Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.400
Filter
Add more filters

Publication year range
1.
Cell ; 185(16): 2988-3007.e20, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35858625

ABSTRACT

Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.


Subject(s)
Chromosome Breakage , Chromosome Segregation , Aneuploidy , Animals , DNA , DNA Replication , Embryonic Development/genetics , Humans , Mammals/genetics
2.
Cell ; 185(16): 2961-2974.e19, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35839760

ABSTRACT

Wheat crops are frequently devastated by pandemic stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). Here, we identify and characterize a wheat receptor-like cytoplasmic kinase gene, TaPsIPK1, that confers susceptibility to this pathogen. PsSpg1, a secreted fungal effector vital for Pst virulence, can bind TaPsIPK1, enhance its kinase activity, and promote its nuclear localization, where it phosphorylates the transcription factor TaCBF1d for gene regulation. The phosphorylation of TaCBF1d switches its transcriptional activity on the downstream genes. CRISPR-Cas9 inactivation of TaPsIPK1 in wheat confers broad-spectrum resistance against Pst without impacting important agronomic traits in two years of field tests. The disruption of TaPsIPK1 leads to immune priming without constitutive activation of defense responses. Taken together, TaPsIPK1 is a susceptibility gene known to be targeted by rust effectors, and it has great potential for developing durable resistance against rust by genetic modifications.


Subject(s)
Basidiomycota , Triticum , Basidiomycota/genetics , Basidiomycota/metabolism , Plant Diseases , Protein Kinases/genetics , Protein Kinases/metabolism , Triticum/genetics , Triticum/metabolism , Triticum/microbiology , Virulence/genetics
3.
Cell ; 173(7): 1716-1727.e17, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29779945

ABSTRACT

Sunlight exposure is known to affect mood, learning, and cognition. However, the molecular and cellular mechanisms remain elusive. Here, we show that moderate UV exposure elevated blood urocanic acid (UCA), which then crossed the blood-brain barrier. Single-cell mass spectrometry and isotopic labeling revealed a novel intra-neuronal metabolic pathway converting UCA to glutamate (GLU) after UV exposure. This UV-triggered GLU synthesis promoted its packaging into synaptic vesicles and its release at glutamatergic terminals in the motor cortex and hippocampus. Related behaviors, like rotarod learning and object recognition memory, were enhanced after UV exposure. All UV-induced metabolic, electrophysiological, and behavioral effects could be reproduced by the intravenous injection of UCA and diminished by the application of inhibitor or short hairpin RNA (shRNA) against urocanase, an enzyme critical for the conversion of UCA to GLU. These findings reveal a new GLU biosynthetic pathway, which could contribute to some of the sunlight-induced neurobehavioral changes.


Subject(s)
Brain/radiation effects , Glutamic Acid/biosynthesis , Learning/radiation effects , Memory/radiation effects , Ultraviolet Rays , Animals , Brain/metabolism , Brain/pathology , Chromatography, High Pressure Liquid , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/physiology , Patch-Clamp Techniques , RNA Interference , RNA, Small Interfering/metabolism , Tandem Mass Spectrometry , Urocanate Hydratase/antagonists & inhibitors , Urocanate Hydratase/genetics , Urocanate Hydratase/metabolism , Urocanic Acid/blood , Urocanic Acid/metabolism
4.
Nature ; 631(8019): 73-79, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867044

ABSTRACT

Light-emitting diodes (LEDs) based on metal halide perovskites (PeLEDs) with high colour quality and facile solution processing are promising candidates for full-colour and high-definition displays1-4. Despite the great success achieved in green PeLEDs with lead bromide perovskites5, it is still challenging to realize pure-red (620-650 nm) LEDs using iodine-based counterparts, as they are constrained by the low intrinsic bandgap6. Here we report efficient and colour-stable PeLEDs across the entire pure-red region, with a peak external quantum efficiency reaching 28.7% at 638 nm, enabled by incorporating a double-end anchored ligand molecule into pure-iodine perovskites. We demonstrate that a key function of the organic intercalating cation is to stabilize the lead iodine octahedron through coordination with exposed lead ions and enhanced hydrogen bonding with iodine. The molecule synergistically facilitates spectral modulation, promotes charge transfer between perovskite quantum wells and reduces iodine migration under electrical bias. We realize continuously tunable emission wavelengths for iodine-based perovskite films with suppressed energy loss due to the decrease in bond energy of lead iodine in ionic perovskites as the bandgap increases. Importantly, the resultant devices show outstanding spectral stability and a half-lifetime of more than 7,600 min at an initial luminance of 100 cd m-2.


Subject(s)
Calcium Compounds , Lead , Oxides , Titanium , Titanium/chemistry , Calcium Compounds/chemistry , Oxides/chemistry , Lead/chemistry , Color , Iodine/chemistry , Light , Ligands
5.
Nature ; 622(7983): 493-498, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37557914

ABSTRACT

Lead halide perovskite light-emitting diodes (PeLEDs) have demonstrated remarkable optoelectronic performance1-3. However, there are potential toxicity issues with lead4,5 and removing lead from the best-performing PeLEDs-without compromising their high external quantum efficiencies-remains a challenge. Here we report a tautomeric-mixture-coordination-induced electron localization strategy to stabilize the lead-free tin perovskite TEA2SnI4 (TEAI is 2-thiopheneethylammonium iodide) by incorporating cyanuric acid. We demonstrate that a crucial function of the coordination is to amplify the electronic effects, even for those Sn atoms that aren't strongly bonded with cyanuric acid owing to the formation of hydrogen-bonded tautomeric dimer and trimer superstructures on the perovskite surface. This electron localization weakens adverse effects from Anderson localization and improves ordering in the crystal structure of TEA2SnI4. These factors result in a two-orders-of-magnitude reduction in the non-radiative recombination capture coefficient and an approximately twofold enhancement in the exciton binding energy. Our lead-free PeLED has an external quantum efficiency of up to 20.29%, representing a performance comparable to that of state-of-the-art lead-containing PeLEDs6-12. We anticipate that these findings will provide insights into the stabilization of Sn(II) perovskites and further the development of lead-free perovskite applications.

6.
Nature ; 622(7984): 748-753, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704734

ABSTRACT

Stimulus-responsive shape-shifting polymers1-3 have shown unique promise in emerging applications, including soft robotics4-7, medical devices8, aerospace structures9 and flexible electronics10. Their externally triggered shape-shifting behaviour offers on-demand controllability essential for many device applications. Ironically, accessing external triggers (for example, heating or light) under realistic scenarios has become the greatest bottleneck in demanding applications such as implantable medical devices8. Certain shape-shifting polymers rely on naturally present stimuli (for example, human body temperature for implantable devices)8 as triggers. Although they forgo the need for external stimulation, the ability to control recovery onset is also lost. Naturally triggered, yet actively controllable, shape-shifting behaviour is highly desirable but these two attributes are conflicting. Here we achieved this goal with a four-dimensional printable shape memory hydrogel that operates via phase separation, with its shape-shifting kinetics dominated by internal mass diffusion rather than by heat transport used for common shape memory polymers8-11. This hydrogel can undergo shape transformation at natural ambient temperature, critically with a recovery onset delay. This delay is programmable by altering the degree of phase separation during device programming, which offers a unique mechanism for shape-shifting control. Our naturally triggered shape memory polymer with a tunable recovery onset markedly lowers the barrier for device implementation.

7.
Nature ; 624(7991): 403-414, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092914

ABSTRACT

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Subject(s)
Brain , Gene Expression Profiling , Neural Pathways , Neurons , Spinal Cord , Animals , Mice , Hypothalamus , Neurons/metabolism , Neuropeptides , Spinal Cord/cytology , Spinal Cord/metabolism , Brain/cytology , Brain/metabolism , Neurotransmitter Agents , Mesencephalon/cytology , Reticular Formation/cytology , Electrophysiology , Cerebellum/cytology , Cerebral Cortex/cytology
8.
Development ; 151(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38224006

ABSTRACT

Mitochondria are the powerhouses of many biological processes. During spermatogenesis, post-transcriptional regulation of mitochondrial gene expression is mediated by nuclear-encoded mitochondrial RNA-binding proteins (mtRBPs). We identified AMG-1 as an mtRBP required for reproductive success in Caenorhabditis elegans. amg-1 mutation led to defects in mitochondrial structure and sperm budding, resulting in mitochondria being discarded into residual bodies, which ultimately delayed spermatogenesis in the proximal gonad. In addition, mitochondrial defects triggered the gonadal mitochondrial unfolded protein response and phagocytic clearance to ensure spermatogenesis but ultimately failed to rescue hermaphroditic fertility. These findings reveal a previously undiscovered role for AMG-1 in regulating C. elegans spermatogenesis, in which mitochondrial-damaged sperm prevented the transmission of defective mitochondria to mature sperm by budding and phagocytic clearance, a process which may also exist in the reproductive systems of higher organisms.


Subject(s)
Adenosine/analogs & derivatives , Caenorhabditis elegans Proteins , Mitochondrial Diseases , Animals , Male , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Semen/metabolism , Spermatogenesis/genetics , Mutation/genetics
9.
Plant Cell ; 36(7): 2668-2688, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38581433

ABSTRACT

The style and stigma at the apical gynoecium are crucial for flowering plant reproduction. However, the mechanisms underlying specification of the apical gynoecium remain unclear. Here, we demonstrate that Class II TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors are critical for apical gynoecium specification in Arabidopsis (Arabidopsis thaliana). The septuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 (tcpSEP) and duodecuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 tcp24 tcp1 tcp12 tcp18 tcp16 (tcpDUO) mutants produce narrower and longer styles, while disruption of TCPs and CRABS CLAW (CRC) or NGATHAs (NGAs) in tcpDUO crc or tcpDUO nga1 nga2 nga4 causes the apical gynoecium to be replaced by lamellar structures with indeterminate growth. TCPs are predominantly expressed in the apex of the gynoecium. TCP4 interacts with CRC to synergistically upregulate the expression level of NGAs, and NGAs further form high-order complexes to control the expression of auxin-related genes in the apical gynoecium by directly interacting with TCP4. Our findings demonstrate that TCP4 physically associates with CRC and NGAs to control auxin biosynthesis in forming fine structures of the apical gynoecium.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flowers , Gene Expression Regulation, Plant , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Mutation
10.
Plant Cell ; 36(5): 1697-1717, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38299434

ABSTRACT

Proper anther dehiscence is essential for successful pollination and reproduction in angiosperms, and jasmonic acid (JA) is crucial for the process. However, the mechanisms underlying the tight regulation of JA biosynthesis during anther development remain largely unknown. Here, we demonstrate that the rice (Oryza sativa L.) ethylene-response factor-associated amphiphilic repression (EAR) motif-containing protein TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) INTERACTOR CONTAINING EAR MOTIF PROTEIN1 (OsTIE1) tightly regulates JA biosynthesis by repressing TCP transcription factor OsTCP1/PCF5 during anther development. The loss of OsTIE1 function in Ostie1 mutants causes male sterility. The Ostie1 mutants display inviable pollen, early stamen filament elongation, and precocious anther dehiscence. In addition, JA biosynthesis is activated earlier and JA abundance is precociously increased in Ostie1 anthers. OsTIE1 is expressed during anther development, and OsTIE1 is localized in nuclei and has transcriptional repression activity. OsTIE1 directly interacts with OsTCP1, and overexpression of OsTCP1 caused early anther dehiscence resembling that of Ostie1. JA biosynthesis genes including rice LIPOXYGENASE are regulated by the OsTIE1-OsTCP1 complex. Our findings reveal that the OsTIE1-OsTCP1 module plays a critical role in anther development by finely tuning JA biosynthesis and provide a foundation for the generation of male sterile plants for hybrid seed production.


Subject(s)
Cyclopentanes , Flowers , Gene Expression Regulation, Plant , Oryza , Oxylipins , Plant Infertility , Plant Proteins , Oryza/genetics , Oryza/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Flowers/physiology , Plant Infertility/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Plants, Genetically Modified , Mutation
11.
Proc Natl Acad Sci U S A ; 121(13): e2319429121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38513095

ABSTRACT

Polyamines are a class of small polycationic alkylamines that play essential roles in both normal and cancer cell growth. Polyamine metabolism is frequently dysregulated and considered a therapeutic target in cancer. However, targeting polyamine metabolism as monotherapy often exhibits limited efficacy, and the underlying mechanisms are incompletely understood. Here we report that activation of polyamine catabolism promotes glutamine metabolism, leading to a targetable vulnerability in lung cancer. Genetic and pharmacological activation of spermidine/spermine N1-acetyltransferase 1 (SAT1), the rate-limiting enzyme of polyamine catabolism, enhances the conversion of glutamine to glutamate and subsequent glutathione (GSH) synthesis. This metabolic rewiring ameliorates oxidative stress to support lung cancer cell proliferation and survival. Simultaneous glutamine limitation and SAT1 activation result in ROS accumulation, growth inhibition, and cell death. Importantly, pharmacological inhibition of either one of glutamine transport, glutaminase, or GSH biosynthesis in combination with activation of polyamine catabolism synergistically suppresses lung cancer cell growth and xenograft tumor formation. Together, this study unveils a previously unappreciated functional interconnection between polyamine catabolism and glutamine metabolism and establishes cotargeting strategies as potential therapeutics in lung cancer.


Subject(s)
Lung Neoplasms , Humans , Glutamine , Polyamines/metabolism , Lung/metabolism , Cell Death , Acetyltransferases/genetics , Acetyltransferases/metabolism , Spermine/metabolism
12.
Proc Natl Acad Sci U S A ; 121(22): e2402764121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771879

ABSTRACT

Staphylococcus aureus (S. aureus) can evade antibiotics and host immune defenses by persisting within infected cells. Here, we demonstrate that in infected host cells, S. aureus type VII secretion system (T7SS) extracellular protein B (EsxB) interacts with the stimulator of interferon genes (STING) protein and suppresses the inflammatory defense mechanism of macrophages during early infection. The binding of EsxB with STING disrupts the K48-linked ubiquitination of EsxB at lysine 33, thereby preventing EsxB degradation. Furthermore, EsxB-STING binding appears to interrupt the interaction of 2 vital regulatory proteins with STING: aspartate-histidine-histidine-cysteine domain-containing protein 3 (DHHC3) and TNF receptor-associated factor 6. This persistent dual suppression of STING interactions deregulates intracellular proinflammatory pathways in macrophages, inhibiting STING's palmitoylation at cysteine 91 and its K63-linked ubiquitination at lysine 83. These findings uncover an immune-evasion mechanism by S. aureus T7SS during intracellular macrophage infection, which has implications for developing effective immunomodulators to combat S. aureus infections.


Subject(s)
Bacterial Proteins , Macrophages , Membrane Proteins , Staphylococcal Infections , Staphylococcus aureus , Type VII Secretion Systems , Ubiquitination , Staphylococcus aureus/immunology , Membrane Proteins/metabolism , Membrane Proteins/immunology , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Animals , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/metabolism , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/immunology , Type VII Secretion Systems/genetics , Mice , Immune Evasion , Host-Pathogen Interactions/immunology
13.
Chem Rev ; 124(6): 3331-3391, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38447150

ABSTRACT

Separation and reaction processes are key components employed in the modern chemical industry, and the former accounts for the majority of the energy consumption therein. In particular, hydrocarbon separation and purification processes, such as aromatics extraction, desulfurization, and denitrification, are challenging in petroleum refinement, an industrial cornerstone that provides raw materials for products used in human activities. The major technical shortcomings in solvent extraction are volatile solvent loss, product entrainment leading to secondary pollution, low separation efficiency, and high regeneration energy consumption due to the use of traditional organic solvents with high boiling points as extraction agents. Ionic liquids (ILs), a class of designable functional solvents or materials, have been widely used in chemical separation processes to replace conventional organic solvents after nearly 30 years of rapid development. Herein, we provide a systematic and comprehensive review of the state-of-the-art progress in ILs in the field of extractive hydrocarbon separation (i.e., aromatics extraction, desulfurization, and denitrification) including (i) molecular thermodynamic models of IL systems that enable rapid large-scale screening of IL candidates and phase equilibrium prediction of extraction processes; (ii) structure-property relationships between anionic and cationic structures of ILs and their separation performance (i.e., selectivity and distribution coefficients); (iii) IL-related extractive separation mechanisms (e.g., the magnitude, strength, and sites of intermolecular interactions depending on the separation system and IL structure); and (iv) process simulation and design of IL-related extraction at the industrial scale based on validated thermodynamic models. In short, this Review provides an easy-to-read exhaustive reference on IL-related extractive separation of hydrocarbon mixtures from the multiscale perspective of molecules, thermodynamics, and processes. It also extends to progress in IL analogs, deep eutectic solvents (DESs) in this research area, and discusses the current challenges faced by ILs in related separation fields as well as future directions and opportunities.

14.
Chem Rev ; 124(9): 5167-5226, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683680

ABSTRACT

This review discusses the research being performed on ionic liquids for the separation of fluorocarbon refrigerant mixtures. Fluorocarbon refrigerants, invented in 1928 by Thomas Midgley Jr., are a unique class of working fluids that are used in a variety of applications including refrigeration. Fluorocarbon refrigerants can be categorized into four generations: chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, and hydrofluoroolefins. Each generation of refrigerants solved a key problem from the previous generation; however, each new generation has relied on more complex mixtures that are often zeotropic, near azeotropic, or azeotropic. The complexity of the refrigerants used and the fact that many refrigerants form azeotropes when mixed makes handling the refrigerants at end of life extremely difficult. Today, less than 3% of refrigerants that enter the market are recycled. This is due to a lack of technology in the refrigerant reclaim market that would allow for these complex, azeotropic refrigerant mixtures to be separated into their components in order to be effectively reused, recycled, and if needed repurposed. As the market for recovering and reclaiming refrigerants continues to grow, there is a strong need for separation technology. Ionic liquids show promise for separating azeotropic refrigerant mixtures as an entrainer in extractive distillation process. Ionic liquids have been investigated with refrigerants for this application since the early 2000s. This review will provide a comprehensive summary of the physical property measurements, equations of state modeling, molecular simulations, separation techniques, and unique materials unitizing ionic liquids for the development of an ionic-liquid-based separation process for azeotropic refrigerant mixtures.

15.
J Immunol ; 213(1): 40-51, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38809096

ABSTRACT

NK cells are innate immune effectors that kill virally infected or malignant cells. NK cell deficiency (NKD) occurs when NK cell development or function is impaired and variants in MCM4, GINS1, MCM10, and GINS4 result in NKD. Although NK cells are strongly impacted by mutational deficiencies in helicase proteins, the mechanisms underlying this specific susceptibility are poorly understood. In this study, we induced replication stress in activated NK cells or T cells by chemical and genetic methods. We found that the CD56bright subset of NK cells accumulates more DNA damage and replication stress during activation than do CD56dim NK cells or T cells. Aphidicolin treatment increases apoptosis of CD56bright NK cells through increased pan-caspase expression and decreases perforin expression in surviving cells. These findings show that sensitivity to replication stress affects NK cell survival and function and contributes to NKD.


Subject(s)
Apoptosis , Killer Cells, Natural , Lymphocyte Activation , Humans , Killer Cells, Natural/immunology , Apoptosis/immunology , Lymphocyte Activation/immunology , DNA Damage , DNA Replication , CD56 Antigen/metabolism , Stress, Physiological/immunology , T-Lymphocytes/immunology , Cells, Cultured
16.
Proc Natl Acad Sci U S A ; 120(13): e2221432120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36943889

ABSTRACT

It is known that external mechanical forces can regulate structures and functions of living cells and tissues in physiology and diseases. However, after cessation of the force, how structures are altered in response to the dynamics of the chromatin and molecules in the nucleoplasm remains elusive. Here, using single-molecule imaging approaches, we show that exogenous local forces via integrins applied for 2 to 10 min decondensed the chromatin and increased chromatin and nucleoplasm protein mobility inside the nucleus, leading to elevated diffusivity of single protein molecules in the nucleoplasm, tens of minutes after the cessation of force. Diffusion experiments with fluorescence correlation spectroscopy in live single cells show that the mechanomemory in chromatin and nucleoplasm protein diffusivity was regulated by nuclear pore complexes. Protein molecular dynamics simulation recapitulated the experimental findings in live cells and showed that nucleoplasm protein diffusivity was regulated by the number of nuclear pore complexes. The mechanomemory in elevated protein diffusivity of the nucleoplasm after force cessation represents a physical process that reverses protein-protein condensation in phase separation via unjamming of the chromatin. Our findings of mechanomemory in chromatin and nucleoplasm protein diffusivity suggest that the effect of force on the nucleus remains tens of minutes after force cessation and thus is more far-reaching than previously anticipated.


Subject(s)
Cell Nucleus , Chromatin , Chromatin/metabolism , Cell Nucleus/metabolism , Nuclear Pore/metabolism
17.
EMBO J ; 40(2): e106123, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33274785

ABSTRACT

Identifying and sorting highly tumorigenic and metastatic tumor cells from a heterogeneous cell population is a daunting challenge. Here, we show that microfluidic devices can be used to sort marker-based heterogeneous cancer stem cells (CSC) into mechanically stiff and soft subpopulations. The isolated soft tumor cells (< 400 Pa) but not the stiff ones (> 700 Pa) can form a tumor in immunocompetent mice with 100 cells per inoculation. Notably, only the soft, but not the stiff cells, isolated from CD133+ , ALDH+ , or side population CSCs, are able to form a tumor with only 100 cells in NOD-SCID or immunocompetent mice. The Wnt signaling protein BCL9L is upregulated in soft tumor cells and regulates their stemness and tumorigenicity. Clinically, BCL9L expression is correlated with a worse prognosis. Our findings suggest that the intrinsic softness is a unique marker of highly tumorigenic and metastatic tumor cells.


Subject(s)
Carcinogenesis/genetics , Neoplastic Stem Cells/physiology , AC133 Antigen/genetics , Aldehyde Dehydrogenase/genetics , Animals , Cell Line, Tumor , DNA-Binding Proteins/genetics , Female , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Up-Regulation/genetics , Wnt Proteins/genetics
18.
Plant Physiol ; 195(2): 970-985, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38478469

ABSTRACT

The Xishuangbanna (XIS) cucumber (Cucumis sativus var. xishuangbannanesis) is a semiwild variety that has many distinct agronomic traits. Here, long reads generated by Nanopore sequencing technology helped assembling a high-quality genome (contig N50 = 8.7 Mb) of landrace XIS49. A total of 10,036 structural/sequence variations (SVs) were identified when comparing with Chinese Long (CL), and known SVs controlling spines, tubercles, and carpel number were confirmed in XIS49 genome. Two QTLs of hypocotyl elongation under low light, SH3.1 and SH6.1, were fine-mapped using introgression lines (donor parent, XIS49; recurrent parent, CL). SH3.1 encodes a red-light receptor Phytochrome B (PhyB, CsaV3_3G015190). A ∼4 kb region with large deletion and highly divergent regions (HDRs) were identified in the promoter of the PhyB gene in XIS49. Loss of function of this PhyB caused a super-long hypocotyl phenotype. SH6.1 encodes a CCCH-type zinc finger protein FRIGIDA-ESSENTIAL LIKE (FEL, CsaV3_6G050300). FEL negatively regulated hypocotyl elongation but it was transcriptionally suppressed by long terminal repeats retrotransposon insertion in CL cucumber. Mechanistically, FEL physically binds to the promoter of CONSTITUTIVE PHOTOMORPHOGENIC 1a (COP1a), regulating the expression of COP1a and the downstream hypocotyl elongation. These above results demonstrate the genetic mechanism of cucumber hypocotyl elongation under low light.


Subject(s)
Cucumis sativus , Genome, Plant , Hypocotyl , Quantitative Trait Loci , Hypocotyl/growth & development , Hypocotyl/genetics , Cucumis sativus/genetics , Cucumis sativus/growth & development , Quantitative Trait Loci/genetics , Phytochrome B/genetics , Phytochrome B/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Light
19.
Plant Cell ; 34(5): 1784-1803, 2022 04 26.
Article in English | MEDLINE | ID: mdl-34999846

ABSTRACT

Reactive oxygen species (ROS) are vital for plant immunity and regulation of their production is crucial for plant health. While the mechanisms that elicit ROS production have been relatively well studied, those that repress ROS generation are less well understood. Here, via screening Brachypodium distachyon RNA interference mutants, we identified BdWRKY19 as a negative regulator of ROS generation whose knockdown confers elevated resistance to the rust fungus Puccinia brachypodii. The three wheat paralogous genes TaWRKY19 are induced during infection by virulent P. striiformis f. sp. tritici (Pst) and have partially redundant roles in resistance. The stable overexpression of TaWRKY19 in wheat increased susceptibility to an avirulent Pst race, while mutations in all three TaWRKY19 copies conferred strong resistance to Pst by enhancing host plant ROS accumulation. We show that TaWRKY19 is a transcriptional repressor that binds to a W-box element in the promoter of TaNOX10, which encodes an NADPH oxidase and is required for ROS generation and host resistance to Pst. Collectively, our findings reveal that TaWRKY19 compromises wheat resistance to the fungal pathogen and suggest TaWRKY19 as a potential target to improve wheat resistance to the commercially important wheat stripe rust fungus.


Subject(s)
Basidiomycota , Triticum , Basidiomycota/metabolism , Host-Pathogen Interactions/genetics , Plant Diseases/microbiology , Reactive Oxygen Species/metabolism , Triticum/metabolism
20.
FASEB J ; 38(1): e23376, 2024 01.
Article in English | MEDLINE | ID: mdl-38112167

ABSTRACT

Male germ cell development is dependent on the orchestrated regulation of gene networks. TATA-box binding protein associated factors (TAFs) facilitate interactions of TATA-binding protein with the TATA element, which is known to coordinate gene transcription during organogenesis. TAF7 like (Taf7l) is situated on the X chromosome and has been implicated in testis development. We examined the biology of TAF7L in testis development using the rat. Taf7l was prominently expressed in preleptotene to leptotene spermatocytes. To study the impact of TAF7L on the testis we generated a global loss-of-function rat model using CRISPR/Cas9 genome editing. Exon 3 of the Taf7l gene was targeted. A founder was generated possessing a 110 bp deletion within the Taf7l locus, which resulted in a frameshift and the premature appearance of a stop codon. The mutation was effectively transmitted through the germline. Deficits in TAF7L did not adversely affect pregnancy or postnatal survival. However, the Taf7l disruption resulted in male infertility due to compromised testis development and failed sperm production. Mutant germ cells suffer meiotic arrest at late zygotene/early pachynema stages, with defects in sex body formation. This testis phenotype was more pronounced than previously described for the subfertile Taf7l null mouse. We conclude that TAF7L is essential for male germ cell development in the rat.


Subject(s)
Semen , Spermatogenesis , TATA-Binding Protein Associated Factors , Transcription Factor TFIID , Animals , Female , Male , Pregnancy , Rats , Cell Differentiation , Meiosis , Semen/metabolism , Spermatocytes/metabolism , Spermatogenesis/physiology , Spermatozoa/metabolism , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Testis/metabolism , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL