Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Neuroinflammation ; 21(1): 103, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643194

ABSTRACT

BACKGROUND: Colony stimulating factor 1 receptor (CSF1R) signaling is crucial for the maintenance and function of various myeloid subsets. CSF1R antagonism was previously shown to mitigate clinical severity in experimental autoimmune encephalomyelitis (EAE). The associated mechanisms are still not well delineated. METHODS: To assess the effect of CSF1R signaling, we employed the CSF1R antagonist PLX5622 formulated in chow (PLX5622 diet, PD) and its control chow (control diet, CD). We examined the effect of PD in steady state and EAE by analyzing cells isolated from peripheral immune organs and from the CNS via flow cytometry. We determined CNS infiltration sites and assessed the extent of demyelination using immunohistochemistry of cerebella and spinal cords. Transcripts of genes associated with neuroinflammation were also analyzed in these tissues. RESULTS: In addition to microglial depletion, PD treatment reduced dendritic cells and macrophages in peripheral immune organs, both during steady state and during EAE. Furthermore, CSF1R antagonism modulated numbers and relative frequencies of T effector cells both in the periphery and in the CNS during the early stages of the disease. Classical neurological symptoms were milder in PD compared to CD mice. Interestingly, a subset of PD mice developed atypical EAE symptoms. Unlike previous studies, we observed that the CNS of PD mice was infiltrated by increased numbers of peripheral immune cells compared to that of CD mice. Immunohistochemical analysis showed that CNS infiltrates in PD mice were mainly localized in the cerebellum while in CD mice infiltrates were primarily localized in the spinal cords during the onset of neurological deficits. Accordingly, during the same timepoint, cerebella of PD but not of CD mice had extensive demyelinating lesions, while spinal cords of CD but not of PD mice were heavily demyelinated. CONCLUSIONS: Our findings suggest that CSF1R activity modulates the cellular composition of immune cells both in the periphery and within the CNS, and affects lesion localization during the early EAE stages.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Organic Chemicals/pharmacology , Spinal Cord/pathology , Microglia , Receptors, Colony-Stimulating Factor , Receptor Protein-Tyrosine Kinases , Mice, Inbred C57BL
3.
Nature ; 550(7675): 255-259, 2017 10 12.
Article in English | MEDLINE | ID: mdl-28953886

ABSTRACT

Under homeostatic conditions, animals use well-defined hypothalamic neural circuits to help maintain stable body weight, by integrating metabolic and hormonal signals from the periphery to balance food consumption and energy expenditure. In stressed or disease conditions, however, animals use alternative neuronal pathways to adapt to the metabolic challenges of altered energy demand. Recent studies have identified brain areas outside the hypothalamus that are activated under these 'non-homeostatic' conditions, but the molecular nature of the peripheral signals and brain-localized receptors that activate these circuits remains elusive. Here we identify glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as a brainstem-restricted receptor for growth and differentiation factor 15 (GDF15). GDF15 regulates food intake, energy expenditure and body weight in response to metabolic and toxin-induced stresses; we show that Gfral knockout mice are hyperphagic under stressed conditions and are resistant to chemotherapy-induced anorexia and body weight loss. GDF15 activates GFRAL-expressing neurons localized exclusively in the area postrema and nucleus tractus solitarius of the mouse brainstem. It then triggers the activation of neurons localized within the parabrachial nucleus and central amygdala, which constitute part of the 'emergency circuit' that shapes feeding responses to stressful conditions. GDF15 levels increase in response to tissue stress and injury, and elevated levels are associated with body weight loss in numerous chronic human diseases. By isolating GFRAL as the receptor for GDF15-induced anorexia and weight loss, we identify a mechanistic basis for the non-homeostatic regulation of neural circuitry by a peripheral signal associated with tissue damage and stress. These findings provide opportunities to develop therapeutic agents for the treatment of disorders with altered energy demand.


Subject(s)
Body Weight/physiology , Brain Stem/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Growth Differentiation Factor 15/metabolism , Animals , Brain Stem/cytology , Brain Stem/drug effects , Central Amygdaloid Nucleus/cytology , Central Amygdaloid Nucleus/physiology , Eating/physiology , Energy Metabolism/physiology , Feeding Behavior , Female , Glial Cell Line-Derived Neurotrophic Factor Receptors/deficiency , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/pharmacology , Homeostasis , Male , Mice , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Parabrachial Nucleus/cytology , Parabrachial Nucleus/physiology , Stress, Psychological
4.
Plast Reconstr Surg ; 150(1): 92e-104e, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35536768

ABSTRACT

BACKGROUND: Burns are severe injuries often associated with impaired wound healing. Impaired healing is caused by multiple factors, including dysregulated inflammatory responses at the wound site. Interestingly, montelukast, an antagonist for cysteinyl leukotrienes and U.S. Food and Drug Administration approved for treatment of asthma and allergy, was previously shown to enhance healing in excision wounds and to modulate local inflammation. METHODS: In this study, the authors examined the effect of montelukast on wound healing in a mouse model of scald burn injury. Burn wound tissues isolated from montelukast- and vehicle-treated mice at various times after burn injury were analyzed for wound areas ( n = 34 to 36), reepithelialization ( n = 14), inflammation ( n = 8 to 9), and immune cell infiltration ( n = 3 to 6) and proliferation ( n = 7 to 8). RESULTS: In contrast to previously described beneficial effects in excision wounds, this study shows that montelukast delays burn wound healing by impairing the proliferation of keratinocytes and endothelial cells. This occurs largely independently of inflammatory responses at the wound site, suggesting that montelukast impairs specifically the proliferative phase of wound healing in burns. Wound healing rates in mice in which leukotrienes are not produced were not affected by montelukast. CONCLUSION: Montelukast delays wound healing mainly by reducing the proliferation of local cells after burn injury. CLINICAL RELEVANCE STATEMENT: Although additional and clinical studies are necessary, our study suggests that burn patients who are on montelukast may exhibit delayed healing, necessitating extra observation.


Subject(s)
Burns , Endothelial Cells , Acetates , Animals , Burns/complications , Burns/drug therapy , Cyclopropanes , Inflammation , Leukotrienes/pharmacology , Leukotrienes/therapeutic use , Mice , Quinolines , Sulfides , Wound Healing/physiology
5.
BMJ Open ; 11(2): e048350, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597147

ABSTRACT

INTRODUCTION: In response to the burden of chronic disease among older adults, different chronic disease self-management tools have been created to optimise disease management. However, these seldom consider all aspects of disease management are not usually developed specifically for seniors or created for sustained use and are primarily focused on a single disease. We created an eHealth self-management application called 'KeepWell' that supports seniors with complex care needs in their homes. It incorporates the care for two or more chronic conditions from among the most prevalent high-burden chronic diseases. METHODS AND ANALYSIS: We will evaluate the effectiveness, cost and uptake of KeepWell in a 6-month, pragmatic, hybrid effectiveness-implementation randomised controlled trial. Older adults age ≥65 years with one or more chronic conditions who are English speaking are able to consent and have access to a computer or tablet device, internet and an email address will be eligible. All consenting participants will be randomly assigned to KeepWell or control. The allocation sequence will be determined using a random number generator.Primary outcome is perceived self-efficacy at 6 months. Secondary outcomes include quality of life, health background/status, lifestyle (nutrition, physical activity, caffeine, alcohol, smoking and bladder health), social engagement and connections, eHealth literacy; all collected via a Health Risk Questionnaire embedded within KeepWell (intervention) or a survey platform (control). Implementation outcomes will include reach, effectiveness, adoption, fidelity, implementation cost and sustainability. ETHICS AND DISSEMINATION: Ethics approval has been received from the North York General Hospital Research and Ethics Board. The study is funded by the Canadian Institutes of Health Research and the Ontario Ministry of Health. We will work with our team to develop a dissemination strategy which will include publications, presentations, plain language summaries and an end-of-grant meeting. TRIAL REGISTRATION NUMBER: NCT04437238.


Subject(s)
Self-Management , Telemedicine , Aged , Humans , Multimorbidity , Ontario , Quality of Life , Randomized Controlled Trials as Topic
6.
Front Immunol ; 11: 590568, 2020.
Article in English | MEDLINE | ID: mdl-33193426

ABSTRACT

Despite obesity reaching pandemic proportions, its impact on antigen-specific T cell responses is still unclear. We have recently demonstrated that obesity results in increased expression of PD-1 on T cells, and checkpoint blockade targeting PD-1/PD-L1 surprisingly resulted in greater clinical efficacy in cancer therapy. Adverse events associated with this therapy center around autoimmune reactions. In this study, we examined the impact of obesity on T cell priming and on autoimmune pathogenesis using the mouse model experimental autoimmune encephalomyelitis (EAE), which is mediated by autoreactive myelin-specific T cells generated after immunization. We observed that diet-induced obese (DIO) mice had a markedly delayed EAE onset and developed milder clinical symptoms compared to mice on control diet (CD). This delay was associated with impaired generation of myelin-specific T cell numbers and concurrently correlated with increased PD-L1 upregulation on antigen-presenting cells in secondary lymphoid organs. PD-1 blockade during the priming stage of EAE restored disease onset and severity and increased numbers of pathogenic CD4+ T cells in the central nervous system (CNS) of DIO mice to similar levels to those of CD mice. Administration of anti-PD-1 after onset of clinical symptoms did not increase EAE pathogenesis demonstrating that initial priming is the critical juncture affected by obesity. These findings demonstrate that obesity impairs antigen-specific T cell priming, but this can be reversed with PD-1 blockade. Our results further suggest that PD-1 blockade may increase the risk of autoimmune toxicities, particularly in obesity.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Obesity/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/immunology , Animals , B7-H1 Antigen/immunology , Dendritic Cells/immunology , Diet, High-Fat , Male , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology
7.
Nat Med ; 26(8): 1264-1270, 2020 08.
Article in English | MEDLINE | ID: mdl-32661391

ABSTRACT

Cancer cachexia is a highly prevalent condition associated with poor quality of life and reduced survival1. Tumor-induced perturbations in the endocrine, immune and nervous systems drive anorexia and catabolic changes in adipose tissue and skeletal muscle, hallmarks of cancer cachexia2-4. However, the molecular mechanisms driving cachexia remain poorly defined, and there are currently no approved drugs for the condition. Elevation in circulating growth differentiation factor 15 (GDF15) correlates with cachexia and reduced survival in patients with cancer5-8, and a GDNF family receptor alpha like (GFRAL)-Ret proto-oncogene (RET) signaling complex in brainstem neurons that mediates GDF15-induced weight loss in mice has recently been described9-12. Here we report a therapeutic antagonistic monoclonal antibody, 3P10, that targets GFRAL and inhibits RET signaling by preventing the GDF15-driven interaction of RET with GFRAL on the cell surface. Treatment with 3P10 reverses excessive lipid oxidation in tumor-bearing mice and prevents cancer cachexia, even under calorie-restricted conditions. Mechanistically, activation of the GFRAL-RET pathway induces expression of genes involved in lipid metabolism in adipose tissues, and both peripheral chemical sympathectomy and loss of adipose triglyceride lipase protect mice from GDF15-induced weight loss. These data uncover a peripheral sympathetic axis by which GDF15 elicits a lipolytic response in adipose tissue independently of anorexia, leading to reduced adipose and muscle mass and function in tumor-bearing mice.


Subject(s)
Cachexia/drug therapy , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Growth Differentiation Factor 15/genetics , Multiprotein Complexes/ultrastructure , Neoplasms/drug therapy , Proto-Oncogene Proteins c-ret/genetics , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Antibodies, Monoclonal , Cachexia/complications , Cachexia/genetics , Cachexia/immunology , Cell Line, Tumor , Crystallography, X-Ray , Glial Cell Line-Derived Neurotrophic Factor Receptors/ultrastructure , Growth Differentiation Factor 15/ultrastructure , Heterografts , Humans , Lipid Peroxidation , Mice , Multiprotein Complexes/genetics , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Neoplasms/complications , Neoplasms/genetics , Neoplasms/immunology , Proto-Oncogene Mas , Proto-Oncogene Proteins c-ret/ultrastructure , Signal Transduction , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL