Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Acta Neuropathol ; 145(2): 159-173, 2023 02.
Article in English | MEDLINE | ID: mdl-36512061

ABSTRACT

An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Alzheimer Disease/pathology , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/genetics
2.
Acta Neuropathol ; 144(1): 45-57, 2022 07.
Article in English | MEDLINE | ID: mdl-35551470

ABSTRACT

Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is most often seen in the oldest-old (≥ 90 years of age) but can also be present in the younger-old (< 90 years of age). In this study, we compared the neuropathological associations of LATE-NC and contribution of LATE-NC to cognitive impairment between the oldest-old and younger-old. We observed significant differences in the prevalence of LATE-NC and its association with other co-pathologies in these two age groups. LATE-NC was present in 30.9% (34/110) of the oldest-old but only 9.4% (19/203) of the younger-old. Participants of the oldest-old with LATE-NC were more likely to have hippocampal sclerosis (HS) (55.9% vs. 10.5%, p < 0.001) and moderate to severe arteriolosclerosis (82.4% vs. 50%, p = 0.007), but not intermediate to high Alzheimer's disease neuropathologic change (ADNC) (70.6% vs. 59.2%, p = 0.486) or Lewy body disease (LBD) (20.6% vs. 26.3%, p = 0.793). Participants of the younger-old with LATE-NC were more likely to have intermediate to high ADNC (94.7% vs. 55.4%, p < 0.001) and LBD (63.2% vs. 28.8%, p = 0.013) in addition to hippocampal sclerosis (42.1% vs. 6.5%, p < 0.001), and moderate to severe arteriolosclerosis (42.1% vs. 15.2%, p = 0.020). Of note, participants with LATE-NC and no to low ADNC were very rare in the younger-old (< 1%) but relatively common in the oldest-old (9.1%). Logistic regression modeling showed that in the oldest-old, both intermediate to high ADNC and LATE-NC were independently associated with higher odds of having dementia (OR: 5.09, 95% CI [1.99, 13.06], p < 0.001 for ADNC; OR: 3.28, 95% CI [1.25, 8.57], p = 0.015 for LATE-NC). In the younger-old, by contrast, intermediate to high ADNC and LBD were independently associated with higher odds of having dementia (OR: 4.43, 95% CI [2.27, 8.63], p < 0.001 for ADNC; OR: 2.55, 95% CI [1.21, 5.35], p < 0.014 for LBD), whereas LATE-NC did not show an independent association with dementia. Overall, LATE-NC is strongly associated with arteriolosclerosis and HS in both groups; however, in the younger-old, LATE-NC is associated with other neurodegenerative pathologies, such as ADNC and LBD; whereas in the oldest-old, LATE-NC can exist independent of significant ADNC.


Subject(s)
Alzheimer Disease , Arteriolosclerosis , DNA-Binding Proteins/metabolism , Lewy Body Disease , Aged, 80 and over , Alzheimer Disease/pathology , Arteriolosclerosis/complications , Humans , Sclerosis
3.
Acta Neuropathol ; 144(1): 27-44, 2022 07.
Article in English | MEDLINE | ID: mdl-35697880

ABSTRACT

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer's disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese-American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia-broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with "frequent" neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aß phase = 0 (lacking detectable Aß plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer's disease neuropathology.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Nervous System Diseases , Aged, 80 and over , Alzheimer Disease/genetics , Amyloid , Autopsy , DNA-Binding Proteins , Humans , Male , Plaque, Amyloid/pathology
4.
Acta Neuropathol ; 141(4): 547-564, 2021 04.
Article in English | MEDLINE | ID: mdl-33641009

ABSTRACT

α-Synuclein aggregation underlies pathological changes in Lewy body dementia. Recent studies highlight structural variabilities associated with α-synuclein aggregates in patient populations. Here, we develop a quantitative real-time quaking-induced conversion (qRT-QuIC) assay to measure permissive α-synuclein fibril-templating activity in tissues and cerebrospinal fluid (CSF). The assay is anchored through reference panels of stabilized ultra-short fibril particles. In humanized α-synuclein transgenic mice, qRT-QuIC identifies differential levels of fibril activity across the brain months before the deposition of phosphorylated α-synuclein in susceptible neurons. α-Synuclein fibril activity in cortical brain extracts from dementia with Lewy bodies (DLB) correlates with activity in matched ventricular CSF. Elevated α-synuclein fibril activity in CSF corresponds to reduced survival in DLB. α-Synuclein fibril particles amplified from cases with high fibril activity show superior templating in the formation of new inclusions in neurons relative to the same number of fibril particles amplified from DLB cases with low fibril activity. Our results highlight a previously unknown broad heterogeneity of fibril-templating activities in DLB that may contribute to disease phenotypes. We predict that quantitative assessments of fibril activities in CSF that correlate to fibril activities in brain tissue will help stratify patient populations as well as measure therapeutic responses to facilitate the development of α-synuclein-targeted therapeutics.


Subject(s)
Chemistry Techniques, Analytical/methods , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Mice , Middle Aged , Phenotype , alpha-Synuclein/analysis
5.
JAMA ; 322(17): 1682-1691, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31688885

ABSTRACT

Importance: Primary open-angle glaucoma presents with increased prevalence and a higher degree of clinical severity in populations of African ancestry compared with European or Asian ancestry. Despite this, individuals of African ancestry remain understudied in genomic research for blinding disorders. Objectives: To perform a genome-wide association study (GWAS) of African ancestry populations and evaluate potential mechanisms of pathogenesis for loci associated with primary open-angle glaucoma. Design, Settings, and Participants: A 2-stage GWAS with a discovery data set of 2320 individuals with primary open-angle glaucoma and 2121 control individuals without primary open-angle glaucoma. The validation stage included an additional 6937 affected individuals and 14 917 unaffected individuals using multicenter clinic- and population-based participant recruitment approaches. Study participants were recruited from Ghana, Nigeria, South Africa, the United States, Tanzania, Britain, Cameroon, Saudi Arabia, Brazil, the Democratic Republic of the Congo, Morocco, Peru, and Mali from 2003 to 2018. Individuals with primary open-angle glaucoma had open iridocorneal angles and displayed glaucomatous optic neuropathy with visual field defects. Elevated intraocular pressure was not included in the case definition. Control individuals had no elevated intraocular pressure and no signs of glaucoma. Exposures: Genetic variants associated with primary open-angle glaucoma. Main Outcomes and Measures: Presence of primary open-angle glaucoma. Genome-wide significance was defined as P < 5 × 10-8 in the discovery stage and in the meta-analysis of combined discovery and validation data. Results: A total of 2320 individuals with primary open-angle glaucoma (mean [interquartile range] age, 64.6 [56-74] years; 1055 [45.5%] women) and 2121 individuals without primary open-angle glaucoma (mean [interquartile range] age, 63.4 [55-71] years; 1025 [48.3%] women) were included in the discovery GWAS. The GWAS discovery meta-analysis demonstrated association of variants at amyloid-ß A4 precursor protein-binding family B member 2 (APBB2; chromosome 4, rs59892895T>C) with primary open-angle glaucoma (odds ratio [OR], 1.32 [95% CI, 1.20-1.46]; P = 2 × 10-8). The association was validated in an analysis of an additional 6937 affected individuals and 14 917 unaffected individuals (OR, 1.15 [95% CI, 1.09-1.21]; P < .001). Each copy of the rs59892895*C risk allele was associated with increased risk of primary open-angle glaucoma when all data were included in a meta-analysis (OR, 1.19 [95% CI, 1.14-1.25]; P = 4 × 10-13). The rs59892895*C risk allele was present at appreciable frequency only in African ancestry populations. In contrast, the rs59892895*C risk allele had a frequency of less than 0.1% in individuals of European or Asian ancestry. Conclusions and Relevance: In this genome-wide association study, variants at the APBB2 locus demonstrated differential association with primary open-angle glaucoma by ancestry. If validated in additional populations this finding may have implications for risk assessment and therapeutic strategies.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Black People/genetics , Genome-Wide Association Study , Glaucoma, Open-Angle/ethnology , Glaucoma, Open-Angle/genetics , Polymorphism, Single Nucleotide , Aged , Amyloid beta-Peptides/genetics , Case-Control Studies , Female , Genetic Predisposition to Disease , Genotype , Humans , Immunohistochemistry , Male , Meta-Analysis as Topic , Middle Aged , Risk Factors
6.
J Neurooncol ; 137(2): 303-311, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29264835

ABSTRACT

Gliosarcoma is a rare histopathologic variant of glioblastoma traditionally associated with a poor prognosis. While gliosarcoma may represent a distinct clinical entity given its unique histologic composition and molecular features, its relative prognostic significance remains uncertain. While treatment of gliosarcoma generally encompasses the same standardized approach used in glioblastoma, supporting evidence is limited given its rarity. Here, we characterized 32 cases of gliosarcoma and retrospectively evaluated survival relative to 451 glioblastoma patients diagnosed during the same era within the same institution. Overall, we identified 22 primary gliosarcomas, representing 4.7% of WHO Grade IV primary glioblastomas, and 10 secondary gliosarcomas. With median age of 62, patients were predominately Caucasian (87.5%) and male (65.6%). Tumors with available molecular profiling were primarily MGMT-unmethylated (87.5%), IDH-1-preserved (100%) and EGFR wild-type (100%). Interestingly, while no significant median survival difference between primary gliosarcoma and glioblastoma was observed across the entire cohort (11.0 vs. 14.8 months, p = 0.269), median survival was worse for gliosarcoma specifically among patients who received modern temozolomide-based (TMZ) chemoradiotherapy (11.0 vs. 17.3 months, p = 0.006). Matched-pair analysis also trended toward worse median survival among gliosarcomas (11.0 vs. 19.6 months, log-rank p = 0.177, Breslow p = 0.010). While adjuvant radiotherapy (HR 0.206, p = 0.035) and TMZ-based chemotherapy (HR 0.531, p = 0.000) appeared protective, gliosarcoma emerged as a significantly poor prognostic factor on multivariate analysis (HR 3.27, p = 0.012). Collectively, our results suggest that gliosarcoma may still portend worse prognosis even with modern trimodality therapy.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioblastoma/metabolism , Glioblastoma/pathology , Gliosarcoma/metabolism , Gliosarcoma/pathology , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Female , Glioblastoma/genetics , Glioblastoma/therapy , Gliosarcoma/genetics , Gliosarcoma/therapy , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Analysis
7.
J Neurooncol ; 133(2): 409-417, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28447278

ABSTRACT

Meningeal hemangiopericytoma (m-HPC) is a rare tumor of the central nervous system (CNS), which is distinguished clinically from meningioma by its tendency to recur and metastasize. The histological classification and grading scheme for m-HPC is still evolving and few studies have identified tumor features that are associated with metastasis. All patients at our institution with m-HPC were assessed for patient, tumor, and treatment characteristics associated with survival, recurrence, and metastasis. New findings were validated using the SEER database. Twenty-seven patients were identified in our institutional records with m-HPC with a median follow-up time of 85 months. Invasiveness was the strongest predictor of decreased overall survival (OS) and decreased metastasis-free survival (MFS) (p = 0.004 and 0.001). On subgroup analysis, bone invasion trended towards decreased OS (p = 0.056). Bone invasion and soft tissue invasion were significantly associated with decreased MFS (p = 0.001 and 0.012). An additional 315 patients with m-HPC were identified in the SEER database that had information on tumor invasion and 263 with information on distant metastasis. Invasion was significantly associated with decreased survival (HR = 5.769, p = 0.007) and metastasis (OR 134, p = 0.000) in the SEER data. In this study, the authors identified a previously unreported tumor characteristic, invasiveness, as the strongest factor associated with decreased survival and metastasis. The association of invasion with decreased survival and metastasis was confirmed in a separate, larger, publicly available database. Invasion may be a useful parameter in the histological grading and clinical management of hemangiopericytoma of the CNS.


Subject(s)
Central Nervous System Neoplasms/mortality , Central Nervous System Neoplasms/secondary , Hemangiopericytoma/mortality , Hemangiopericytoma/secondary , Neoplasm Invasiveness/physiopathology , Adult , Age Factors , Bone Neoplasms/pathology , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Invasiveness/pathology , Proportional Hazards Models , Retrospective Studies
8.
Ophthalmic Plast Reconstr Surg ; 33(3S Suppl 1): S111-S114, 2017.
Article in English | MEDLINE | ID: mdl-27429231

ABSTRACT

Orbital schwannomas are typically slow-growing benign tumors that can cause gradual loss of vision, proptosis, and limitation of ocular motility. The authors present an atypical case of a rapidly growing orbital apex schwannoma in a patient with preexisting vision loss secondary to presumed sarcoidal optic neuritis. Contrary to the slowly progressive nature of a typical orbital schwannoma, the lesion was observed to enlarge from radiologically undiscernible to 3.5 cm over 4 years.


Subject(s)
Neurilemmoma/diagnosis , Orbit/pathology , Orbital Neoplasms/diagnosis , Biopsy , Disease Progression , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Time Factors
11.
J Neurosci ; 34(38): 12745-61, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25232112

ABSTRACT

Most excitatory synapses in the mammalian brain are formed on dendritic spines, and spine density has a profound impact on synaptic transmission, integration, and plasticity. Membrane-associated guanylate kinase (MAGUK) proteins are intracellular scaffolding proteins with well established roles in synapse function. However, whether MAGUK proteins are required for the formation of dendritic spines in vivo is unclear. We isolated a novel disc large-5 (Dlg5) allele in mice, Dlg5(LP), which harbors a missense mutation in the DLG5 SH3 domain, greatly attenuating its ability to interact with the DLG5 GUK domain. We show here that DLG5 is a MAGUK protein that regulates spine formation, synaptogenesis, and synaptic transmission in cortical neurons. DLG5 regulates synaptogenesis by enhancing the cell surface localization of N-cadherin, revealing a key molecular mechanism for regulating the subcellular localization of this cell adhesion molecule during synaptogenesis.


Subject(s)
Cadherins/metabolism , Dendritic Spines/physiology , Guanylate Kinases/physiology , Membrane Proteins/physiology , Neurogenesis/physiology , Synapses/physiology , Animals , Cells, Cultured , Cerebral Cortex/physiology , Cerebral Cortex/ultrastructure , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Guanylate Kinases/genetics , Male , Membrane Proteins/genetics , Mice , Mutation, Missense , Primary Cell Culture , Synapses/ultrastructure , Synaptic Transmission/genetics , Synaptic Transmission/physiology , beta Catenin/metabolism
12.
J Low Genit Tract Dis ; 19(2): e38-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25062403

ABSTRACT

OBJECTIVE: Primary vulvar sarcomas are rare lesions of the lower genital tract. We report the case of a patient with a spindle cell sarcoma of the vulva. MATERIALS AND METHODS: A 44-year-old woman presented with a painless vulvar mass. Vulvar biopsy demonstrated a spindle cell sarcoma with myofibroblastic differentiation. RESULTS: Pretreatment evaluation revealed no evidence of metastatic disease, and magnetic resonance imaging found no local masses. The patient underwent right radical vulvectomy with negative margins and tolerated the procedure well. CONCLUSIONS: Women undergoing gynecologic care should have routine evaluation of the vulva to detect these rare neoplasms.


Subject(s)
Neoplasms, Muscle Tissue/diagnosis , Neoplasms, Muscle Tissue/pathology , Sarcoma/diagnosis , Sarcoma/pathology , Vulva/pathology , Vulvar Neoplasms/diagnosis , Vulvar Neoplasms/pathology , Adult , Biopsy , Calmodulin-Binding Proteins/analysis , Cell Differentiation , Female , Histocytochemistry , Humans , Immunohistochemistry , Microscopy , Neoplasms, Muscle Tissue/surgery , Vulva/surgery , Vulvar Neoplasms/surgery
13.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Article in English | MEDLINE | ID: mdl-38631765

ABSTRACT

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Subject(s)
Pick Disease of the Brain , Tauopathies , Female , Humans , Male , Genetic Association Studies , Haplotypes , Pick Disease of the Brain/genetics , tau Proteins/genetics
14.
ACS Chem Neurosci ; 14(20): 3794-3803, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37800883

ABSTRACT

Aggregation of amyloid ß (Aß) peptides into extracellular plaques is a hallmark of the molecular pathology of Alzheimer's disease (AD). Amyloid aggregates have been extensively studied in vitro, and it is well-known that mature amyloid fibrils contain an ordered parallel ß structure. The structural evolution from unaggregated peptide to fibrils can be mediated through intermediate structures that deviate significantly from mature fibrils, such as antiparallel ß-sheets. However, it is currently unknown if these intermediate structures exist in plaques, which limits the translation of findings from in vitro structural characterizations of amyloid aggregates to AD. This arises from the inability to extend common structural biology techniques to ex vivo tissue measurements. Here we report the use of infrared (IR) imaging, wherein we can spatially localize plaques and probe their protein structural distributions with the molecular sensitivity of IR spectroscopy. Analyzing individual plaques in AD tissues, we demonstrate that fibrillar amyloid plaques exhibit antiparallel ß-sheet signatures, thus providing a direct connection between in vitro structures and amyloid aggregates in the AD brain. We further validate results with IR imaging of in vitro aggregates and show that the antiparallel ß-sheet structure is a distinct structural facet of amyloid fibrils.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Alzheimer Disease/diagnostic imaging , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins , Plaque, Amyloid , Protein Structure, Secondary , Spectrum Analysis
15.
bioRxiv ; 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37131832

ABSTRACT

Aggregation of amyloid beta (Aß) peptides into extracellular plaques is a hallmark of the molecular pathology of Alzheimer's disease (AD). Amyloid aggregates have been extensively studied in-vitro, and it is well known that mature amyloid fibrils contain an ordered parallel ß structure. The structural evolution from unaggregated peptide to fibrils can be mediated through intermediate structures that deviate significantly from mature fibrils, such as antiparallel ß-sheets. However, it is currently unknown if these intermediate structures exist in plaques, which limits the translation of findings from in-vitro structural characterizations of amyloid aggregates to AD. This arises from the inability to extend common structural biology techniques to ex-vivo tissue measurements. Here we report the use of infrared (IR) imaging, wherein we can spatially localize plaques and probe their protein structural distributions with the molecular sensitivity of IR spectroscopy. Analyzing individual plaques in AD tissues, we demonstrate that fibrillar amyloid plaques exhibit antiparallel ß-sheet signatures, thus providing a direct connection between in-vitro structures and amyloid aggregates in AD brain. We further validate results with IR imaging of in-vitro aggregates and show that antiparallel ß-sheet structure is a distinct structural facet of amyloid fibrils.

16.
Front Mol Neurosci ; 16: 1288930, 2023.
Article in English | MEDLINE | ID: mdl-38260807

ABSTRACT

Alzheimer's disease (AD) is characterized by a long preclinical phase. Although late-stage AD/dementia may be robustly differentiated from cognitively normal individuals by means of a clinical evaluation, PET imaging, and established biofluid biomarkers, disease differentiation between cognitively normal and various subtypes of mild cognitive impairment (MCI) remains a challenging task. Differential biomarkers for early-stage AD diagnosis with accessible biofluid samples are urgently needed. Misfolded phosphorylated tau aggregates (p-tau) are present in multiple neurodegenerative diseases known as "tauopathies", with the most common being AD. P-tau181 is a well-established p-tau biomarker to differentiate AD dementia from non-AD pathology. However, it is unclear if p-tau181 is capable of diagnosing MCI, an early AD stage, from cognitively normal subjects, or if it can discriminate MCI subtypes amnestic MCI (aMCI) from non-amnestic MCI (naMCI). Here we evaluated the capability of p-tau181 in diagnosing MCI from cognitively normal subjects and discriminating aMCI from naMCI subtypes. We collected matching plasma and CSF samples of a clinically diagnosed cohort of 35 cognitively normal, 34 aMCI, 17 naMCI, and 31 AD dementia cases (total 117 participants) with supplemental CSF Aß42 and total tau AD biomarker levels and performed Simoa p-tau181 assays. The diagnostic capabilities of Simoa p-tau181 assays to differentiate these cohorts were evaluated. We found (i) p-tau181 can robustly differentiate MCI or aMCI from cognitively normal cohorts with matching plasma and CSF samples, but such differentiation is weaker in diagnosing naMCI from cognitively normal groups, (ii) p-tau181 is not capable of differentiating aMCI from naMCI cohorts, and (iii) either factor of Aß or total tau burden markedly improved differentiation power to diagnose aMCI from cognitively normal group. Plasma and CSF p-tau181 levels may serve as a promising biomarker for diagnosing aMCI from normal controls in the preclinical phase. But more robust new biomarkers are needed to differentiate naMCI from cognitively normal cases or to discriminate between MCI subtypes, aMCI from naMCI.

17.
ACS Chem Neurosci ; 13(23): 3281-3290, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36350059

ABSTRACT

Tau aggregates are present in multiple neurodegenerative diseases known as "tauopathies," including Alzheimer's disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Such misfolded tau aggregates are therefore potential sources for tauopathy biomarker discovery. Using the tau antibody screening approach targeting high-molecular-weight misfolded tau aggregates, we tested several tau antibodies and a comprehensive set of site-specific phospho-tau (p-tau) antibodies targeting tau phosphorylation sites showing high frequencies in AD subjects. Our screens revealed that site-specific p-tau antibodies can not only differentiate AD from non-AD brains, but also discriminate AD from rare tauopathies PiD, PSP, and CBD brains. Differential detection of tau aggregates identified several novel p-tau sites as potential new biomarkers. As a proof-of-principle example, we showed that p-tau198 is a novel promising AD biomarker with sensitivity and specificity comparable with the existing biomarkers p-tau181 and p-tau217. Our results demonstrated that p-tau198 detection can not only differentiate AD from non-AD controls, but also diagnose AD from related 4R tauopathies PSP and CBD with AUCs of 0.96-0.99 (95% CI ranges from 0.90 to 1.00). Promisingly, p-tau198 was able to discriminate mild cognitive impairment from cognitively normal brains with an AUC of 0.75 (95% CI = 0.58-0.92). Our work provides a new avenue for developing diagnosis and differentiation tools for AD and related tauopathies.


Subject(s)
Alzheimer Disease , Biomedical Research , Humans , Alzheimer Disease/diagnosis
18.
Acta Neuropathol Commun ; 10(1): 27, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241183

ABSTRACT

Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder caused by mutations in the TSC1 and TSC2 genes and autosomal dominantly inherited. These mutations cause hyperactivation of the mammalian Target of Rapamycin (mTOR) pathway, leading to the development of nonmalignant masses involving various organ systems. Patients with TSC also experience neuropsychiatric symptoms collectively termed Tuberous Sclerosis Complex Associated Neuropsychiatric Disorder (TAND). Due to research advancements in TSC, patients now live well beyond the age of 50. Many experience objective impairment of memory and executive function, supported by formal neuropsychological testing, beginning in their late 40s. Biomarker analysis has described elevated levels of phosphorylated tau-181 in the cerebrospinal fluid of patients with TAND. Tau-PET imaging has also shown focal accumulation of the radiotracer flortaucipir (AV1451), suggesting that TSC may be a neurodegenerative disorder arising from accumulation of phosphorylated tau. However, the flortaucipir tracer has been reported to have significant off-target binding, preventing definitive conclusions from being drawn about the molecular etiology of neurodegeneration in TSC. Therefore, we initiated the Colocalization of AV1451 and Phosphorylated Tau in Adult brain tissue (CAPA) study. This study aimed to determine if flortaucipir is bound to phosphorylated tau in brains of patients with TSC and further sought to determine the specific tau isoform seen in TSC. Our results show that flortaucipir labels the 3R/4R isoform of phosphorylated tau, commonly seen in Alzheimer's disease. However, amyloid staining was negative in brains of adult patients with TSC. Therefore, we conclude that TAND symptoms are due to the accumulation of the phosphorylated tau isoform seen in Alzheimer's disease. This study suggests that hyperactivation of the mammalian Target of Rapamycin pathway may play a role in the amyloid-independent development of 3R/4R tau aggregation. Our findings could lead to a new era of anti-tau therapies used to treat both disorders.


Subject(s)
Alzheimer Disease , Amyloidosis , Tauopathies , Tuberous Sclerosis , Adult , Alzheimer Disease/pathology , Amyloidogenic Proteins , Humans , Protein Isoforms/metabolism , TOR Serine-Threonine Kinases/metabolism , Tauopathies/metabolism , Tuberous Sclerosis/complications , Tuberous Sclerosis/genetics , Tuberous Sclerosis/pathology
19.
Sci Adv ; 8(51): eadc9236, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542715

ABSTRACT

Aging causes functional decline and degeneration of neurons and is a major risk factor of neurodegenerative diseases. To investigate the molecular mechanisms underlying neuronal aging, we developed a new pipeline for neuronal proteomic profiling in young and aged animals. While the overall translational machinery is down-regulated, certain proteins increase expressions upon aging. Among these aging-up-regulated proteins, the conserved channel protein TMC-1/Tmc has an anti-aging function in all neurons tested, and the neuroprotective function of TMC-1 occurs by regulating GABA signaling. Moreover, our results show that metabotropic GABA receptors and G protein GOA-1/Goα are required for the anti-neuronal aging functions of TMC-1 and GABA, and the activation of GABA receptors prevents neuronal aging by inhibiting the PLCß-PKC pathway. Last, we show that the TMC-1-GABA-PKC signaling axis suppresses neuronal functional decline caused by a pathogenic form of human Tau protein. Together, our findings reveal the neuroprotective function of the TMC-1-GABA-PKC signaling axis in aging and disease conditions.


Subject(s)
Caenorhabditis elegans , Proteomics , Animals , Humans , Aged , Caenorhabditis elegans/metabolism , Receptors, GABA/metabolism , gamma-Aminobutyric Acid , Aging , Ion Channels/metabolism
20.
Acta Neuropathol Commun ; 10(1): 110, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941704

ABSTRACT

Corpora amylacea (CA) and their murine analogs, periodic acid Schiff (PAS) granules, are age-related, carbohydrate-rich structures that serve as waste repositories for aggregated proteins, damaged cellular organelles, and other cellular debris. The structure, morphology, and suspected functions of CA in the brain imply disease relevance. Despite this, the link between CA and age-related neurodegenerative diseases, particularly Alzheimer's disease (AD), remains poorly defined. We performed a neuropathological analysis of mouse PAS granules and human CA and correlated these findings with AD progression. Increased PAS granule density was observed in symptomatic tau transgenic mice and APOE knock-in mice. Using a cohort of postmortem AD brain samples, we examined CA in cognitively normal and dementia patients across Braak stages with varying APOE status. We identified a Braak-stage dependent bimodal distribution of CA in the dentate gyrus, with CA accumulating and peaking by Braak stages II-III, then steadily declining with increasing tau burden. Refined analysis revealed an association of CA levels with both cognition and APOE status. Finally, tau was detected in whole CA present in human patient cerebrospinal fluid, highlighting CA-tau as a plausible prodromal AD biomarker. Our study connects hallmarks of the aging brain with the emergence of AD pathology and suggests that CA may act as a compensatory factor that becomes depleted with advancing tau burden.


Subject(s)
Alzheimer Disease , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Apolipoproteins E/metabolism , Brain/pathology , Cognition , Humans , Mice , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL