Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Cell Proteomics ; 18(5): 968-981, 2019 05.
Article in English | MEDLINE | ID: mdl-30705125

ABSTRACT

Proteolysis is an integral component of life and has been implicated in many disease processes. To improve our understanding of peptidase function, it is imperative to develop tools to uncover substrate specificity and cleavage efficiency. Here, we combine the quantitative power of tandem mass tags (TMTs) with an established peptide cleavage assay to yield quantitative Multiplex Substrate Profiling by Mass Spectrometry (qMSP-MS). This assay was validated with papain, a well-characterized cysteine peptidase, to generate cleavage efficiency values for hydrolysis of 275 unique peptide bonds in parallel. To demonstrate the breath of this assay, we show that qMSP-MS can uncover the substrate specificity of minimally characterized intramembrane rhomboid peptidases, as well as define hundreds of proteolytic activities in complex biological samples, including secretions from lung cancer cell lines. Importantly, our qMSP-MS library uses synthetic peptides whose termini are unmodified, allowing us to characterize not only endo- but also exo-peptidase activity. Each cleaved peptide sequence can be ranked by turnover rate, and the amino acid sequence of the best substrates can be used for designing fluorescent reporter substrates. Discovery of peptide substrates that are selectively cleaved by peptidases which are active at the site of disease highlights the potential for qMSP-MS to guide the development of peptidase-activating drugs for cancer and infectious disease.


Subject(s)
Mass Spectrometry/methods , Peptide Hydrolases/metabolism , Aspergillus/metabolism , Cell Line, Tumor , Fluorescence , Humans , Lung Neoplasms/metabolism , Papain/metabolism , Proteolysis , Reproducibility of Results , Substrate Specificity
2.
Article in English | MEDLINE | ID: mdl-31451503

ABSTRACT

Trichomoniasis is a sexually transmitted disease with hundreds of millions of annual cases worldwide. Approved treatment options are limited to two related nitro-heterocyclic compounds, yet resistance to these drugs is an increasing concern. New antimicrobials against the causative agent, Trichomonas vaginalis, are urgently needed. We show here that clinically approved anticancer drugs that inhibit the proteasome, a large protease complex with a critical role in degrading intracellular proteins in eukaryotes, have submicromolar activity against the parasite in vitro and on-target activity against the enriched T. vaginalis proteasome in cell-free assays. Proteomic analysis confirmed that the parasite has all seven α and seven ß subunits of the eukaryotic proteasome although they have only modest sequence identities, ranging from 28 to 52%, relative to the respective human proteasome subunits. A screen of proteasome inhibitors derived from a marine natural product, carmaphycin, revealed one derivative, carmaphycin-17, with greater activity against T. vaginalis than the reference drug metronidazole, the ability to overcome metronidazole resistance, and reduced human cytotoxicity compared to that of the anticancer proteasome inhibitors. The increased selectivity of carmaphycin-17 for T. vaginalis was related to its >5-fold greater potency against the ß1 and ß5 catalytic subunits of the T. vaginalis proteasome than against the human proteasome subunits. In a murine model of vaginal trichomonad infection, proteasome inhibitors eliminated or significantly reduced parasite burden upon topical treatment without any apparent adverse effects. Together, these findings validate the proteasome of T. vaginalis as a therapeutic target for development of a novel class of trichomonacidal agents.


Subject(s)
Antitrichomonal Agents/pharmacology , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/genetics , Trichomonas Vaginitis/drug therapy , Trichomonas vaginalis/drug effects , Trichomonas vaginalis/genetics , Amino Acid Sequence , Animals , Anti-Infective Agents/pharmacology , Cytoplasm/parasitology , Drug Resistance/drug effects , Female , Humans , Mice , Mice, Inbred BALB C , Parasitic Sensitivity Tests/methods , Proteomics/methods , Sexually Transmitted Diseases/drug therapy , Sexually Transmitted Diseases/parasitology , Trichomonas Infections/drug therapy , Trichomonas Infections/parasitology , Trichomonas Vaginitis/parasitology
3.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405969

ABSTRACT

Schistosomiasis, or bilharzia, is a neglected tropical disease caused by Schistosoma spp. blood flukes that infects over 200 million people worldwide. Just one partially effective drug is available, and new drugs and drug targets would be welcome. The 20S proteasome is a validated drug target for many parasitic infections, including those caused by Plasmodium and Leishmania. We previously showed that anticancer proteasome inhibitors that act through the Schistosoma mansoni 20S proteasome (Sm20S) kill the parasite in vitro. To advance these initial findings, we employed Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS) to define the substrate cleavage specificities of the three catalytic ß subunits of purified Sm20S. The profiles in turn were used to design and synthesize subunit-specific optimized substrates that performed two to eight fold better than the equivalent substrates used to measure the activity of the constitutive human proteasome (c20S). These specific substrates also eliminated the need to purify Sm20S from parasite extracts - a single step enrichment was sufficient to accurately measure substrate hydrolysis and its inhibition with proteasome inhibitors. Finally, we show that the substrate and inhibition profiles for the 20S proteasome from the three medically important schistosome species are similar, suggesting that data arising from an inhibitor development campaign that focuses on Sm20S can be extrapolated to the other two targets with consequent time and cost savings.

4.
Biochim Biophys Acta Biomembr ; 1862(9): 183277, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32205149

ABSTRACT

The Major Facilitator Superfamily (MFS) is currently the largest characterized superfamily of transmembrane secondary transport proteins. Its diverse members are found in essentially all organisms in the biosphere and function by uniport, symport, and/or antiport mechanisms. In 1993 we first named and described the MFS which then consisted of 5 previously known families that had not been known to be related, and by 2012 we had identified a total of 74 families, classified phylogenetically within the MFS, all of which included only transport proteins. This superfamily has since expanded to 89 families, all included under TC# 2.A.1, and a few transporter families outside of TC# 2.A.1 were identified as members of the MFS. In this study, we assign nine previously unclassified protein families in the Transporter Classification Database (TCDB; http://www.tcdb.org) to the MFS based on multiple criteria and bioinformatic methodologies. In addition, we find integral membrane domains distantly related to partial or full-length MFS permeases in Lysyl tRNA Synthases (TC# 9.B.111), Lysylphosphatidyl Glycerol Synthases (TC# 4.H.1), and cytochrome b561 transmembrane electron carriers (TC# 5.B.2). Sequence alignments, overlap of hydropathy plots, compatibility of repeat units, similarity of complexity profiles of transmembrane segments, shared protein domains and 3D structural similarities between transport proteins were analyzed to assist in inferring homology. The MFS now includes 105 families.


Subject(s)
Membrane Proteins/genetics , Multigene Family/genetics , Protein Transport/genetics , Amino Acid Sequence/genetics , Animals , Bacterial Toxins/genetics , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Computational Biology , Cytochrome b Group/genetics , Humans , Lysine-tRNA Ligase/genetics , Membrane Proteins/classification , Molecular Conformation , Phylogeny , Sequence Alignment/methods
5.
PLoS Negl Trop Dis ; 14(3): e0008150, 2020 03.
Article in English | MEDLINE | ID: mdl-32196500

ABSTRACT

Parasitic infections are a major source of human suffering, mortality, and economic loss, but drug development for these diseases has been stymied by the significant expense involved in bringing a drug though clinical trials and to market. Identification of single compounds active against multiple parasitic pathogens could improve the economic incentives for drug development as well as simplifying treatment regimens. We recently performed a screen of repurposed compounds against the protozoan parasite Entamoeba histolytica, causative agent of amebic dysentery, and identified four compounds (anisomycin, prodigiosin, obatoclax and nithiamide) with low micromolar potency and drug-like properties. Here, we extend our investigation of these drugs. We assayed the speed of killing of E. histolytica trophozoites and found that all four have more rapid action than the current drug of choice, metronidazole. We further established a multi-institute collaboration to determine whether these compounds may have efficacy against other parasites and opportunistic pathogens. We found that anisomycin, prodigiosin and obatoclax all have broad-spectrum antiparasitic activity in vitro, including activity against schistosomes, T. brucei, and apicomplexan parasites. In several cases, the drugs were found to have significant improvements over existing drugs. For instance, both obatoclax and prodigiosin were more efficacious at inhibiting the juvenile form of Schistosoma than the current standard of care, praziquantel. Additionally, low micromolar potencies were observed against pathogenic free-living amebae (Naegleria fowleri, Balamuthia mandrillaris and Acanthamoeba castellanii), which cause CNS infection and for which there are currently no reliable treatments. These results, combined with the previous human use of three of these drugs (obatoclax, anisomycin and nithiamide), support the idea that these compounds could serve as the basis for the development of broad-spectrum anti-parasitic drugs.


Subject(s)
Anisomycin/pharmacology , Antiparasitic Agents/pharmacology , Drug Repositioning , Parasites/drug effects , Prodigiosin/pharmacology , Pyrroles/pharmacology , Animals , Anisomycin/adverse effects , Anisomycin/pharmacokinetics , Antiparasitic Agents/adverse effects , Antiparasitic Agents/pharmacokinetics , Cell Line , Cell Survival , Fibroblasts/drug effects , Humans , Indoles , Mice , Parasitic Sensitivity Tests , Prodigiosin/adverse effects , Prodigiosin/pharmacokinetics , Pyrroles/adverse effects , Pyrroles/pharmacokinetics , Rats
6.
Food Chem ; 302: 125290, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31404873

ABSTRACT

In our daily lives, we consume foods that have been transported, stored, prepared, cooked, or otherwise processed by ourselves or others. Food storage and preparation have drastic effects on the chemical composition of foods. Untargeted mass spectrometry analysis of food samples has the potential to increase our chemical understanding of these processes by detecting a broad spectrum of chemicals. We performed a time-based analysis of the chemical changes in foods during common preparations, such as fermentation, brewing, and ripening, using untargeted mass spectrometry and molecular networking. The data analysis workflow presented implements an approach to study changes in food chemistry that can reveal global alterations in chemical profiles, identify changes in abundance, as well as identify specific chemicals and their transformation products. The data generated in this study are publicly available, enabling the replication and re-analysis of these data in isolation, and serve as a baseline dataset for future investigations.


Subject(s)
Beverages/analysis , Food Analysis , Food Handling , Mass Spectrometry , Metabolomics , Fermentation , Workflow
7.
ACS Infect Dis ; 5(10): 1802-1812, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31355632

ABSTRACT

Proteases are fundamental to successful parasitism, including that of the schistosome flatworm parasite, which causes the disease schistosomiasis in 200 million people worldwide. The proteasome is receiving attention as a potential drug target for treatment of a variety of infectious parasitic diseases, but it has been understudied in the schistosome. Adult Schistosoma mansoni were incubated with 1 µM concentrations of the proteasome inhibitors bortezomib, carfilzomib, and MG132. After 24 h, bortezomib and carfilzomib decreased worm motility by more than 85% and endogenous proteasome activity by >75%, and after 72 h, they increased caspase activity by >4.5-fold. The association between the engagement of the proteasome target and the phenotypic and biochemical effects recorded encouraged the chromatographic enrichment of the S. mansoni proteasome (Sm20S). Activity assays with fluorogenic proteasome substrates revealed that Sm20S contains caspase-type (ß1), trypsin-type (ß2), and chymotrypsin-type (ß5) activities. Sm20S was screened with 11 peptide epoxyketone inhibitors derived from the marine natural product carmaphycin B. Analogue 17 was 27.4-fold less cytotoxic to HepG2 cells than carmaphycin B and showed equal potency for the ß5 subunits of Sm20S, human constitutive proteasome, and human immunoproteasome. However, this analogue was 13.2-fold more potent at targeting Sm20S ß2 than it was at targeting the equivalent subunits of the human enzymes. Furthermore, 1 µM 17 decreased both worm motility and endogenous Sm20S activity by more than 90% after 24 h. We provide direct evidence of the proteasome's importance to schistosome viability and identify a lead for which future studies will aim to improve the potency, selectivity, and safety.


Subject(s)
Drug Delivery Systems/methods , Proteasome Endopeptidase Complex/drug effects , Proteasome Inhibitors/pharmacology , Schistosoma mansoni/drug effects , Animals , Antineoplastic Agents/pharmacology , Bortezomib/pharmacology , Caspases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Hep G2 Cells , Humans , Leupeptins , Oligopeptides/pharmacology
8.
Future Med Chem ; 11(13): 1537-1551, 2019 07.
Article in English | MEDLINE | ID: mdl-31469332

ABSTRACT

Aim: Limitations in available therapies for trypanosomiases indicate the need for improved medicines. Cysteine proteases cruzain and rhodesain are validated targets for treatment of Chagas disease and human African trypanosomiasis. Previous studies reported a benzimidazole series as potent cruzain inhibitors. Results & methodology: Considering the high similarity between these proteases, we evaluated 40 benzimidazoles against rhodesain. We describe their structure-activity relationships (SAR), revealing trends similar to those observed for cruzain and features that lead to enzyme selectivity. This series comprises noncovalent competitive inhibitors (best Ki = 0.21 µM against rhodesain) and micromolar activity against Trypanosoma brucei brucei. A cheminformatics analysis confirms scaffold novelty, and the inhibitors described have favorable predicted physicochemical properties. Conclusion: Our results support this series as a starting point for new human African trypanosomiasis medicines.


Subject(s)
Benzimidazoles/pharmacology , Cysteine Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/enzymology , Trypanosomiasis, African/drug therapy
9.
ChemMedChem ; 13(17): 1751-1754, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29969537

ABSTRACT

In vitro whole-organism screens of Trypanosoma brucei with representative examples of brain-penetrant microtubule (MT)-stabilizing agents identified lethal triazolopyrimidines and phenylpyrimidines with sub-micromolar potency. In mammalian cells, these antiproliferative compounds disrupt MT integrity and decrease total tubulin levels. Their parasiticidal potency, combined with their generally favorable pharmacokinetic properties, which include oral bioavailability and brain penetration, suggest that these compounds are potential leads against human African trypanosomiasis.


Subject(s)
Brain/metabolism , Microtubules/metabolism , Pyrimidines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Dose-Response Relationship, Drug , Humans , Microtubules/chemistry , Molecular Structure , Parasitic Sensitivity Tests , Pyrimidines/chemistry , Pyrimidines/metabolism , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL