Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Brief Bioinform ; 24(5)2023 09 20.
Article in English | MEDLINE | ID: mdl-37482409

ABSTRACT

Numerous biological studies have shown that considering disease-associated micro RNAs (miRNAs) as potential biomarkers or therapeutic targets offers new avenues for the diagnosis of complex diseases. Computational methods have gradually been introduced to reveal disease-related miRNAs. Considering that previous models have not fused sufficiently diverse similarities, that their inappropriate fusion methods may lead to poor quality of the comprehensive similarity network and that their results are often limited by insufficiently known associations, we propose a computational model called Generative Adversarial Matrix Completion Network based on Multi-source Data Fusion (GAMCNMDF) for miRNA-disease association prediction. We create a diverse network connecting miRNAs and diseases, which is then represented using a matrix. The main task of GAMCNMDF is to complete the matrix and obtain the predicted results. The main innovations of GAMCNMDF are reflected in two aspects: GAMCNMDF integrates diverse data sources and employs a nonlinear fusion approach to update the similarity networks of miRNAs and diseases. Also, some additional information is provided to GAMCNMDF in the form of a 'hint' so that GAMCNMDF can work successfully even when complete data are not available. Compared with other methods, the outcomes of 10-fold cross-validation on two distinct databases validate the superior performance of GAMCNMDF with statistically significant results. It is worth mentioning that we apply GAMCNMDF in the identification of underlying small molecule-related miRNAs, yielding outstanding performance results in this specific domain. In addition, two case studies about two important neoplasms show that GAMCNMDF is a promising prediction method.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , Algorithms , Computational Biology/methods , Neoplasms/genetics , Databases, Genetic , Genetic Predisposition to Disease
2.
Brief Bioinform ; 24(5)2023 09 20.
Article in English | MEDLINE | ID: mdl-37670501

ABSTRACT

Dysregulation of microRNAs (miRNAs) is closely associated with refractory human diseases, and the identification of potential associations between small molecule (SM) drugs and miRNAs can provide valuable insights for clinical treatment. Existing computational techniques for inferring potential associations suffer from limitations in terms of accuracy and efficiency. To address these challenges, we devise a novel predictive model called RPCA$\Gamma $NR, in which we propose a new Robust principal component analysis (PCA) framework based on $\gamma $-norm and $l_{2,1}$-norm regularization and design an Augmented Lagrange Multiplier method to optimize it, thereby deriving the association scores. The Gaussian Interaction Profile Kernel Similarity is calculated to capture the similarity information of SMs and miRNAs in known associations. Through extensive evaluation, including Cross Validation Experiments, Independent Validation Experiment, Efficiency Analysis, Ablation Experiment, Matrix Sparsity Analysis, and Case Studies, RPCA$\Gamma $NR outperforms state-of-the-art models concerning accuracy, efficiency and robustness. In conclusion, RPCA$\Gamma $NR can significantly streamline the process of determining SM-miRNA associations, thus contributing to advancements in drug development and disease treatment.


Subject(s)
Algorithms , MicroRNAs , Humans , Principal Component Analysis , Drug Development , MicroRNAs/genetics , Research Design
3.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37366591

ABSTRACT

MicroRNAs (miRNAs) have significant implications in diverse human diseases and have proven to be effectively targeted by small molecules (SMs) for therapeutic interventions. However, current SM-miRNA association prediction models do not adequately capture SM/miRNA similarity. Matrix completion is an effective method for association prediction, but existing models use nuclear norm instead of rank function, which has some drawbacks. Therefore, we proposed a new approach for predicting SM-miRNA associations by utilizing the truncated schatten p-norm (TSPN). First, the SM/miRNA similarity was preprocessed by incorporating the Gaussian interaction profile kernel similarity method. This identified more SM/miRNA similarities and significantly improved the SM-miRNA prediction accuracy. Next, we constructed a heterogeneous SM-miRNA network by combining biological information from three matrices and represented the network with its adjacency matrix. Finally, we constructed the prediction model by minimizing the truncated schatten p-norm of this adjacency matrix and we developed an efficient iterative algorithmic framework to solve the model. In this framework, we also used a weighted singular value shrinkage algorithm to avoid the problem of excessive singular value shrinkage. The truncated schatten p-norm approximates the rank function more closely than the nuclear norm, so the predictions are more accurate. We performed four different cross-validation experiments on two separate datasets, and TSPN outperformed various most advanced methods. In addition, public literature confirms a large number of predictive associations of TSPN in four case studies. Therefore, TSPN is a reliable model for SM-miRNA association prediction.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Algorithms , Computational Biology/methods
4.
Nucleic Acids Res ; 50(16): 9072-9082, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35979954

ABSTRACT

The static and dynamic structures of DNA duplexes affected by 5S-Tg (Tg, Thymine glycol) epimers were studied using MD simulations and Markov State Models (MSMs) analysis. The results show that the 5S,6S-Tg base caused little perturbation to the helix, and the base-flipping barrier was determined to be 4.4 kcal mol-1 through the use of enhanced sampling meta-eABF calculations, comparable to 5.4 kcal mol-1 of the corresponding thymine flipping. Two conformations with the different hydrogen bond structures between 5S,6R-Tg and A19 were identified in several independent MD trajectories. The 5S,6R-Tg:O6HO6•••N1:A19 hydrogen bond is present in the high-energy conformation displaying a clear helical distortion, and near barrier-free Tg base flipping. The low-energy conformation always maintains Watson-Crick base pairing between 5S,6R-Tg and A19, and 5S-Tg base flipping is accompanied by a small barrier of ca. 2.0 KBT (T = 298 K). The same conformations are observed in the MSMs analysis. Moreover, the transition path and metastable structures of the damaged base flipping are for the first time verified through MSMs analysis. The data clearly show that the epimers have completely different influence on the stability of the DNA duplex, thus implying different enzymatic mechanisms for DNA repair.


Subject(s)
DNA Repair , DNA , Base Pairing , DNA/chemistry , DNA Damage , Hydrogen Bonding , Nucleic Acid Conformation , Thermodynamics
5.
BMC Bioinformatics ; 24(1): 278, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415176

ABSTRACT

MOTIVATION: Accurate identification of Drug-Target Interactions (DTIs) plays a crucial role in many stages of drug development and drug repurposing. (i) Traditional methods do not consider the use of multi-source data and do not consider the complex relationship between data sources. (ii) How to better mine the hidden features of drug and target space from high-dimensional data, and better solve the accuracy and robustness of the model. RESULTS: To solve the above problems, a novel prediction model named VGAEDTI is proposed in this paper. We constructed a heterogeneous network with multiple sources of information using multiple types of drug and target dataIn order to obtain deeper features of drugs and targets, we use two different autoencoders. One is variational graph autoencoder (VGAE) which is used to infer feature representations from drug and target spaces. The second is graph autoencoder (GAE) propagating labels between known DTIs. Experimental results on two public datasets show that the prediction accuracy of VGAEDTI is better than that of six DTIs prediction methods. These results indicate that model can predict new DTIs and provide an effective tool for accelerating drug development and repurposing.


Subject(s)
Drug Development , Drug Repositioning , Drug Interactions
6.
Bioorg Med Chem ; 80: 117158, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36706608

ABSTRACT

Deregulation of cyclin-dependent kinase 2 (CDK2) and its activating partners, cyclins A and E, is associated with the pathogenesis of a myriad of human cancers and with resistance to anticancer drugs including CDK4/6 inhibitors. Thus, CDK2 has become an attractive target for the development of new anticancer therapies and for the amelioration of the resistance to CDK4/6 inhibitors. Bioisosteric replacement of the thiazole moiety of CDKI-73, a clinically trialled CDK inhibitor, by a pyrazole group afforded 9 and 19 that displayed potent CDK2-cyclin E inhibition (Ki = 0.023 and 0.001 µM, respectively) with submicromolar antiproliferative activity against a panel of cancer cell lines (GI50 = 0.025-0.780 µM). Mechanistic studies on 19 with HCT-116 colorectal cancer cells revealed that the compound reduced the phosphorylation of retinoblastoma at Ser807/811, arrested the cells at the G2/M phase, and induced apoptosis. These results highlight the potential of the 2-anilino-4-(1-methyl-1H-pyrazol-4-yl)pyrimidine series in developing potent and selective CDK2 inhibitors to combat cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinases/metabolism , Antineoplastic Agents/pharmacology , Pyrimidines/pharmacology , Pyrazoles/pharmacology
7.
Methods ; 204: 269-277, 2022 08.
Article in English | MEDLINE | ID: mdl-35219861

ABSTRACT

Predicting drug-target interactions (DTIs) is essential for both drug discovery and drug repositioning. Recently, deep learning methods have achieved relatively significant performance in predicting DTIs. Generally, it needs a large amount of approved data of DTIs to train the model, which is actually tedious to obtain. In this work, we propose DeepFusion, a deep learning based multi-scale feature fusion method for predicting DTIs. To be specific, we generate global structural similarity feature based on similarity theory, convolutional neural network and generate local chemical sub-structure semantic feature using transformer network respectively for both drug and protein. Data experiments are conducted on four sub-datasets of BIOSNAP, which are 100%, 70%, 50% and 30% of BIOSNAP dataset. Particularly, using 70% sub-dataset, DeepFusion achieves ROC-AUC and PR-AUC by 0.877 and 0.888, which is close to the performance of some baseline methods trained by the whole dataset. In case study, DeepFusion achieves promising prediction results on predicting potential DTIs in case study.


Subject(s)
Deep Learning , Drug Discovery/methods , Drug Repositioning , Neural Networks, Computer , Proteins/chemistry
8.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176031

ABSTRACT

The accurate prediction of drug-target binding affinity (DTA) is an essential step in drug discovery and drug repositioning. Although deep learning methods have been widely adopted for DTA prediction, the complexity of extracting drug and target protein features hampers the accuracy of these predictions. In this study, we propose a novel model for DTA prediction named MSGNN-DTA, which leverages a fused multi-scale topological feature approach based on graph neural networks (GNNs). To address the challenge of accurately extracting drug and target protein features, we introduce a gated skip-connection mechanism during the feature learning process to fuse multi-scale topological features, resulting in information-rich representations of drugs and proteins. Our approach constructs drug atom graphs, motif graphs, and weighted protein graphs to fully extract topological information and provide a comprehensive understanding of underlying molecular interactions from multiple perspectives. Experimental results on two benchmark datasets demonstrate that MSGNN-DTA outperforms the state-of-the-art models in all evaluation metrics, showcasing the effectiveness of the proposed approach. Moreover, the study conducts a case study based on already FDA-approved drugs in the DrugBank dataset to highlight the potential of the MSGNN-DTA framework in identifying drug candidates for specific targets, which could accelerate the process of virtual screening and drug repositioning.


Subject(s)
Drug Discovery , Drug Repositioning , Benchmarking , Drug Delivery Systems , Neural Networks, Computer
9.
Molecules ; 28(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37049714

ABSTRACT

Cyclin-dependent kinase 2 (CDK2) has been garnering considerable interest as a target to develop new cancer treatments and to ameliorate resistance to CDK4/6 inhibitors. However, a selective CDK2 inhibitor has yet to be clinically approved. With the desire to discover novel, potent, and selective CDK2 inhibitors, the phenylsulfonamide moiety of our previous lead compound 1 was bioisosterically replaced with pyrazole derivatives, affording a novel series of N,4-di(1H-pyrazol-4-yl)pyrimidin-2-amines that exhibited potent CDK2 inhibitory activity. Among them, 15 was the most potent CDK2 inhibitor (Ki = 0.005 µM) with a degree of selectivity over other CDKs tested. Meanwhile, this compound displayed sub-micromolar antiproliferative activity against a panel of 13 cancer cell lines (GI50 = 0.127-0.560 µM). Mechanistic studies in ovarian cancer cells revealed that 15 reduced the phosphorylation of retinoblastoma at Thr821, arrested cells at the S and G2/M phases, and induced apoptosis. These results accentuate the potential of the N,4-di(1H-pyrazol-4-yl)pyrimidin-2-amine scaffold to be developed into potent and selective CDK2 inhibitors for the treatment of cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Cyclin-Dependent Kinase 2 , Structure-Activity Relationship , Amines/pharmacology , Antineoplastic Agents/pharmacology , Pyrazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Cell Proliferation , Molecular Structure
10.
BMC Bioinformatics ; 23(1): 322, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35931949

ABSTRACT

Rupture of intracranial aneurysm is the first cause of subarachnoid hemorrhage, second only to cerebral thrombosis and hypertensive cerebral hemorrhage, and the mortality rate is very high. MRI technology plays an irreplaceable role in the early detection and diagnosis of intracranial aneurysms and supports evaluating the size and structure of aneurysms. The increase in many aneurysm images, may be a massive workload for the doctors, which is likely to produce a wrong diagnosis. Therefore, we proposed a simple and effective comprehensive residual attention network (CRANet) to improve the accuracy of aneurysm detection, using a residual network to extract the features of an aneurysm. Many experiments have shown that the proposed CRANet model could detect aneurysms effectively. In addition, on the test set, the accuracy and recall rates reached 97.81% and 94%, which significantly improved the detection rate of aneurysms.


Subject(s)
Intracranial Aneurysm , Subarachnoid Hemorrhage , Humans , Intracranial Aneurysm/complications , Intracranial Aneurysm/diagnostic imaging , Subarachnoid Hemorrhage/etiology
11.
Pharmacol Res ; 180: 106249, 2022 06.
Article in English | MEDLINE | ID: mdl-35533805

ABSTRACT

Cyclin-dependent kinase 3 (CDK3) is a major player driving retinoblastoma (Rb) phosphorylation during the G0/G1 transition and in the early G1 phase of the cell cycle, preceding the effects of CDK4/cyclin D, CDK6/cyclin D, and CDK2/cyclin E. CDK3 can also directly regulate the activity of E2 factor (E2F) by skipping the role of Rb in late G1, potentially via the phosphorylation of the E2F1 partner DP1. Beyond the cell cycle, CDK3 interacts with various transcription factors involved in cell proliferation, differentiation, and transformation driven by the epidermal growth factor receptor (EGFR)/rat sarcoma virus (Ras) signaling pathway. The expression of CDK3 is extremely low in normal human tissue but upregulated in many cancers, implying a profound role in oncogenesis. Further evaluation of this role has been hampered by the lack of selective pharmacological inhibitors. Herein, we provide a comprehensive overview about the therapeutic potential of targeting CDK3 in cancer.


Subject(s)
Neoplasms , Animals , Cell Cycle , Cyclin D/metabolism , Cyclin-Dependent Kinase 3/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Phosphorylation
12.
Br J Clin Pharmacol ; 88(1): 64-74, 2022 01.
Article in English | MEDLINE | ID: mdl-34192364

ABSTRACT

Repurposing the large arsenal of existing non-cancer drugs is an attractive proposition to expand the clinical pipelines for cancer therapeutics. The earlier successes in repurposing resulted primarily from serendipitous findings, but more recently, drug or target-centric systematic identification of repurposing opportunities continues to rise. Kinases are one of the most sought-after anti-cancer drug targets over the last three decades. There are many non-cancer approved drugs that can inhibit kinases as "off-targets" as well as many existing kinase inhibitors that can target new additional kinases in cancer. Identifying cancer-associated kinase inhibitors through mining commercial drug databases or new kinase targets for existing inhibitors through comprehensive kinome profiling can offer more effective trial-ready options to rapidly advance drugs for clinical validation. In this review, we argue that drug repurposing is an important approach in modern drug development for cancer therapeutics. We have summarized the advantages of repurposing, the rationale behind this approach together with key barriers and opportunities in cancer drug development. We have also included examples of non-cancer drugs that inhibit kinases or are associated with kinase signalling as a basis for their anti-cancer action.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Databases, Pharmaceutical , Drug Repositioning/methods , Humans , Neoplasms/drug therapy
13.
Cell Mol Life Sci ; 78(7): 3105-3125, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33438055

ABSTRACT

Doxorubicin (DOX) is an anthracycline chemotherapy drug used in the treatment of various types of cancer. However, short-term and long-term cardiotoxicity limits the clinical application of DOX. Currently, dexrazoxane is the only approved treatment by the United States Food and Drug Administration to prevent DOX-induced cardiotoxicity. However, a recent study found that pre-treatment with dexrazoxane could not fully improve myocardial toxicity of DOX. Therefore, further targeted cardioprotective prophylaxis and treatment strategies are an urgent requirement for cancer patients receiving DOX treatment to reduce the occurrence of cardiotoxicity. Accumulating evidence manifested that Sirtuin 1 (SIRT1) could play a crucially protective role in heart diseases. Recently, numerous studies have concentrated on the role of SIRT1 in DOX-induced cardiotoxicity, which might be related to the activity and deacetylation of SIRT1 downstream targets. Therefore, the aim of this review was to summarize the recent advances related to the protective effects, mechanisms, and deficiencies in clinical application of SIRT1 in DOX-induced cardiotoxicity. Also, the pharmaceutical preparations that activate SIRT1 and affect DOX-induced cardiotoxicity have been listed in this review.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Cardiotoxicity/prevention & control , Doxorubicin/adverse effects , Sirtuin 1/therapeutic use , Animals , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Humans , Signal Transduction
14.
Int J Mol Sci ; 23(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35409140

ABSTRACT

Identifying compound-protein (drug-target, DTI) interactions (CPI) accurately is a key step in drug discovery. Including virtual screening and drug reuse, it can significantly reduce the time it takes to identify drug candidates and provide patients with timely and effective treatment. Recently, more and more researchers have developed CPI's deep learning model, including feature representation of a 2D molecular graph of a compound using a graph convolutional neural network, but this method loses much important information about the compound. In this paper, we propose a novel three-channel deep learning framework, named SSGraphCPI, for CPI prediction, which is composed of recurrent neural networks with an attentional mechanism and graph convolutional neural network. In our model, the characteristics of compounds are extracted from 1D SMILES string and 2D molecular graph. Using both the 1D SMILES string sequence and the 2D molecular graph can provide both sequential and structural features for CPI predictions. Additionally, we select the 1D CNN module to learn the hidden data patterns in the sequence to mine deeper information. Our model is much more suitable for collecting more effective information of compounds. Experimental results show that our method achieves significant performances with RMSE (Root Mean Square Error) = 2.24 and R2 (degree of linear fitting of the model) = 0.039 on the GPCR (G Protein-Coupled Receptors) dataset, and with RMSE = 2.64 and R2 = 0.018 on the GPCR dataset RMSE, which preforms better than some classical deep learning models, including RNN/GCNN-CNN, GCNNet and GATNet.


Subject(s)
Deep Learning , Drug Delivery Systems , Drug Discovery , Humans , Neural Networks, Computer , Proteins/chemistry
15.
J Cell Mol Med ; 25(1): 323-332, 2021 01.
Article in English | MEDLINE | ID: mdl-33244875

ABSTRACT

Diabetic cardiomyopathy-pathophysiological heart remodelling and dysfunction that occurs in absence of coronary artery disease, hypertension and/or valvular heart disease-is a common diabetic complication. Elabela, a new peptide that acts via Apelin receptor, has similar functions as Apelin, providing beneficial effects on body fluid homeostasis, cardiovascular health and renal insufficiency, as well as potentially beneficial effects on metabolism and diabetes. In this study, Elabela treatment was found to have profound protective effects against diabetes-induced cardiac oxidative stress, inflammation, fibrosis and apoptosis; these protective effects may depend heavily upon SIRT3-mediated Foxo3a deacetylation. Our findings provide evidence that Elabela has cardioprotective effects for the first time in the diabetic model.


Subject(s)
Diabetic Cardiomyopathies/metabolism , Forkhead Box Protein O3/metabolism , Oxidative Stress/physiology , Peptide Hormones/metabolism , Sirtuin 3/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , Diabetic Cardiomyopathies/genetics , Forkhead Box Protein O3/genetics , Immunoprecipitation , In Situ Nick-End Labeling , Mice , Mice, Inbred C57BL , Oxidative Stress/genetics , Peptide Hormones/genetics , Real-Time Polymerase Chain Reaction , Sirtuin 3/genetics
16.
J Cell Mol Med ; 25(9): 4408-4419, 2021 05.
Article in English | MEDLINE | ID: mdl-33793066

ABSTRACT

Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of cellular antioxidant defence. We previously showed that SFN prevented Ang II-induced cardiac damage via activation of Nrf2. However, the underlying mechanism of SFN's persistent cardiac protection remains unclear. This study aimed to explore the potential of SFN in activating cardiac Nrf2 through epigenetic mechanisms. Wild-type mice were injected subcutaneously with Ang II, with or without SFN. Administration of chronic Ang II-induced cardiac inflammatory factor expression, oxidative damage, fibrosis and cardiac remodelling and dysfunction, all of which were effectively improved by SFN treatment, coupled with an up-regulation of Nrf2 and downstream genes. Bisulfite genome sequencing and chromatin immunoprecipitation (ChIP) were performed to detect the methylation level of the first 15 CpGs and histone H3 acetylation (Ac-H3) status in the Nrf2 promoter region, respectively. The results showed that SFN reduced Ang II-induced CpG hypermethylation and promoted Ac-H3 accumulation in the Nrf2 promoter region, accompanied by the inhibition of global DNMT and HDAC activity, and a decreased protein expression of key DNMT and HDAC enzymes. Taken together, SFN exerts its cardioprotective effect through epigenetic modification of Nrf2, which may partially contribute to long-term activation of cardiac Nrf2.


Subject(s)
Angiotensin II/toxicity , Cardiomyopathies/prevention & control , Epigenesis, Genetic , Gene Expression Regulation/drug effects , Isothiocyanates/pharmacology , NF-E2-Related Factor 2/metabolism , Sulfoxides/pharmacology , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , Oxidative Stress , Vasoconstrictor Agents/toxicity
17.
Anal Chem ; 93(44): 14716-14721, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34702029

ABSTRACT

SQLE (squalene epoxidase) is a cell membrane-bound enzyme. It is a target of fungicides and may become a new target for cancer therapy. Therefore, monitoring the content and distribution of the key enzyme in living cells is very challenging. To achieve this goal, tetraphenyl ethylene-Ter (TPE-Ter) was first designed as a new fluorescent probe to SQLE based on its active cavity. Spectral experiments discovered that SQLE/TPE-Ter shows stronger emission with fast response time and low interference from other analytes. Molecular dynamics simulation clearly confirmed the complex structure of SQLE/TPE-Ter, and the key residues contribute to restriction of TPE-Ter single-molecular motion in the cavity. TPE-Ter-specific response to SQLE is successfully demonstrated in living cells such as LO2, HepG2, and fungi. Imaging of TPE-Ter-treated fungi indicates that it can be used to rapidly assess antifungal drug susceptibility (30 min at least). The present work provides a powerful tool to detect content and distribution of SQLE in living cells.


Subject(s)
Fluorescent Dyes , Squalene Monooxygenase , Antifungal Agents , Cell Line, Tumor
18.
Langmuir ; 37(4): 1410-1419, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33486953

ABSTRACT

Manganese oxides with varied Mn valance states but identical morphologies were synthesized via a facile thermal treatment of γ-MnOOH. Also, their catalytic performance on ozone decomposition was investigated following the order of Mn3O4 < Mn2O3 < MnO2 < MnO2-H-200. In combination with X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), H2-temperature-programmed reduction (TPR), O2-temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS) characterization, it was deduced that the superior O3 decomposition capacity for MnO2-H-200 was strongly associated with abundant oxygen vacancies on its surface. Among Mn3O4, Mn2O3, and MnO2, the difference in O3 decomposition efficiency was dependent on the divergent nature of oxygen vacancy. Density functional theory (DFT) calculation revealed that Mn3O4 and MnO2 possessed lower formation energy of oxygen vacancy, while MnO2 had the minimum desorption energy of peroxide species (O2*). It was deduced that the promotion of the O3 decomposition capability was attributed to the easier O2* desorption. Insights into the deactivation mechanism for MnO2-H-200 further validated the assumptions. As the reaction proceeded, adsorbed oxygen species accumulated on the catalyst surface, and a portion of them were transformed to lattice oxygen. The consumption of oxygen vacancy led to the deactivation of the catalyst.

19.
Pharmacol Res ; 164: 105331, 2021 02.
Article in English | MEDLINE | ID: mdl-33285232

ABSTRACT

Sestrin2 (Sesn2) is a powerful anti-oxidant that can prevent acute and chronic diseases. The role of Sesn2 has been thoroughly reviewed in liver, nervous system, and immune system diseases. However, there is a limited number of reviews that have summarized the effects of Sesn2 in heart and vascular diseases, and very less literature-based information is available on involvement of Sesn2 in renal and respiratory pathologies. This review summarizes the latest research on Sesn2 in multi-organ stress responses, with a particular focus on the protective role of Sesn2 in cardiovascular, respiratory, and renal diseases, emphasizing the potential therapeutic benefit of targeting Sesn2 in stress-related diseases.


Subject(s)
Nuclear Proteins/metabolism , Animals , Heart Diseases/metabolism , Humans , Kidney Diseases/metabolism , Respiratory Tract Diseases/metabolism , Stress, Physiological , Vascular Diseases/metabolism
20.
J Enzyme Inhib Med Chem ; 36(1): 1563-1572, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34281464

ABSTRACT

A series of tertiary sulphonamide derivatives were synthesised and evaluated for their antiproliferative activity against liver cancer cell lines (SNU-475, HepG-2, and Bel-7402). Among these tertiary sulphonamides, compound 17a displayed the best anti-liver cancer activity against Bel-7402 cells with an IC50 value of 0.32 µM. Compound 17a could effectively inhibit tubulin polymerisation with an IC50 value of 1.27 µM. Meanwhile, it selectively suppressed LSD1 with an IC50 value of 63 nM. It also concentration-dependently inhibited migration against Bel-7402 cells. Importantly, tertiary sulphonamide 17a exhibited the potent antitumor activity in vivo. All these findings revealed that compound 17a might be a tertiary sulphonamide-based dual inhibitor of tubulin polymerisation and LSD1 to treat liver cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Liver Neoplasms/drug therapy , Small Molecule Libraries/pharmacology , Sulfonamides/pharmacology , Tubulin Modulators/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Histone Demethylases/metabolism , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Molecular Structure , Polymerization/drug effects , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL