Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Development ; 149(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35815608

ABSTRACT

In nematodes, spermiogenesis is a process of sperm activation in which nonmotile spermatids are transformed into crawling spermatozoa. Sperm motility acquisition during this process is essential for successful fertilization, but the underlying mechanisms remain to be clarified. Herein, we have found that extracellular adenosine-5'-triphosphate (ATP) level regulation by MIG-23, which is a homolog of human ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), was required for major sperm protein (MSP) filament dynamics and sperm motility in the nematode Ascaris suum. During sperm activation, a large amount of ATP was produced in mitochondria and was stored in refringent granules (RGs). Some of the produced ATP was released to the extracellular space through innexin channels. MIG-23 was localized in the sperm plasma membrane and contributed to the ecto-ATPase activity of spermatozoa. Blocking MIG-23 activity resulted in a decrease in the ATP hydrolysis activity of spermatozoa and an increase in the depolymerization rate of MSP filaments in pseudopodia, which eventually affected sperm migration. Overall, our data suggest that MIG-23, which contributes to the ecto-ATPase activity of spermatozoa, regulates sperm migration by modulating extracellular ATP levels.


Subject(s)
Ascaris suum , Adenosine Triphosphate/metabolism , Animals , Ascaris suum/metabolism , Helminth Proteins/metabolism , Humans , Male , Semen/metabolism , Sperm Motility , Spermatozoa/metabolism
2.
Small ; : e2401530, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751307

ABSTRACT

The unavoidable and unpredictable surface reconstruction of metallic copper (Cu) during the electrocatalytic carbon dioxide (CO2) reduction process is a double-edged sword affecting the production of high-value-added hydrocarbon products. It is crucial to control the surface facet reconstruction and regulate the targeted facets/facet interfaces, and further understand the mechanism between activity/selectivity and the reconstructed structure of Cu for CO2 reduction. Based on the current catalyst design methods, a facile strategy combining chemical reduction and electro-reduction is proposed to achieve specified Cu(111) facets and the Cu(110)/(111) interfaces in reconstructed Cu derived from cuprous oxide (Cu2O). The surface facet reconstruction significantly boosted the electrocatalytic conversion of CO2 into multi-carbon (C2+) products comparing to the unmodified catalyst. Theoretical and experimental analyses show that the Cu(110)/(111)s interface between Cu(110) and a small amount of Cu(111) can tailor the reaction routes and lower the reaction energy barrier of C-C coupling to ethylene (C2H4). The work will guide the surface facets reconstruction strategy for Cu-based CO2 electrocatalysts, providing a promising paradigm to understand the structural variation in catalysts.

3.
Br J Clin Pharmacol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958222

ABSTRACT

AIMS: Cefoperazone is commonly used off-label in the treatment of bacterial meningitis and sepsis in children, and the pharmacokinetic (PK) data are limited in this vulnerable population. The goal of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict pediatric cefoperazone exposure for rational dosing recommendations. METHODS: A cefoperazone PBPK model for adults was first constructed using Simcyp V22 simulator. Subsequently, the model was extended to children based on the built in age-dependent physiological parameters, while the drug characteristics remained unchanged. The verified pediatric PBPK model was then utilized to assess the rationality of the common dosing regimens for children at different age groups. RESULTS: Cefoperazone PBPK model included elimination via biliary excretion, glomerular filtration, and organic anion transporter 3 (OAT3)-mediated tubular secretion. 95.2% of the observed mean concentrations and 100% of the area under the plasma drug concentration-time curve (AUC) and peak concentration (Cmax) in adults were within a twofold range of model mean predictions. Good predictive accuracy was also observed in children, including neonates. 50 mg/kg q12h cefoperazone demonstrated effective target attainment in virtual term neonates (<1 month) when the MIC was ≤1 mg/L, adhering to the stringent PK/PD target of 75% fT > MIC. 37.5 mg/kg q12h cefoperazone achieved the common 50% fT > MIC target for an MIC ≤ 0. 25 mg/L in virtual pediatric patients ranging from 1 month to 18 years of age. CONCLUSIONS: A pediatric PBPK model was developed for cefoperazone, and it could serve as the basis for deriving rational dosing regimens in children.

4.
Pharm Res ; 41(5): 899-910, 2024 May.
Article in English | MEDLINE | ID: mdl-38684563

ABSTRACT

BACKGROUND: Evaluating drug transplacental clearance is vital for forecasting fetal drug exposure. Ex vivo human placenta perfusion experiments are the most suitable approach for this assessment. Various in silico methods are also proposed. This study aims to compare these prediction methods for drug transplacental clearance, focusing on the large molecular weight drug vancomycin (1449.3 g/mol), using maternal-fetal physiologically based pharmacokinetic (m-f PBPK) modeling. METHODS: Ex vivo human placenta perfusion experiments, in silico approaches using intestinal permeability as a substitute (quantitative structure property relationship (QSPR) model and Caco-2 permeability in vitro-in vivo correlation model) and midazolam calibration model with Caco-2 scaling were assessed for determining the transplacental clearance (CLPD) of vancomycin. The m-f PBPK model was developed stepwise using Simcyp, incorporating the determined CLPD values as a crucial input parameter for transplacental kinetics. RESULTS: The developed PBPK model of vancomycin for non-pregnant adults demonstrated excellent predictive performance. By incorporating the CLPD parameterization derived from ex vivo human placenta perfusion experiments, the extrapolated m-f PBPK model consistently predicted maternal and fetal concentrations of vancomycin across diverse doses and distinct gestational ages. However, when the CLPD parameter was derived from alternative prediction methods, none of the extrapolated maternal-fetal PBPK models produced fetal predictions in line with the observed data. CONCLUSION: Our study showcased that combination of ex vivo human placenta perfusion experiments and m-f PBPK model has the capability to predict fetal exposure for the large molecular weight drug vancomycin, whereas other in silico approaches failed to achieve the same level of accuracy.


Subject(s)
Fetus , Maternal-Fetal Exchange , Models, Biological , Placenta , Vancomycin , Humans , Vancomycin/pharmacokinetics , Pregnancy , Female , Placenta/metabolism , Caco-2 Cells , Fetus/metabolism , Computer Simulation , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Perfusion , Adult , Quantitative Structure-Activity Relationship
5.
Nanotechnology ; 35(15)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38198715

ABSTRACT

A novel 3D hierarchical TiO2/CaIn2S4/C3N4arrays with dual heterojunctions photoanode is constructed by stepwise deposition of CaIn2S4nanosheets and ultrathin C3N4onto the well-aligned TiO2nanorods arrays. Integrating the merit of the superior ability of CaIn2S4and C3N4to harvest visible light, dual type-Ⅱ heterojunction band structure and one-dimensional ordered nanostructures, the TiO2/CaIn2S4/C3N4photoanode exhibits simultaneous significant improvements in visible-light harvesting, charge separation and electron transfer capability. At 1.23 V (versus reversible hydrogen electrode) under AM 1.5 G irradiation, the TiO2/CaIn2S475/C3N4photoanode exhibits a photocurrent density of 4.5 mA cm-2, which is 5.2 and 51.1-fold higher than that of TiO2/CaIn2S475 and pristine TiO2photoanode, respectively. Moreover, the applied bias photo-to-current efficiency (ABPE) of the TiO2/CaIn2S475/C3N4photoanode reaches 3.5% at 0.36 V (versus reversible hydrogen electrode). These results are helpful for fabricating more efficient heterostructure photoelectrodes.

6.
Eur Spine J ; 33(3): 932-940, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37947889

ABSTRACT

BACKGROUND: Symptoms of cauda equina syndrome (CES) secondary to degenerative lumbar spine diseases are sometimes mild and tend to be ignored by patients, resulting in delayed treatment. In addition, the long-term efficacy of surgery is unclear. OBJECTIVE: To determine the predictive factors of CES and post-operative recovery in patients with symptoms lasting > 3 months. METHODS: From January 2011 to December 2020, data of 45 patients with CES secondary to lumbar disk herniation/lumbar spinal stenosis were collected from a single center. The patients had bladder, bowel or sexual dysfunction and decreased perineal sensation that lasted for > 3 months. A 2-year post-operative follow-up was conducted to evaluate recovery outcomes, which were measured by validated self-assessment questionnaires conducted by telephone and online. RESULTS: Overall, 45 CES patients (57.8% female; mean age, 56 years) were included. The duration of pre-operative CES symptoms was 79.6 weeks (range, 13-730 weeks). The incidence of saddle anesthesia before decompression was 71.1% (n = 32), bladder dysfunction 84.4% (n = 38), bowel dysfunction 62.2% (n = 28) and sexual dysfunction 64.4% (n = 29). The overall recovery rate of CES after a 2-year follow-up was 64.4%. The rates of the residual symptoms at the last follow-up were as follows: saddle anesthesia 22.2%, bladder dysfunction 33.3%, bowel dysfunction 24.4% and sexual dysfunction 48.9%. Pre-operative saddle anesthesia, overactive bladder and sexual dysfunction were risk factors for poor prognosis after decompression. CONCLUSION: CES patients with symptoms lasting > 3 months may recover after surgery. Sexual dysfunction has a high residual rate and should not be ignored during diagnosis and treatment.


Subject(s)
Cauda Equina Syndrome , Cauda Equina , Intervertebral Disc Displacement , Polyradiculopathy , Humans , Female , Middle Aged , Male , Cauda Equina Syndrome/surgery , Cauda Equina Syndrome/etiology , Self-Assessment , Retrospective Studies , Intervertebral Disc Displacement/surgery , Decompression/adverse effects , Polyradiculopathy/etiology , Polyradiculopathy/surgery
7.
Sensors (Basel) ; 24(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931587

ABSTRACT

Track irregularities directly affect the quality and safety of railway vehicle operations. Quantitative detection and real-time monitoring of track irregularities are of great importance. However, due to the frequent variable vehicle speed, vehicle operation is a typical non-stationary process. The traditional signal analysis methods are unsuitable for non-stationary processes, making the quantitative detection of the wavelength and amplitude of track irregularities difficult. To solve the above problems, this paper proposes a quantitative detection method of track irregularities under non-stationary conditions with variable vehicle speed by order tracking analysis for the first time. Firstly, a simplified wheel-rail dynamic model is established to derive the quantitative relationship between the axle-box vertical vibration and the track vertical irregularities. Secondly, the Simpson double integration method is proposed to calculate the axle-box vertical displacement based on the axle-box vertical acceleration, and the process error is optimized. Thirdly, based on the order tracking analysis theory, the angular domain resampling is performed on the axle-box vertical displacement time-domain signal in combination with the wheel rotation speed signals, and the quantitative detection of the track irregularities is achieved. Finally, the proposed method is validated based on simulation and field test analysis cases. We provide theoretical support and method reference for the quantitative detection method of track irregularities.

8.
Gene Ther ; 30(1-2): 75-87, 2023 02.
Article in English | MEDLINE | ID: mdl-35132206

ABSTRACT

Traumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI. We established a ski-overexpressing experimental TBI mouse model using adenovirus-mediated overexpression through immediate injection after injury. Hematoxylin-eosin staining, MRI-based 3D lesion volume reconstruction, neurobehavioral tests, and analyses of neuronal regeneration and astrogliosis were used to assess neurorestorative efficiency. The effects of ski overexpression on the proliferation of cultured immature neurons and astrocytes were evaluated using imaging flow cytometry. The Ski protein level increased in the perilesional region at 3 days post injury. ski overexpression further elevated Ski protein levels up to 14 days post injury. Lesion volume was attenuated by approximately 36-55% after ski overexpression, with better neurobehavioral recovery, more newborn immature and mature neurons, and less astrogliosis in the perilesional region. Imaging flow cytometry results showed that ski overexpression elevated the proliferation rate of immature neurons and reduced the proliferation rate of astrocytes. These results show that ski can be considered a novel neurorestoration-related gene that effectively promotes neurorestoration, facilitates neuronal regeneration, and reduces astrogliosis after TBI.


Subject(s)
Brain Injuries, Traumatic , Gliosis , Mice , Animals , Gliosis/genetics , Gliosis/metabolism , Gliosis/pathology , Neurons/metabolism , Brain Injuries, Traumatic/therapy , Brain/metabolism , Regeneration
9.
Mol Genet Genomics ; 298(3): 521-535, 2023 May.
Article in English | MEDLINE | ID: mdl-36813858

ABSTRACT

MicroRNAs (miRNAs), important regulators of gene expression, play critical roles in various biological processes and tumorigenesis. To reveal the potential relationships between multiple isomiRs and arm switching, we performed a comprehensive pan-cancer analysis to discuss their roles in tumorigenesis and cancer prognosis. Our results showed that many miR-#-5p and miR-#-3p pairs from the two arms of pre-miRNA may have abundant expression levels, and they are often involved in distinct functional regulatory networks by targeting different mRNAs, although they may also interact with common targets. The two arms may show diverse isomiR expression landscapes, and their expression ratio might vary, mainly depending on tissue type. Dominantly expressed isomiRs can be used to determine distinct cancer subtypes that are associated with clinical outcome, indicating that they may be potential prognostic biomarkers. Our findings indicate robust and flexible isomiR expression landscapes that will enrich the study of miRNAs/isomiRs and aid in revealing the potential roles of multiple isomiRs yielded by arm switching in tumorigenesis.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Carcinogenesis/genetics
10.
Transfusion ; 63(3): 494-506, 2023 03.
Article in English | MEDLINE | ID: mdl-36727659

ABSTRACT

OBJECTIVE: We aimed to summarize the laboratory findings and clinical features of hemolytic disease of the fetus and newborn (HDFN). METHODS: We retrospectively analyzed the data for 17 infants with anti-M-induced HDFN (anti-M-HDFN) diagnosed between June 2013 and May 2019. Their maternal history, neonatal diagnosis on admission, and laboratory test results were compared with those of 15 infants with HDFN involving the ABO blood group system, 15 infants with HDFN involving the Rh system, and 15 premature infants. RESULTS: In the anti-M-HDFN group, 94.12% (16/17), 35.29% (6/17), and 17.65% (3/17) had free antibodies in plasma, a positive direct antiglobulin test, and a positive elution test, respectively. In 12 infants, free antibody reactions were stronger at 4°C than at 37°C, and the antibody titer at 4°C ranged from 1 to 512. All 17 infants with anti-M-HDFN developed anemia: 14 were treated with blood transfusion and 1 with neonatal exchange transfusion. Sixteen infants improved, and one died. Anti-M-HDFN had a higher rate of maternal stillbirth, lower gestational age, lower birthweight, and higher incidence of respiratory distress than other HDFN types. CONCLUSION: Anti-M may cause HDFN. It may present with varying degrees of anemia, low regenerative anemia, and low bilirubin levels. In addition, infants with anti-M-HDFN may have a negative elution test and direct antiglobulin test. These tests are helpful in examining antibody responses at a low temperature of 4°C.


Subject(s)
Anemia , Erythroblastosis, Fetal , Female , Infant, Newborn , Humans , Retrospective Studies , Isoantibodies , ABO Blood-Group System , Fetus , Anemia/complications
11.
Virol J ; 20(1): 248, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891594

ABSTRACT

BACKGROUND: Sepsis is a systemic inflammatory response syndrome caused by severe infection in children, but cases of sepsis associated with human parainfluenza virus (HPIV) have been rarely reported in newborns. CASE PRESENTATION: We report a case of HPIV-3 positive full-term newborn admitted to the Neonatal Intensive Care Unit of Beijing Children's Hospital due to hematuria, gloomy spirit, inactivity and loss of appetite for 6 h. He had septic shock when he arrived the Accident & Emergency Department requiring immediate intubation and mechanical ventilation. Intravenous antibiotics were started. He had completely negative response to all anti-shock treatments including fluid resuscitation and vasopressor supports, and died 14 h later. Viral nucleic acid detection and metagenomic next-generation sequencing (mNGS) analyses of nasopharyngeal aspirate and blood specimens verified an HPIV-3 infection, with negative bacterial culture results. The HPIV-3 strain detected in this patient was subtyped as HPIV C3a, and two unreported amino acid mutations were found in the HN protein region. CONCLUSION: The patient had a severe infection associated with HPIV-3, which was the cause of sepsis and septic shock. This study showed the diagnostic value of mNGS in etiological diagnosis, especially in severe neonatal case.


Subject(s)
Respiratory Tract Infections , Shock, Septic , Child , Male , Humans , Infant, Newborn , Parainfluenza Virus 3, Human/genetics , Shock, Septic/diagnosis , Viremia , Mutation , Parainfluenza Virus 2, Human
12.
Eur Radiol ; 33(11): 8046-8054, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37256350

ABSTRACT

OBJECTIVES: To evaluate the use of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) for detection of microstructural changes in the trigeminal nerves of trigeminal neuralgia (TN) patients. METHODS: Forty TN patients and 40 healthy controls were examined using 3 T magnetic resonance imaging (MRI) to evaluate DTI and DKI parameters in trigeminal nerves. One-way ANOVA was used to test the differences in age, sex, and DTI and DKI parameters between the TN-affected sides, TN-unaffected sides, and controls. For parameters with inter-group differences, pairwise comparisons were performed. Then, the difference ratios (DRs) of the parameters with statistical differences were calculated and used for the receiver operating characteristic (ROC) analysis to assess their diagnostic performance. In addition, for the DTI and DKI parameter values with differences, we used pure DTI and DKI values to perform the ROC analysis. RESULTS: Compared to the unaffected sides and controls, the FA, MK, and Kr of the affected sides of TN patients were significantly reduced, while ADC was significantly increased (p < 0.05). The diagnostic efficiency of the FA DRs (AUC: 0.974; cutoff value: 0.038; sensitivity: 100%; specificity: 95.0%) was the highest among all DTI and DKI parameters. The DRs of FA and MK more efficiently diagnosed TN than pure FA and MK values. CONCLUSIONS: DTI and DKI allowed detection of microstructural changes in TN-affected trigeminal nerves. FA DR was the best independent predictor of microstructural changes in TN. CLINICAL RELEVANCE STATEMENT: Both DTI and DKI can be used for noninvasive quantitative evaluation of the changes in the microstructure of the cisternal segment of the cranial nerves in clinical practice. KEY POINTS: • Diffusion tensor imaging (DTI) can be used to evaluate the in vivo integrity of white matter and nerve fiber pathway. • Diffusion kurtosis imaging (DKI) has been shown to be considerable sensitive to microstructural changes. • DTI combined with DKI can comprehensively evaluate the status of the TN-affected trigeminal nerve.


Subject(s)
Trigeminal Neuralgia , White Matter , Humans , Trigeminal Neuralgia/diagnostic imaging , Diffusion Tensor Imaging/methods , Trigeminal Nerve/diagnostic imaging , Magnetic Resonance Imaging
13.
BMC Pediatr ; 23(1): 621, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38066456

ABSTRACT

BACKGROUND: Blood transfusion therapy is extremely important for certain neonatal diseases, but the threshold for neonatal blood transfusion is not the same in different countries. Until now, clinical studies to determine the suitable threshold for newborns in China are lacking. Therefore, it is of high importance to establish a multi-center cohort study to explore appropriate transfusion thresholds for newborns in China. METHODS: This retrospective cohort study investigated neonatal blood transfusion therapy administered from January 1, 2017 to June 30, 2018, with the aim of evaluating the effect of restricted and nonrestricted blood transfusion on neonatal health. The subjects were enrolled in 46 hospitals in China. A total of 5669 neonatal cases were included in the study. Clinical diagnosis and transfusion treatment of these neonates were collected and the data were retrospectively analyzed. The neonates were followed up 1 week and 1 month after leaving the hospital. The newborns' and their mothers' data were collected containing 280 variables in the database. The primary outcome of the study was mortality, and the secondary outcomes were complications, hospital stays, NICU hospital stays and hospital costs. RESULTS: Results from the < 1500 g group showed that there was a higher mortality rate in the restricted transfusion group (11.41%) when compared with the non-restricted transfusion group (5.12%) (P = 0.000). Among the secondary outcomes, the restricted transfusion group had fewer costs. Results from the 1500-2500 g group showed that the mortality rates of the restricted and non-restricted transfusion groups were 3.53% and 4.71%, respectively, however there was no statistical significance between the two groups (P = 0.345). Among the secondary outcomes, the restricted transfusion group had fewer hospital stays, NICU hospital stays and hospital costs. The incidence of necrotizing enterocolitis was lower in the restricted transfusion group (OR, 2.626; 95% confidence interval [CI], 1.445 to 4.773; P = 0.003). The results from the ≥ 2500 g restricted transfusion group suggested that the mortality rate of (3.02%) was significantly lower than that of non-restricted transfusion group (9.55%) (P = 0.000). Among the secondary outcomes, the restricted transfusion group had fewer hospital stays and hospital costs. The incidence of retinopathy of prematurity was lower in the restricted transfusion group (OR, 4.624; 95% confidence interval [CI], 2.32 to 9.216; P = 0.000). CONCLUSIONS: Current transfusion protocols for newborns weighing less than 1500 g may be inappropriate and lead to higher mortality. The current transfusion threshold performed better for the other two weight groups.


Subject(s)
Erythrocyte Transfusion , Infant, Newborn, Diseases , Infant, Newborn , Humans , Retrospective Studies , Cohort Studies , Infant, Premature , Blood Transfusion
14.
Sensors (Basel) ; 23(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37299932

ABSTRACT

The rational integration of many microfluidic chips and micropumps remains challenging. Due to the integration of the control system and sensors in active micropumps, they have unique advantages over passive micropumps when integrated into microfluidic chips. An active phase-change micropump based on complementary metal-oxide-semiconductor-microelectromechanical system (CMOS-MEMS) technology was fabricated and studied theoretically and experimentally. The micropump structure is simple and consists of a microchannel, a series of heater elements along the microchannel, an on-chip control system, and sensors. A simplified model was established to analyze the pumping effect of the traveling phase transition in the microchannel. The relationship between pumping conditions and flow rate was examined. Based on the experimental results, the maximum flow rate of the active phase-change micropump at room temperature is 22 µL/min, and long-term stable operation can be achieved by optimizing heating conditions.


Subject(s)
Micro-Electrical-Mechanical Systems , Microfluidic Analytical Techniques , Micro-Electrical-Mechanical Systems/instrumentation , Micro-Electrical-Mechanical Systems/methods , Microfluidics/instrumentation , Microfluidics/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Oxides/chemistry , Semiconductors
15.
Int J Mol Sci ; 24(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37373420

ABSTRACT

Extracellular microparticles provide a means of cell-to-cell communication and can promote information exchanges between adjacent or distant cells. Platelets are cell fragments that are derived from megakaryocytes. Their main functions are to stop bleeding, regulate inflammation, and maintain the integrity of blood vessels. When platelets are activated, they can perform related tasks by secreting platelet-derived microparticles that contain lipids, proteins, nucleic acids, and even organelles. There are differences in the circulating platelet levels in many autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, antiphospholipid antibody syndrome, and Sjogren's syndrome. In this paper, the latest findings in the research field of platelet-derived microparticles are reviewed, including the potential pathogenesis of platelet-derived microparticles in various types of immune diseases, their potential as related markers, and for monitoring the progress and prognosis of disease treatment are expounded.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Cell-Derived Microparticles , Lupus Erythematosus, Systemic , Humans , Cell-Derived Microparticles/metabolism , Autoimmune Diseases/metabolism , Blood Platelets/metabolism , Arthritis, Rheumatoid/metabolism , Megakaryocytes/pathology
16.
Int J Mol Sci ; 24(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38069094

ABSTRACT

Establishing an immune balance between the mother and fetus during gestation is crucial, with the placenta acting as the epicenter of immune tolerance. The placental transfer of antibodies, mainly immunoglobulin G (IgG), is critical in protecting the developing fetus from infections. This review looks at how immunomodulation of antibody glycosylation occurs during placental transfer and how it affects fetal health. The passage of maternal IgG antibodies through the placental layers, including the syncytiotrophoblast, stroma, and fetal endothelium, is discussed. The effect of IgG subclass, glycosylation, concentration, maternal infections, and antigen specificity on antibody transfer efficiency is investigated. FcRn-mediated IgG transport, influenced by pH-dependent binding, is essential for placental transfer. Additionally, this review delves into the impact of glycosylation patterns on antibody functionality, considering both protective and pathological effects. Factors affecting the transfer of protective antibodies, such as maternal vaccination, are discussed along with reducing harmful antibodies. This in-depth examination of placental antibody transfer and glycosylation provides insights into improving neonatal immunity and mitigating the effects of maternal autoimmune and alloimmune conditions.


Subject(s)
Immunoglobulin G , Placenta , Pregnancy , Female , Humans , Placenta/metabolism , Glycosylation , Trophoblasts/metabolism , Immunomodulation , Maternal-Fetal Exchange
17.
Water Sci Technol ; 87(7): 1779-1790, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37051797

ABSTRACT

Oil content (OC) is one of the important evaluation indicators in oilfield wastewater (OW) treatment. The purpose of this study is to realize online real-time detection of OC in OW by combining ultraviolet spectrophotometry with the convolutional neural network (CNN). In this paper, 80 groups of OW transmission data were measured for model establishment. Three CNN models with different structures are established to generalize the super parametric optimization process of the model. Furthermore, as a common method used in spectroscopy, the synergy interval partial least squares (siPLS) model is built in order to compare its accuracy with the CNN model. The results indicated the CNN model has a better performance than siPLS, in which the CNN model numbered Model 3 has the lowest root mean square error (MSE) of prediction (RMSEP) of 1.606 mg/L. As a consequence, the CNN model can be used in the monitoring of OW. This article will guide a rapid analysis of the OC of OW.


Subject(s)
Oil and Gas Fields , Wastewater , Neural Networks, Computer , Spectrum Analysis , Least-Squares Analysis
18.
J Exp Bot ; 73(19): 6646-6662, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35946571

ABSTRACT

Plant height and flowering time are important agronomic traits that directly affect soybean [Glycine max (L.) Merr.] adaptability and yield. Here, the Glycine max long internode 1 (Gmlin1) mutant was selected from an ethyl methyl sulfonate (EMS)-mutated Williams 82 population due to its long internodes and early flowering. Using bulked segregant analysis (BSA), the Gmlin1 locus was mapped to Glyma.02G304700, a homologue of the Arabidopsis HY2 gene, which encodes a phytochromobilin (PΦB) synthase involved in phytochrome chromophore synthesis. Mutation of GmHY2a results in failure of the de-etiolation response under both red and far-red light. The Gmlin1 mutant exhibits a constitutive shade avoidance response under normal light, and the mutations influence the auxin and gibberellin pathways to promote internode elongation. The Gmlin1 mutant also exhibits decreased photoperiod sensitivity. In addition, the soybean photoperiod repressor gene E1 is down-regulated in the Gmlin1 mutant, resulting in accelerated flowering. The nuclear import of phytochrome A (GmphyA) and GmphyB following light treatment is decreased in Gmlin1 protoplasts, indicating that the weak light response of the Gmlin1 mutant is caused by a decrease in functional phytochrome. Together, these results indicate that GmHY2a plays an important role in soybean phytochrome biosynthesis and provide insights into the adaptability of the soybean plant.


Subject(s)
Arabidopsis , Phytochrome , Glycine max/genetics , Glycine max/metabolism , Phytochrome/metabolism , Oxidoreductases/metabolism , Arabidopsis/metabolism , Photoperiod , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant
19.
Cereb Cortex ; 31(8): 3701-3712, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33749736

ABSTRACT

The functional connectome is highly distinctive in adults and adolescents, underlying individual differences in cognition and behavior. However, it remains unknown whether the individual uniqueness of the functional connectome is present in neonates, who are far from mature. Here, we utilized the multiband resting-state functional magnetic resonance imaging data of 40 healthy neonates from the Developing Human Connectome Project and a split-half analysis approach to characterize the uniqueness of the functional connectome in the neonatal brain. Through functional connectome-based individual identification analysis, we found that all the neonates were correctly identified, with the most discriminative regions predominantly confined to the higher-order cortices (e.g., prefrontal and parietal regions). The connectivities with the highest contributions to individual uniqueness were primarily located between different functional systems, and the short- (0-30 mm) and middle-range (30-60 mm) connectivities were more distinctive than the long-range (>60 mm) connectivities. Interestingly, we found that functional data with a scanning length longer than 3.5 min were able to capture the individual uniqueness in the functional connectome. Our results highlight that individual uniqueness is present in the functional connectome of neonates and provide insights into the brain mechanisms underlying individual differences in cognition and behavior later in life.


Subject(s)
Cerebral Cortex/physiology , Connectome , Individuality , Nerve Net/physiology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Female , Humans , Infant, Newborn , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Nerve Net/growth & development , Reproducibility of Results , Rest/physiology
20.
Proc Natl Acad Sci U S A ; 116(41): 20511-20516, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548420

ABSTRACT

Resistance to ionizing radiation (IR), which is a conventional treatment for osteosarcoma that cannot be resected, undermines the efficacy of this therapy. However, the mechanism by which IR induces radioresistance in osteosarcoma is not defined. Here, we report that CR6-interacting factor-1 (CRIF1) is highly expressed in osteosarcoma and undergoes nuclear-cytoplasmic shuttling of cyclin-dependent kinase 2 (CDK2) after IR. Osteosarcoma cells lacking CRIF1 show increased sensitivity to IR, which is associated with delayed DNA damage repair, inactivated G1/S checkpoint, and mitochondrial dysfunction. CRIF1 interacts with the DNA damage checkpoint regulator CDK2, and CRIF1 and CDK2 colocalize in the nucleus after IR. Nuclear localization of CDK2 is associated with phosphorylation changes that promote DNA repair and activation of the G1/S checkpoint. CRIF1 knockdown synergized with IR in an in vivo osteosarcoma model, leading to tumor regression. Based on these findings, we identify CRIF1 as a potential therapeutic target in osteosarcoma that can increase the efficacy of radiotherapy. More broadly, our findings may provide insights into the mechanism for other types of radioresistant cancers and be exploited for therapeutic ends.


Subject(s)
Bone Neoplasms/pathology , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 2/metabolism , Osteosarcoma/pathology , Radiation Tolerance , Animals , Apoptosis , Bone Neoplasms/metabolism , Bone Neoplasms/radiotherapy , Cell Cycle , Cell Cycle Proteins/genetics , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Cell Proliferation , Cyclin-Dependent Kinase 2/genetics , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/radiotherapy , Osteosarcoma/metabolism , Osteosarcoma/radiotherapy , Phosphorylation , Prognosis , Protein Binding , Radiation, Ionizing , Retrospective Studies , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL