transcriptional level.


Subject(s)
Hemangioblasts , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , beta Catenin/metabolism , Wnt Signaling Pathway/genetics , Hematopoietic Stem Cells/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Hemangioblasts/metabolism
20.
Blood ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316653

ABSTRACT

Children with ETV6::RUNX1 or high-hyperdiploid B-acute lymphoblastic leukemia (B-ALL) have favorable outcomes. The St. Jude (SJ) classification considers these patients low-risk, regardless of their National Cancer Institute (NCI) risk, except when there is slow minimal residual disease (MRD) response or central nervous system/testicular involvement. We analyzed outcomes in children (aged 1-18.99 years) with these genotypes in the SJ Total XV and XVI studies (2000-2017). Patients with ETV6::RUNX1 (n = 222) or high-hyperdiploid (n = 296) B-ALL had 5-year event-free survival (EFS) of 97.7% ± 1.1% and 94.7% ± 1.4%, respectively. For ETV6::RUNX1, EFS was comparable for NCI standard-risk and high-risk patients (97.8% ± 1.2% and 97.5% ± 2.6%, respectively; P = 0.917) and for SJ low-risk and standard-risk patients (97.4% ± 1.2% and 100.0%; P = 0.360). Thirty-seven of 40 NCI high-risk patients who received SJ low-risk therapy had excellent EFS (97.3% ± 2.8%). For high-hyperdiploid B-ALL, EFS was worse for NCI high-risk patients than for standard-risk patients (87.6% ± 4.5% and 96.4% ± 1.3%; P = 0.016). EFS was similar for NCI standard-risk and high-risk patients classified as SJ low-risk (96.0% ± 1.5% and 96.9% ± 3.2%; P = 0.719); however, EFS was worse for NCI high-risk patients than for NCI standard-risk patients receiving SJ standard/high-risk therapy (77.4% ± 8.2% and 98.0% ± 2.2%; P = 0.004). NCI high-risk patients with ETV6::RUNX1 or high-hyperdiploid B-ALL who received SJ low-risk therapy had lower incidences of thrombosis (P = 0.013) and pancreatitis (P = 0.011) than those who received SJ standard/high-risk therapy. Contemporary MRD-directed therapy yielded excellent outcomes, except for NCI high-risk high-hyperdiploid B-ALL patients with slow MRD response, who require new treatment approaches. Among NCI high-risk patients, 93% with ETV6::RUNX1 and 54% with high-hyperdiploid B-ALL experienced excellent outcomes with a low-intensity regimen. These trials were registered at www.clinicaltrials.gov as #NCT00137111 and #NCT00549848.

SELECTION OF CITATIONS
SEARCH DETAIL