Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 927
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 173(3): 634-648.e12, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29606356

ABSTRACT

Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119+CD45-CD71+ phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor ß (TGF-ß) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications.


Subject(s)
Disease Progression , Erythroblasts/cytology , Nerve Tissue Proteins/blood , Spleen/cytology , Transforming Growth Factor beta/metabolism , Animals , Apoptosis , Carcinoma, Hepatocellular/metabolism , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Hep G2 Cells , Humans , Leukocyte Common Antigens/metabolism , Leukocytes/cytology , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness/genetics , Signal Transduction
2.
Mol Cell ; 84(15): 2984-3000.e8, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39002544

ABSTRACT

5-methylcytosine (m5C) is a prevalent RNA modification crucial for gene expression regulation. However, accurate and sensitive m5C sites identification remains challenging due to severe RNA degradation and reduced sequence complexity during bisulfite sequencing (BS-seq). Here, we report m5C-TAC-seq, a bisulfite-free approach combining TET-assisted m5C-to-f5C oxidation with selective chemical labeling, therefore enabling direct base-resolution m5C detection through pre-enrichment and C-to-T transitions at m5C sites. With m5C-TAC-seq, we comprehensively profiled the m5C methylomes in human and mouse cells, identifying a substantially larger number of confident m5C sites. Through perturbing potential m5C methyltransferases, we deciphered the responsible enzymes for most m5C sites, including the characterization of NSUN5's involvement in mRNA m5C deposition. Additionally, we characterized m5C dynamics during mESC differentiation. Notably, the mild reaction conditions and preservation of nucleotide composition in m5C-TAC-seq allow m5C detection in chromatin-associated RNAs. The accurate and robust m5C-TAC-seq will advance research into m5C methylation functional investigation.


Subject(s)
5-Methylcytosine , Sulfites , Transcriptome , 5-Methylcytosine/metabolism , 5-Methylcytosine/chemistry , Animals , Humans , Mice , Sulfites/chemistry , Methyltransferases/metabolism , Methyltransferases/genetics , Gene Expression Profiling/methods , Cell Differentiation
4.
Nature ; 630(8015): 96-101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750361

ABSTRACT

Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1-3 and ultimately enhances device performance4-7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8-10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm-1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices.

5.
Mol Cell ; 82(9): 1660-1677.e10, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35320754

ABSTRACT

Tumor-infiltrating myeloid cells (TIMs) are crucial cell populations involved in tumor immune escape, and their functions are regulated by multiple epigenetic mechanisms. The precise regulation mode of RNA N6-methyladenosine (m6A) modification in controlling TIM function is still poorly understood. Our study revealed that the increased expression of methyltransferase-like 3 (METTL3) in TIMs was correlated with the poor prognosis of colon cancer patients, and myeloid deficiency of METTL3 attenuated tumor growth in mice. METTL3 mediated m6A modification on Jak1 mRNA in TIMs, the m6A-YTHDF1 axis enhanced JAK1 protein translation efficiency and subsequent phosphorylation of STAT3. Lactate accumulated in tumor microenvironment potently induced METTL3 upregulation in TIMs via H3K18 lactylation. Interestingly, we identified two lactylation modification sites in the zinc-finger domain of METTL3, which was essential for METTL3 to capture target RNA. Our results emphasize the importance of lactylation-driven METTL3-mediated RNA m6A modification for promoting the immunosuppressive capacity of TIMs.


Subject(s)
Methyltransferases , Neoplasms , Adenosine/metabolism , Animals , Humans , Immunosuppression Therapy , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Myeloid Cells/metabolism , RNA , Tumor Microenvironment
6.
Nat Immunol ; 17(7): 806-15, 2016 07.
Article in English | MEDLINE | ID: mdl-27240213

ABSTRACT

The DNA methyltransferase Dnmt3a has high expression in terminally differentiated macrophages; however, its role in innate immunity remains unknown. Here we report that deficiency in Dnmt3a selectively impaired the production of type I interferons triggered by pattern-recognition receptors (PRRs), but not that of the proinflammatory cytokines TNF and IL-6. Dnmt3a-deficient mice exhibited enhanced susceptibility to viral challenge. Dnmt3a did not directly regulate the transcription of genes encoding type I interferons; instead, it increased the production of type I interferons through an epigenetic mechanism by maintaining high expression of the histone deacetylase HDAC9. In turn, HDAC9 directly maintained the deacetylation status of the key PRR signaling molecule TBK1 and enhanced its kinase activity. Our data add mechanistic insight into the crosstalk between epigenetic modifications and post-translational modifications in the regulation of PRR signaling and activation of antiviral innate immune responses.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Immunity, Innate , Macrophages/immunology , Rhabdoviridae Infections/immunology , Vesicular stomatitis Indiana virus/immunology , Acetylation , Animals , DNA Methyltransferase 3A , Epigenesis, Genetic , HEK293 Cells , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Interferon Type I/metabolism , Macrophages/virology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Serine-Threonine Kinases/metabolism , RAW 264.7 Cells , Receptors, Pattern Recognition/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction
7.
Cell ; 152(3): 467-78, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23374343

ABSTRACT

RIG-I is a critical RNA virus sensor that serves to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling remains to be fully understood. We report here that RNA viruses, but not DNA viruses or bacteria, specifically upregulate lectin family member Siglecg expression in macrophages by RIG-I- or NF-κB-dependent mechanisms. Siglec-G-induced recruitment of SHP2 and the E3 ubiquitin ligase c-Cbl to RIG-I leads to RIG-I degradation via K48-linked ubiquitination at Lys813 by c-Cbl. By increasing type I interferon production, targeted inactivation of Siglecg protects mice against lethal RNA virus infection. Taken together, our data reveal a negative feedback loop of RIG-I signaling and identify a Siglec-G-mediated immune evasion pathway exploited by RNA viruses with implication in antiviral applications. These findings also provide insights into the functions and crosstalk of Siglec-G, a known adaptive response regulator, in innate immunity.


Subject(s)
DEAD-box RNA Helicases/metabolism , Gram-Negative Bacterial Infections/immunology , Immunity, Innate , Lectins/metabolism , RNA Virus Infections/immunology , Receptors, Antigen, B-Cell/metabolism , Animals , DEAD Box Protein 58 , DEAD-box RNA Helicases/chemistry , Dendritic Cells/immunology , Gram-Negative Bacteria/metabolism , Interferon Regulatory Factor-3/metabolism , Lectins/genetics , Lysine/metabolism , Macrophages/immunology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , RNA Viruses/metabolism , Receptors, Antigen, B-Cell/genetics , Sialic Acid Binding Immunoglobulin-like Lectins , Ubiquitination
8.
Mol Cell ; 80(1): 156-163.e6, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007255

ABSTRACT

The production of alternative RNA variants contributes to the tissue-specific regulation of gene expression. In the animal nervous system, a systematic shift toward distal sites of transcription termination produces transcript signatures that are crucial for neuron development and function. Here, we report that, in Drosophila, the highly conserved protein ELAV globally regulates all sites of neuronal 3' end processing and directly binds to proximal polyadenylation sites of target mRNAs in vivo. We uncover an endogenous strategy of functional gene rescue that safeguards neuronal RNA signatures in an ELAV loss-of-function context. When not directly repressed by ELAV, the transcript encoding the ELAV paralog FNE acquires a mini-exon, generating a new protein able to translocate to the nucleus and rescue ELAV-mediated alternative polyadenylation and alternative splicing. We propose that exon-activated functional rescue is a more widespread mechanism that ensures robustness of processes regulated by a hierarchy, rather than redundancy, of effectors.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , ELAV Proteins/metabolism , Exons/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , RNA-Binding Proteins/metabolism , Animals , Male , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics
9.
Proc Natl Acad Sci U S A ; 121(30): e2408160121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39024114

ABSTRACT

As the primary cause for chronic pain and disability in elderly individuals, osteoarthritis (OA) is one of the fastest-growing diseases due to the aging world population. To date, the impact of microenvironmental changes on the pathogenesis of OA remains poorly understood, greatly hindering the development of effective therapeutic approaches against OA. In this study, we profiled the differential metabolites in the synovial fluid from OA patients and identified the downregulation of vitamin B1 (VB1) as a metabolic feature in the OA microenvironment. In a murine destabilization of medial meniscus-induced OA model, supplementation of VB1 significantly mitigated the symptoms of OA. Cytokine array analysis revealed that VB1 treatment remarkably reduced the production of a pro-OA factor-C-C Motif Chemokine Ligand 2 (CCL2), in macrophages. Further evidence demonstrated that exogenous CCL2 counteracted the anti-OA function of VB1. Hence, our study unveils a unique biological function of VB1 and provides promising clues for the diet-based treatment of OA.


Subject(s)
Chemokine CCL2 , Dietary Supplements , Osteoarthritis , Thiamine , Animals , Osteoarthritis/metabolism , Osteoarthritis/prevention & control , Osteoarthritis/pathology , Osteoarthritis/drug therapy , Mice , Humans , Chemokine CCL2/metabolism , Male , Thiamine/metabolism , Thiamine/administration & dosage , Thiamine/pharmacology , Female , Synovial Fluid/metabolism , Disease Models, Animal , Macrophages/metabolism , Aged , Middle Aged , Mice, Inbred C57BL
10.
Nat Immunol ; 15(7): 612-22, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24859449

ABSTRACT

Excessive activation of dendritic cells (DCs) leads to the development of autoimmune and inflammatory diseases, which has prompted a search for regulators of DC activation. Here we report that Rhbdd3, a member of the rhomboid family of proteases, suppressed the activation of DCs and production of interleukin 6 (IL-6) triggered by Toll-like receptors (TLRs). Rhbdd3-deficient mice spontaneously developed autoimmune diseases characterized by an increased abundance of the TH17 subset of helper T cells and decreased number of regulatory T cells due to the increase in IL-6 from DCs. Rhbdd3 directly bound to Lys27 (K27)-linked polyubiquitin chains on Lys302 of the modulator NEMO (IKKγ) via the ubiquitin-binding-association (UBA) domain in endosomes. Rhbdd3 further recruited the deubiquitinase A20 via K27-linked polyubiquitin chains on Lys268 to inhibit K63-linked polyubiquitination of NEMO and thus suppressed activation of the transcription factor NF-κB in DCs. Our data identify Rhbdd3 as a critical regulator of DC activation and indicate K27-linked polyubiquitination is a potent ubiquitin-linked pattern involved in the control of autoimmunity.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Autoimmunity , Dendritic Cells/immunology , Interleukin-6/biosynthesis , Intracellular Signaling Peptides and Proteins/metabolism , Ubiquitination , Animals , Interleukin-6/antagonists & inhibitors , Lysine/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/physiology , Protein Structure, Tertiary , T-Lymphocytes/immunology , Toll-Like Receptors/physiology
11.
PLoS Biol ; 21(9): e3002283, 2023 09.
Article in English | MEDLINE | ID: mdl-37699055

ABSTRACT

Photoperiod is an annual cue measured by biological systems to align growth and reproduction with the seasons. In plants, photoperiodic flowering has been intensively studied for over 100 years, but we lack a complete picture of the transcriptional networks and cellular processes that are photoperiodic. We performed a transcriptomics experiment on Arabidopsis plants grown in 3 different photoperiods and found that thousands of genes show photoperiodic alteration in gene expression. Gene clustering, daily expression integral calculations, and cis-element analysis then separate photoperiodic genes into co-expression subgroups that display 19 diverse seasonal expression patterns, opening the possibility that many photoperiod measurement systems work in parallel in Arabidopsis. Then, functional enrichment analysis predicts co-expression of important cellular pathways. To test these predictions, we generated a comprehensive catalog of genes in the phenylpropanoid biosynthesis pathway, overlaid gene expression data, and demonstrated that photoperiod intersects with 2 major phenylpropanoid pathways differentially, controlling flavonoids but not lignin. Finally, we describe the development of a new app that visualizes photoperiod transcriptomic data for the wider community.


Subject(s)
Arabidopsis , Photoperiod , Arabidopsis/genetics , Seasons , Cluster Analysis , Transcriptome/genetics
12.
Genes Dev ; 32(15-16): 1060-1074, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30042133

ABSTRACT

Alternative premessenger RNA (pre-mRNA) splicing is a post-transcriptional mechanism for controlling gene expression. Splicing patterns are determined by both RNA-binding proteins and nuclear pre-mRNA structure. Here, we analyzed pre-mRNA splicing patterns, RNA-binding sites, and RNA structures near these binding sites coordinately controlled by two splicing factors: the heterogeneous nuclear ribonucleoprotein hnRNPA1 and the RNA helicase DDX5. We identified thousands of alternative pre-mRNA splicing events controlled by these factors by RNA sequencing (RNA-seq) following RNAi. Enhanced cross-linking and immunoprecipitation (eCLIP) on nuclear extracts was used to identify protein-RNA-binding sites for both proteins in the nuclear transcriptome. We found a significant overlap between hnRNPA1 and DDX5 splicing targets and that they share many closely linked binding sites as determined by eCLIP analysis. In vivo SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemical RNA structure probing data were used to model RNA structures near several exons controlled and bound by both proteins. Both sequence motifs and in vivo UV cross-linking sites for hnRNPA1 and DDX5 were used to map binding sites in their RNA targets, and often these sites flanked regions of higher chemical reactivity, suggesting an organized nature of nuclear pre-mRNPs. This work provides a first glimpse into the possible RNA structures surrounding pre-mRNA splicing factor-binding sites.


Subject(s)
Alternative Splicing , DEAD-box RNA Helicases/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , RNA Precursors/chemistry , RNA, Messenger/chemistry , Binding Sites , Cell Nucleus/genetics , Cell Nucleus/metabolism , RNA Precursors/metabolism , RNA, Messenger/metabolism
13.
J Immunol ; 211(11): 1701-1713, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37843504

ABSTRACT

Dendritic cells (DCs), a driver of psoriasis pathogenesis, produce IL-23 and trigger IL-23/IL-17 cytokine axis activation. However, the mechanisms regulating IL-23 induction remain unclear. In the current study, we found that mice with E3 ligase FBXW7 deficiency in DCs show reduced skin inflammation correlated with the reduction of IL-23/IL-17 axis cytokines in the imiquimod-induced psoriasis model. Fbxw7 deficiency results in decreased production of IL-23 in DCs. FBXW7 interacts with the lysine N-methyltransferase suppressor of variegation 39 homolog 2 (SUV39H2), which catalyzes the trimethylation of histone H3 Lys9 (H3K9) during transcription regulation. FBXW7 mediates the ubiquitination and degradation of SUV39H2, thus decreasing H3K9m3 deposition on the Il23a promoter. The Suv39h2 knockout mice displayed exacerbated skin inflammation with the IL-23/IL-17 axis overactivating in the psoriasis model. Taken together, our results indicate that FBXW7 increases IL-23 expression in DCs by degrading SUV39H2, thereby aggravating psoriasis-like inflammation. Inhibition of FBXW7 or the FBXW7/SUV39H2/IL-23 axis may represent a novel therapeutic approach to psoriasis.


Subject(s)
Dermatitis , Psoriasis , Animals , Mice , Dendritic Cells/metabolism , Dermatitis/pathology , Disease Models, Animal , Epigenesis, Genetic , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-23/metabolism , Psoriasis/pathology , Skin/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Cell ; 142(4): 625-36, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20705336

ABSTRACT

Alternative splicing is a vast source of biological regulation and diversity that is misregulated in cancer and other diseases. To investigate global control of alternative splicing in human cells, we analyzed splicing of mRNAs encoding Bcl2 family apoptosis factors in a genome-wide siRNA screen. The screen identified many regulators of Bcl-x and Mcl1 splicing, notably an extensive network of cell-cycle factors linked to aurora kinase A. Drugs or siRNAs that induce mitotic arrest promote proapoptotic splicing of Bcl-x, Mcl1, and caspase-9 and alter splicing of other apoptotic transcripts. This response precedes mitotic arrest, indicating coordinated upregulation of prodeath splice variants that promotes apoptosis in arrested cells. These shifts correspond to posttranslational turnover of splicing regulator ASF/SF2, which directly binds and regulates these target mRNAs and globally regulates apoptosis. Broadly, our results reveal an alternative splicing network linking cell-cycle control to apoptosis.


Subject(s)
Alternative Splicing , Apoptosis , Cell Cycle , Gene Expression Regulation , Nuclear Proteins/metabolism , Genome, Human , Humans , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins , Serine-Arginine Splicing Factors , bcl-X Protein/genetics
15.
Proc Natl Acad Sci U S A ; 119(50): e2215569119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36469773

ABSTRACT

The flattened leaf form is an important adaptation for efficient photosynthesis, and the developmental process of flattened leaves has been intensively studied. Classic microsurgery studies in potato and tomato suggest that the shoot apical meristem (SAM) communicates with the leaf primordia to promote leaf blade formation. More recently, it was found that polar auxin transport (PAT) could mediate this communication. However, it is unclear how the expression of leaf patterning genes is tailored by PAT routes originating from SAM. By combining experimental observations and computer model simulations, we show that microsurgical incisions and local inhibition of PAT in tomato interfere with auxin transport toward the leaf margins, reducing auxin response levels and altering the leaf blade shape. Importantly, oval auxin responses result in the bipolar expression of SlLAM1 that determines leaf blade formation. Furthermore, wounding caused by incisions promotes degradation of SlREV, a known regulator of leaf polarity. Additionally, computer simulations suggest that local auxin biosynthesis in early leaf primordia could remove necessity for external auxin supply originating from SAM, potentially explaining differences between species. Together, our findings establish how PAT near emerging leaf primordia determines spatial auxin patterning and refines SlLAM1 expression in the leaf margins to guide leaf flattening.


Subject(s)
Indoleacetic Acids , Solanum lycopersicum , Indoleacetic Acids/metabolism , Meristem/metabolism , Plant Leaves/metabolism , Biological Transport/genetics , Organogenesis, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Gene Expression Regulation, Plant
16.
Anal Chem ; 96(21): 8665-8673, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38722711

ABSTRACT

Prostate-specific antigen (PSA) is a key marker for a prostate cancer diagnosis. The low sensitivity of traditional lateral flow immunoassay (LFIA) methods makes them unsuitable for point-of-care testing. Herein, we designed a nanozyme by in situ growth of Prussian blue (PB) within the pores of dendritic mesoporous silica (DMSN). The PB was forcibly dispersed into the pores of DMSN, leading to an increase in exposed active sites. Consequently, the atom utilization is enhanced, resulting in superior peroxidase (POD)-like activity compared to that of cubic PB. Antibody-modified DMSN@PB nanozymes serve as immunological probes in an enzymatic-enhanced colorimetric and photothermal dual-signal LFIA for PSA detection. After systematic optimization, the LFIA based on DMSN@PB successfully achieves a 4-fold amplification of the colorimetric signal within 7 min through catalytic oxidation of the chromogenic substrate by POD-like activity. Moreover, DMSN@PB exhibits an excellent photothermal conversion ability under 808 nm laser irradiation. Accordingly, photothermal signals are introduced to improve the anti-interference ability and sensitivity of LFIA, exhibiting a wide linear range (1-40 ng mL-1) and a low PSA detection limit (0.202 ng mL-1), which satisfies the early detection level of prostate cancer. This research provides a more accurate and reliable visualization analysis methodology for the early diagnosis of prostate cancer.


Subject(s)
Colorimetry , Ferrocyanides , Immunoassay , Nanocomposites , Prostate-Specific Antigen , Humans , Male , Ferrocyanides/chemistry , Immunoassay/methods , Limit of Detection , Nanocomposites/chemistry , Porosity , Prostate-Specific Antigen/analysis , Prostatic Neoplasms/diagnosis , Silicon Dioxide/chemistry
17.
Biochem Biophys Res Commun ; 733: 150690, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39276693

ABSTRACT

The prevalence of obesity and its associated metabolic disorders has emerged as one of the most significant health threats worldwide. The visceral adipose tissue regulatory T cells (VAT Treg) play an essential role in maintaining homeostasis and preventing obesity mainly by secreting Interleikin-10 (IL-10) and Transforming Growth Factor ß (TGF-ß). However, the mechanism that regulates VAT Treg quantity and function remains unclear. Here we elucidate the pivotal role of IL-27 signaling in sustaining the accumulation of VAT Treg cells, thereby conferring protection against obesity. We found that mice with the deficiency of IL-27 receptor Wsx1 gained more body weight and VAT weight than their wild-type littermates when fed both a normal-fat diet (NFD) and a high-fat diet (HFD). Notably, the population of VAT Treg cells was reduced in Wsx1 knockout (KO) mice, regardless of whether they were fed a normal-fat diet (NFD) or a high-fat diet (HFD). Correspondingly, the expression levels of the transcription factors FOXP3 and PPAR-γ, essential for VAT Treg function, were also diminished in Wsx1 KO mice. Taken together, our findings indicate that IL-27 signaling plays a protective role in obesity by supporting the maintenance and accumulation of VAT Treg cells.

18.
Breast Cancer Res Treat ; 207(1): 15-24, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914918

ABSTRACT

BACKGROUND: The tumor microenvironment (TME) plays a crucial role in various aspects of breast cancer development and metastasis. Nevertheless, the expression, prognostic significance, and correlation with clinical features of SCARB2 in breast cancer, as well as the infiltrative characteristics of TME, remain largely unknown. METHODS: We analyzed the differential presentation of SCARB2 mRNA in breast cancer tissues and nontumorous breast tissues and prognosis by The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Additionally, the Tumor Immunity Estimation Resource (TIMER) was taken to evaluate the correlation between SCARB2 mRNA presence and tumor-infiltrating immune cells and immune checkpoints in the TME in breast cancer. We performed multiple immunohistochemical staining to verify the SCARB2 protein expression in breast cancer tissues and its relationship to immune cells and checkpoints and clinicopathological features. RESULTS: We identified elevated SCARB2 expression in breast cancer tissues, and high SCARB2 protein presentation was associated with advanced clinical stage and unfavorable prognosis. In addition, enhanced SCARB2 protein presence was closely correlated with up-regulation CD66b+ neutrophils infiltration in tumor tissues (r = 0.210, P < 0.05) and CD68 + CD163+ M2 macrophages in the interstitium (r = 0.233, P < 0.05), as well as the immune checkpoints, including PD-1 (r = 0.314, P < 0.01) protein expression. CONCLUSION: SCARB2 holds promise for predicting the clinical outcome of breast cancer patients and could serve as a potential therapeutic target.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neutrophils , Tumor Microenvironment , Female , Humans , Middle Aged , Antigens, CD/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lysosomal Membrane Proteins/metabolism , Lysosomal Membrane Proteins/genetics , Neoplasm Staging , Neutrophil Infiltration , Neutrophils/metabolism , Neutrophils/immunology , Neutrophils/pathology , Prognosis , Tumor Microenvironment/immunology
19.
J Transl Med ; 22(1): 404, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689297

ABSTRACT

BACKGROUND: Ischemic heart disease is one of the leading causes of mortality worldwide, and thus calls for development of more effective therapeutic strategies. This study aimed to identify potential therapeutic targets for coronary heart disease (CHD) and myocardial infarction (MI) by investigating the causal relationship between plasma proteins and these conditions. METHODS: A two-sample Mendelian randomization (MR) study was performed to evaluate more than 1600 plasma proteins for their causal associations with CHD and MI. The MR findings were further confirmed through Bayesian colocalization, Summary-data-based Mendelian Randomization (SMR), and Transcriptome-Wide Association Studies (TWAS) analyses. Further analyses, including enrichment analysis, single-cell analysis, MR analysis of cardiovascular risk factors, phenome-wide Mendelian Randomization (Phe-MR), and protein-protein interaction (PPI) network construction were conducted to verify the roles of selected causal proteins. RESULTS: Thirteen proteins were causally associated with CHD, seven of which were also causal for MI. Among them, FES and PCSK9 were causal proteins for both diseases as determined by several analytical methods. PCSK9 was a risk factor of CHD (OR = 1.25, 95% CI: 1.13-1.38, P = 7.47E-06) and MI (OR = 1.36, 95% CI: 1.21-1.54, P = 2.30E-07), whereas FES was protective against CHD (OR = 0.68, 95% CI: 0.59-0.79, P = 6.40E-07) and MI (OR = 0.65, 95% CI: 0.54-0.77, P = 5.38E-07). Further validation through enrichment and single-cell analysis confirmed the causal effects of these proteins. Moreover, MR analysis of cardiovascular risk factors, Phe-MR, and PPI network provided insights into the potential drug development based on the proteins. CONCLUSIONS: This study investigated the causal pathways associated with CHD and MI, highlighting the protective and risk roles of FES and PCSK9, respectively. FES. Specifically, the results showed that these proteins are promising therapeutic targets for future drug development.


Subject(s)
Blood Proteins , Coronary Disease , Mendelian Randomization Analysis , Myocardial Infarction , Proteomics , Humans , Myocardial Infarction/blood , Myocardial Infarction/genetics , Proteomics/methods , Coronary Disease/blood , Coronary Disease/genetics , Blood Proteins/metabolism , Protein Interaction Maps/genetics , Bayes Theorem , Molecular Targeted Therapy , Risk Factors , Genome-Wide Association Study , Proprotein Convertase 9/genetics , Proprotein Convertase 9/blood , Proprotein Convertase 9/metabolism
20.
Plant Physiol ; 193(1): 389-409, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37300541

ABSTRACT

Drought stress poses a serious threat to crop production worldwide. Genes encoding homocysteine methyltransferase (HMT) have been identified in some plant species in response to abiotic stress, but its molecular mechanism in plant drought tolerance remains unclear. Here, transcriptional profiling, evolutionary bioinformatics, and population genetics were conducted to obtain insight into the involvement of HvHMT2 from Tibetan wild barley (Hordeum vulgare ssp. agriocrithon) in drought tolerance. We then performed genetic transformation coupled with physio-biochemical dissection and comparative multiomics approaches to determine the function of this protein and the underlying mechanism of HvHMT2-mediated drought tolerance. HvHMT2 expression was strongly induced by drought stress in tolerant genotypes in a natural Tibetan wild barley population and contributed to drought tolerance through S-adenosylmethionine (SAM) metabolism. Overexpression of HvHMT2 promoted HMT synthesis and efficiency of the SAM cycle, leading to enhanced drought tolerance in barley through increased endogenous spermine and less oxidative damage and growth inhibition, thus improving water status and final yield. Disruption of HvHMT2 expression led to hypersensitivity under drought treatment. Application of exogenous spermine reduced accumulation of reactive oxygen species (ROS), which was increased by exogenous mitoguazone (inhibitor of spermine biosynthesis), consistent with the association of HvHMT2-mediated spermine metabolism and ROS scavenging in drought adaptation. Our findings reveal the positive role and key molecular mechanism of HvHMT2 in drought tolerance in plants, providing a valuable gene not only for breeding drought-tolerant barley cultivars but also for facilitating breeding schemes in other crops in a changing global climate.


Subject(s)
Drought Resistance , Hordeum , Hordeum/genetics , Homocysteine S-Methyltransferase , Reactive Oxygen Species , Spermine , Plant Breeding , Droughts , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL