Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 35: 285-311, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28446061

ABSTRACT

IgG antibodies mediate a diversity of immune functions by coupling of antigen specificity through the Fab domain to signal transduction via Fc-Fc receptor interactions. Indeed, balanced IgG signaling through type I and type II Fc receptors is required for the control of proinflammatory, anti-inflammatory, and immunomodulatory processes. In this review, we discuss the mechanisms that govern IgG-Fc receptor interactions, highlighting the diversity of Fc receptor-mediated effector functions that regulate immunity and inflammation as well as determine susceptibility to infection and autoimmunity and responsiveness to antibody-based therapeutics and vaccines.


Subject(s)
Antibodies/therapeutic use , Autoimmune Diseases/immunology , Immunoglobulin G/metabolism , Immunotherapy/methods , Infections/immunology , Receptors, Fc/metabolism , Animals , Autoimmune Diseases/therapy , Disease Susceptibility , Humans , Immunity, Humoral , Infections/therapy , Inflammation , Signal Transduction
2.
Cell ; 186(21): 4632-4651.e23, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37776858

ABSTRACT

The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Infant , Humans , Child, Preschool , SARS-CoV-2/metabolism , Multiomics , Cytokines/metabolism , Interferon-alpha , Immunity, Mucosal
3.
Cell ; 181(5): 1036-1045.e9, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32416070

ABSTRACT

Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , RNA Viruses/immunology , Animals , COVID-19 , Cells, Cultured , Chemokines/genetics , Chemokines/immunology , Coronavirus Infections/genetics , Disease Models, Animal , Host-Pathogen Interactions , Humans , Immunity, Innate , Inflammation/virology , Interferons/genetics , Interferons/immunology , Pandemics , Pneumonia, Viral/genetics , RNA Viruses/classification , SARS-CoV-2 , Transcription, Genetic
4.
Nat Immunol ; 22(1): 67-73, 2021 01.
Article in English | MEDLINE | ID: mdl-33169014

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 infections can cause coronavirus disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life-threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature, including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that patients with severe COVID-19 produced a unique serologic signature, including an increased likelihood of IgG1 with afucosylated Fc glycans. This Fc modification on severe acute respiratory syndrome coronavirus 2 IgGs enhanced interactions with the activating Fcγ receptor FcγRIIIa; when incorporated into immune complexes, Fc afucosylation enhanced production of inflammatory cytokines by monocytes, including interleukin-6 and tumor necrosis factor. These results show that disease severity in COVID-19 correlates with the presence of proinflammatory IgG Fc structures, including afucosylated IgG1.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Immunoglobulin G/immunology , Receptors, IgG/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , COVID-19/metabolism , COVID-19/virology , Child , Cytokines/metabolism , Female , Glycosylation , Humans , Immunoglobulin G/metabolism , Interleukin-6 , Male , Middle Aged , Receptors, IgG/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
5.
Immunity ; 56(4): 864-878.e4, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36996809

ABSTRACT

T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.


Subject(s)
COVID-19 , Vaccines , Humans , CD8-Positive T-Lymphocytes , BNT162 Vaccine , SARS-CoV-2 , Vaccination , Antibodies, Viral
6.
Immunity ; 54(9): 1912-1914, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34464594

ABSTRACT

Monoclonal antibodies show efficacy in treating COVID-19, but the functional requirements for protection are unclear. In this issue of Immunity, Ullah et al. (2021) develop a stable SARS-CoV-2 reporter virus and use bioluminescence imaging to longitudinally monitor infection and assess neutralizing monoclonal antibody interventions in mice. They find that antibody-mediated protection depends on the Fc domain and Fc-gamma receptor-expressing immune cells.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Animals , Antibodies, Viral , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
Cell ; 162(1): 160-9, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26140596

ABSTRACT

Protective vaccines elicit high-affinity, neutralizing antibodies by selection of somatically hypermutated B cell antigen receptors (BCR) on immune complexes (ICs). This implicates Fc-Fc receptor (FcR) interactions in affinity maturation, which, in turn, are determined by IgG subclass and Fc glycan composition within ICs. Trivalent influenza virus vaccination elicited regulation of anti-hemagglutinin (HA) IgG subclass and Fc glycans, with abundance of sialylated Fc glycans (sFc) predicting quality of vaccine response. We show that sFcs drive BCR affinity selection by binding the Type-II FcR CD23, thus upregulating the inhibitory FcγRIIB on activated B cells. This elevates the threshold requirement for BCR signaling, resulting in B cell selection for higher affinity BCR. Immunization with sFc HA ICs elicited protective, high-affinity IgGs against the conserved stalk of the HA. These results reveal a novel, endogenous pathway for affinity maturation that can be exploited for eliciting high-affinity, broadly neutralizing antibodies through immunization with sialylated immune complexes.


Subject(s)
Antibodies, Neutralizing/immunology , Influenza Vaccines/immunology , Receptors, Antigen, B-Cell/immunology , Antigen-Antibody Complex/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunoglobulin Fc Fragments , Immunoglobulin G/immunology , Plasma Cells/immunology , Receptors, Antigen, B-Cell/chemistry , Receptors, Fc/metabolism , Sialic Acids/metabolism
8.
Nat Immunol ; 22(5): 539-540, 2021 05.
Article in English | MEDLINE | ID: mdl-33875881
9.
Nat Immunol ; 15(8): 707-16, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25045879

ABSTRACT

Antibodies produced in response to a foreign antigen are characterized by polyclonality, not only in the diverse epitopes to which their variable domains bind but also in the various effector molecules to which their constant regions (Fc domains) engage. Thus, the antibody's Fc domain mediates diverse effector activities by engaging two distinct classes of Fc receptors (type I and type II) on the basis of the two dominant conformational states that the Fc domain may adopt. These conformational states are regulated by the differences among antibody subclasses in their amino acid sequence and by the complex, biantennary Fc-associated N-linked glycan. Here we discuss the diverse downstream proinflammatory, anti-inflammatory and immunomodulatory consequences of the engagement of type I and type II Fc receptors in the context of infectious, autoimmune, and neoplastic disorders.


Subject(s)
Adaptive Immunity , Immunity, Innate , Immunoglobulin Fc Fragments/immunology , Receptors, IgG/immunology , Amino Acid Sequence , Antibodies/immunology , Antigen Presentation/immunology , Autoimmune Diseases/immunology , Glycosylation , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/classification , Immunoglobulin G/immunology , Neoplasms/immunology , Protein Conformation , Protein Structure, Tertiary , Receptors, IgG/chemistry , Receptors, IgG/classification , Vaccination
10.
Immunol Rev ; 309(1): 64-74, 2022 08.
Article in English | MEDLINE | ID: mdl-35781671

ABSTRACT

In this review, we discuss how IgG antibodies can modulate inflammatory signaling during viral infections with a focus on CD16a-mediated functions. We describe the structural heterogeneity of IgG antibody ligands, including subclass and glycosylation that impact binding by and downstream activity of CD16a, as well as the heterogeneity of CD16a itself, including allele and expression density. While inflammation is a mechanism required for immune homeostasis and resolution of acute infections, we focus here on two infectious diseases that are driven by pathogenic inflammatory responses during infection. Specifically, we review and discuss the evolving body of literature showing that afucosylated IgG immune complex signaling through CD16a contributes to the overwhelming inflammatory response that is central to the pathogenesis of severe forms of dengue disease and coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 , Communicable Diseases , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Receptors, IgG
11.
Immunity ; 42(2): 213-215, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25692698

ABSTRACT

Understanding of how persistent viral infection impacts humoral immunity is incomplete. In this issue of Immunity, Wieland et al. (2015) and Yamada et al. (2015) find that high amounts of IgG-antigen complexes formed during chronic lymphocytic choriomeningitis infection can interfere with Fcγ-receptor-mediated effector activities, potentially contributing to immune dysfunction.


Subject(s)
Antibodies, Viral/immunology , Antigen-Antibody Complex/immunology , Immune Evasion/immunology , Lymphocyte Depletion , Lymphocytic Choriomeningitis/immunology , Receptors, IgG/antagonists & inhibitors , Receptors, IgG/immunology , Animals
12.
Cell ; 137(6): 983-5, 2009 Jun 12.
Article in English | MEDLINE | ID: mdl-19524497

ABSTRACT

Influenza virus outbreaks occur with regularity, but the severity of outbreaks is not consistent. The recent flu epidemic caused by an H1N1 swine influenza virus presents an opportunity to examine what is known about virulence factors and the spread of infection to better prepare for major influenza outbreaks in the future.


Subject(s)
Disease Outbreaks , Influenza A Virus, H1N1 Subtype/classification , Influenza, Human/epidemiology , Influenza, Human/virology , Animals , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/physiopathology
13.
Proc Natl Acad Sci U S A ; 117(23): 12943-12951, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32461366

ABSTRACT

The IgG Fc domain has the capacity to interact with diverse types of receptors, including the neonatal Fc receptor (FcRn) and Fcγ receptors (FcγRs), which confer pleiotropic biological activities. Whereas FcRn regulates IgG epithelial transport and recycling, Fc effector activities, such as antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis, are mediated by FcγRs, which upon cross-linking transduce signals that modulate the function of effector leukocytes. Despite the well-defined and nonoverlapping functional properties of FcRn and FcγRs, recent studies have suggested that FcγRs mediate transplacental IgG transport, as certain Fc glycoforms were reported to be enriched in fetal circulation. To determine the contribution of FcγRs and FcRn to the maternal-fetal transport of IgG, we characterized the IgG Fc glycosylation in paired maternal-fetal samples from patient cohorts from Uganda and Nicaragua. No differences in IgG1 Fc glycan profiles and minimal differences in IgG2 Fc glycans were noted, whereas the presence or absence of galactose on the Fc glycan of IgG1 did not alter FcγRIIIa or FcRn binding, half-life, or their ability to deplete target cells in FcγR/FcRn humanized mice. Modeling maternal-fetal transport in FcγR/FcRn humanized mice confirmed that only FcRn contributed to transplacental transport of IgG; IgG selectively enhanced for FcRn binding resulted in enhanced accumulation of maternal antibody in the fetus. In contrast, enhancing FcγRIIIa binding did not result in enhanced maternal-fetal transport. These results argue against a role for FcγRs in IgG transplacental transport, suggesting Fc engineering of maternally administered antibody to enhance only FcRn binding as a means to improve maternal-fetal transport of IgG.


Subject(s)
Fetal Blood/immunology , Histocompatibility Antigens Class I/metabolism , Immunoglobulin G/metabolism , Maternal-Fetal Exchange/immunology , Placental Circulation/immunology , Receptors, Fc/metabolism , Animals , Female , Histocompatibility Antigens Class I/genetics , Humans , Immunoglobulin G/immunology , Mice , Mice, Transgenic , Pregnancy , Randomized Controlled Trials as Topic , Receptors, Fc/genetics , Receptors, IgG/genetics , Receptors, IgG/metabolism
14.
Immunol Cell Biol ; 98(8): 617-619, 2020 09.
Article in English | MEDLINE | ID: mdl-32632971

ABSTRACT

Shade et al. demonstrate that people with peanut allergies produce IgE antibodies that are enriched for sialic acid-containing glycoforms. The sialylated IgE triggered significantly more degranulation by basophils and mast cells, suggesting intrinsic functional differences between IgEs from allergic and nonallergic subjects.


Subject(s)
Immunoglobulin E , Peanut Hypersensitivity , Basophils , Humans , Mast Cells , Virulence
15.
Curr Top Microbiol Immunol ; 423: 63-75, 2019.
Article in English | MEDLINE | ID: mdl-30805712

ABSTRACT

Glycosylation of IgG Fc domains is a central mechanism in the diversification of antibody function. Modifications to the core Fc glycan impact antibody function by shifting the balance of Type I and Type II Fc gamma receptors (FcγR) that will be engaged by immune complexes. This, in turn, modulates the effector cells and functions that can be recruited during immune activation. Critically, humans have evolved to regulate Fc glycan modifications for immune homeostasis. Dysregulation in Fc glycan modifications can lead to loss of immune tolerance, symptomatic autoimmunity, and susceptibility to infectious diseases. Here, we discuss IgG Fc glycosylation and its role in human health and disease.


Subject(s)
Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Disease , Glycosylation , Health , Humans , Receptors, IgG/chemistry , Receptors, IgG/immunology
16.
Proc Natl Acad Sci U S A ; 114(38): 10172-10177, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874545

ABSTRACT

The main barrier to reduction of morbidity caused by influenza is the absence of a vaccine that elicits broad protection against different virus strains. Studies in preclinical models of influenza virus infections have shown that antibodies alone are sufficient to provide broad protection against divergent virus strains in vivo. Here, we address the challenge of identifying an immunogen that can elicit potent, broadly protective, antiinfluenza antibodies by demonstrating that immune complexes composed of sialylated antihemagglutinin antibodies and seasonal inactivated flu vaccine (TIV) can elicit broadly protective antihemagglutinin antibodies. Further, we found that an Fc-modified, bispecific monoclonal antibody against conserved epitopes of the hemagglutinin can be combined with TIV to elicit broad protection, thus setting the stage for a universal influenza virus vaccine.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin G/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Receptors, IgE/immunology , Animals , Dogs , Female , Humans , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Mice, Inbred C57BL
17.
Proc Natl Acad Sci U S A ; 109(7): 2211-3, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22308474

ABSTRACT

The ongoing controversy over publication of two studies involving the transmission in ferrets of H5N1 (H5) subtype influenza viruses and the recommendations of the National Science Advisory Board for Biosecurity to redact key details in the manuscripts call for an examination of relevant scientific facts. In addition, there are calls in the media to destroy the viruses, curtail future research in this area, and protect the public from such "frightening" research efforts. Fear needs to be put to rest with solid science and not speculation.


Subject(s)
Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza, Human/transmission , Animals , Fear , Ferrets/virology , Humans , Influenza A Virus, H5N1 Subtype/ultrastructure , Influenza, Human/psychology , Influenza, Human/virology , Microscopy, Electron , Zoonoses
18.
Proc Natl Acad Sci U S A ; 109(7): 2573-8, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22308500

ABSTRACT

After the emergence of pandemic influenza viruses in 1957, 1968, and 2009, existing seasonal viruses were observed to be replaced in the human population by the novel pandemic strains. We have previously hypothesized that the replacement of seasonal strains was mediated, in part, by a population-scale boost in antibodies specific for conserved regions of the hemagglutinin stalk and the viral neuraminidase. Numerous recent studies have shown the role of stalk-specific antibodies in neutralization of influenza viruses; the finding that stalk antibodies can effectively neutralize virus alters the existing dogma that influenza virus neutralization is mediated solely by antibodies that react with the globular head of the viral hemagglutinin. The present study explores the possibility that stalk-specific antibodies were boosted by infection with the 2009 H1N1 pandemic virus and that those antibodies could have contributed to the disappearance of existing seasonal H1N1 influenza virus strains. To study stalk-specific antibodies, we have developed chimeric hemagglutinin constructs that enable the measurement of antibodies that bind the hemagglutinin protein and neutralize virus but do not have hemagglutination inhibition activity. Using these chimeric hemagglutinin reagents, we show that infection with the 2009 pandemic H1N1 virus elicited a boost in titer of virus-neutralizing antibodies directed against the hemagglutinin stalk. In addition, we describe assays that can be used to measure influenza virus-neutralizing antibodies that are not detected in the traditional hemagglutination inhibition assay.


Subject(s)
Antibodies, Viral/biosynthesis , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/growth & development , Humans , Influenza A Virus, H1N1 Subtype/immunology , Seasons
19.
Vaccine ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38890105

ABSTRACT

The first dengue "endgame" summit was held in Syracuse, NY over August 9 and 10, 2023. Organized and hosted by the Institute for Global Health and Translational Sciences at SUNY Upstate Medical University, the gathering brought together researchers, clinicians, drug and vaccine developers, government officials, and other key stakeholders in the dengue field for a highly collaborative and discussion-oriented event. The objective of the gathering was to discuss the current state of dengue around the world, what dengue "control" might look like, and what a potential roadmap might look like to achieve functional dengue control. Over the course of 7 sessions, speakers with a diverse array of expertise highlighted both current and historic challenges associated with dengue control, the state of dengue countermeasure development and deployment, as well as fundamental virologic, immunologic, and medical barriers to achieving dengue control. While sustained eradication of dengue was considered challenging, attendees were optimistic that significant reduction in the burden of dengue can be achieved by integration of vector control with effective application of therapeutics and vaccines.

20.
Proc Natl Acad Sci U S A ; 107(44): 18979-84, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20956293

ABSTRACT

Current influenza virus vaccines protect mostly against homologous virus strains; thus, regular immunization with updated vaccine formulations is necessary to guard against the virus' hallmark remodeling of regions that mediate neutralization. Development of a broadly protective influenza vaccine would mark a significant advance in human infectious diseases research. Antibodies with broad neutralizing activity (nAbs) against multiple influenza virus strains or subtypes have been reported to bind the stalk of the viral hemagglutinin, suggesting that a vaccine based on this region could elicit a broadly protective immune response. Here we describe a hemagglutinin subunit 2 protein (HA2)-based synthetic peptide vaccine that provides protection in mice against influenza viruses of the structurally divergent subtypes H3N2, H1N1, and H5N1. The immunogen is based on the binding site of the recently described nAb 12D1, which neutralizes H3 subtype viruses, demonstrates protective activity in vivo, and, in contrast to a majority of described nAbs, appears to bind to residues within a single α-helical portion of the HA2 protein. Our data further demonstrate that the specific design of our immunogen is integral in the induction of broadly active anti-hemagglutinin antibodies. These results provide proof of concept for an HA2-based influenza vaccine that could diminish the threat of pandemic influenza disease and generally reduce the significance of influenza viruses as human pathogens.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Hemagglutinins, Viral/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Peptides/immunology , Animals , Hemagglutinins, Viral/pharmacology , Humans , Immunization , Influenza Vaccines/pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Peptides/pharmacology , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL