Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Proc Natl Acad Sci U S A ; 120(23): e2301118120, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37252984

ABSTRACT

For organic photovoltaic (OPV) devices to achieve consistent performance and long operational lifetimes, organic semiconductors must be processed with precise control over their purity, composition, and structure. This is particularly important for high volume solar cell manufacturing where control of materials quality has a direct impact on yield and cost. Ternary-blend OPVs containing two acceptor-donor-acceptor (A-D-A)-type nonfullerene acceptors (NFAs) and a donor have proven to be an effective strategy to improve solar spectral coverage and reduce energy losses beyond that of binary-blend OPVs. Here, we show that the purity of such a ternary is compromised during blending to form a homogeneously mixed bulk heterojunction thin film. We find that the impurities originate from end-capping C=C/C=C exchange reactions of A-D-A-type NFAs, and that their presence influences both device reproducibility and long-term reliability. The end-capping exchange results in generation of up to four impurity constituents with strong dipolar character that interfere with the photoinduced charge transfer process, leading to reduced charge generation efficiency, morphological instabilities, and an increased vulnerability to photodegradation. As a consequence, the OPV efficiency falls to less than 65% of its initial value within 265 h when exposed to up to 10 suns intensity illumination. We propose potential molecular design strategies critical to enhancing the reproducibility as well as reliability of ternary OPVs by avoiding end-capping reactions.

2.
Small ; : e2311509, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587968

ABSTRACT

Developing robust non-platinum electrocatalysts with multifunctional active sites for pH-universal hydrogen evolution reaction (HER) is crucial for scalable hydrogen production through electrochemical water splitting. Here ultra-small ruthenium-nickel alloy nanoparticles steadily anchored on reduced graphene oxide papers (Ru-Ni/rGOPs) as versatile electrocatalytic materials for acidic and alkaline HER are reported. These Ru-Ni alloy nanoparticles serve as pH self-adaptive electroactive species by making use of in situ surface reconstruction, where surface Ni atoms are hydroxylated to produce bifunctional active sites of Ru-Ni(OH)2 for alkaline HER, and selectively etched to form monometallic Ru active sites for acidic HER, respectively. Owing to the presence of Ru-Ni(OH)2 multi-site surface, which not only accelerates water dissociation to generate reactive hydrogen intermediates but also facilitates their recombination into hydrogen molecules, the self-supported Ru90Ni10/rGOP hybrid electrode only takes overpotential of as low as ≈106 mV to deliver current density of 1000 mA cm-2, and maintains exceptional stability for over 1000 h in 1 m KOH. While in 0.5 m H2SO4, the Ru90Ni10/rGOP hybrid electrode exhibits acidic HER catalytic behavior comparable to commercially available Pt/C catalyst due to the formation of monometallic Ru shell. These electrochemical behaviors outperform some of the best Ru-based catalysts and make it attractive alternative to Pt-based catalysts toward highly efficient HER.

3.
Small ; 20(26): e2310722, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38229525

ABSTRACT

Aqueous aluminum-ion batteries are attractive post-lithium battery technologies for large-scale energy storage in virtue of abundant and low-cost Al metal anode offering ultrahigh capacity via a three-electron redox reaction. However, state-of-the-art cathode materials are of low practical capacity, poor rate capability, and inadequate cycle life, substantially impeding their practical use. Here layered manganese oxide that is pre-intercalated with benzoquinone-coordinated aluminum ions (BQ-AlxMnO2) as a high-performance cathode material of rechargeable aqueous aluminum-ion batteries is reported. The coordination of benzoquinone with aluminum ions not only extends interlayer spacing of layered MnO2 framework but reduces the effective charge of trivalent aluminum ions to diminish their electrostatic interactions, substantially boosting intercalation/deintercalation kinetics of guest aluminum ions and improving structural reversibility and stability. When coupled with Zn50Al50 alloy anode in 2 m Al(OTf)3 aqueous electrolyte, the BQ-AlxMnO2 exhibits superior rate capability and cycling stability. At 1 A g-1, the specific capacity of BQ-AlxMnO2 reaches ≈300 mAh g-1 and retains ≈90% of the initial value for more than 800 cycles, along with the Coulombic efficiency of as high as ≈99%, outperforming the AlxMnO2 without BQ co-incorporation.

4.
Nat Mater ; 22(3): 329-337, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36849816

ABSTRACT

Stability and current-voltage hysteresis stand as major obstacles to the commercialization of metal halide perovskites. Both phenomena have been associated with ion migration, with anecdotal evidence that stable devices yield low hysteresis. However, the underlying mechanisms of the complex stability-hysteresis link remain elusive. Here we present a multiscale diffusion framework that describes vacancy-mediated halide diffusion in polycrystalline metal halide perovskites, differentiating fast grain boundary diffusivity from volume diffusivity that is two to four orders of magnitude slower. Our results reveal an inverse relationship between the activation energies of grain boundary and volume diffusions, such that stable metal halide perovskites exhibiting smaller volume diffusivities are associated with larger grain boundary diffusivities and reduced hysteresis. The elucidation of multiscale halide diffusion in metal halide perovskites reveals complex inner couplings between ion migration in the volume of grains versus grain boundaries, which in turn can predict the stability and hysteresis of metal halide perovskites, providing a clearer path to addressing the outstanding challenges of the field.

5.
Angew Chem Int Ed Engl ; : e202411981, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041718

ABSTRACT

We construct a compartmentalized nanoarchitecture to regulate bioenergy level. Glucose dehydrogenase, urease and nicotinamide adenine dinucleotide are encapsulated inside through liquid-liquid phase separation. ATPase and glucose transporter embedded in hybrid liposomes are attached at the surface. Glucose is transported and converted to gluconic acid catalyzed by glucose dehydrogenase, resulting in an outward proton gradient to drive ATPase for ATP synthesis. In parallel, urease catalyzes hydrolysis of urea to generate ammonia, which leads to an inward proton gradient to drive ATPase for ATP hydrolysis. These processes lead to a change of the direction of proton gradient, thus achieving artificial ATP oscillation. Importantly, the frequency and the amplitude of the oscillation can be programmed. The work explores nanoarchitectonics integrating multiple components to realize artificial and precise oscillation of bioenergy level.

6.
Angew Chem Int Ed Engl ; 63(10): e202319116, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38225920

ABSTRACT

Enhanced bioenergy anabolism through transmembrane redox reactions in artificial systems remains a great challenge. Here, we explore synthetic electron shuttle to activate transmembrane chemo-enzymatic cascade reactions in a mitochondria-like nanoarchitecture for augmenting bioenergy anabolism. In this nanoarchitecture, a dendritic mesoporous silica microparticle as inner compartment possesses higher load capacity of NADH as proton source and allows faster mass transfer. In addition, the outer compartment ATP synthase-reconstituted proteoliposomes. Like natural enzymes in the mitochondrion respiratory chain, a small synthetic electron shuttle embedded in the lipid bilayer facilely mediates transmembrane redox reactions to convert NADH into NAD+ and a proton. These facilitate an enhanced outward proton gradient to drive ATP synthase to rotate for catalytic ATP synthesis with improved performance in a sustainable manner. This work opens a new avenue to achieve enhanced bioenergy anabolism by utilizing a synthetic electron shuttle and tuning inner nanostructures, holding great promise in wide-range ATP-powered bioapplications.


Subject(s)
NAD , Protons , NAD/metabolism , Electrons , Adenosine Triphosphate/metabolism , Mitochondria/metabolism , Electron Transport
7.
Angew Chem Int Ed Engl ; 63(18): e202402327, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38467561

ABSTRACT

Metallic zinc is a promising anode material for rechargeable aqueous multivalent metal-ion batteries due to its high capacity and low cost. However, the practical use is always beset by severe dendrite growth and parasitic side reactions occurring at anode/electrolyte interface. Here we demonstrate dynamic molecular interphases caused by trace dual electrolyte additives of D-mannose and sodium lignosulfonate for ultralong-lifespan and dendrite-free zinc anode. Triggered by plating and stripping electric fields, the D-mannose and lignosulfonate species are alternately and reversibly (de-)adsorbed on Zn metal, respectively, to accelerate Zn2+ transportation for uniform Zn nucleation and deposition and inhibit side reactions for high Coulombic efficiency. As a result, Zn anode in such dual-additive electrolyte exhibits highly reversible and dendrite-free Zn stripping/plating behaviors for >6400 hours at 1 mA cm-2, which enables long-term cycling stability of Zn||ZnxMnO2 full cell for more than 2000 cycles.

8.
J Am Chem Soc ; 145(38): 20907-20912, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37606591

ABSTRACT

We demonstrate that ATP synthase-reconstituted proteoliposome coatings on the surface of microcapsules can realize photozyme-catalyzed oxidative phosphorylation. The microcapsules were assembled through layer-by-layer deposition of semiconducting graphitic carbon nitride (g-C3N4) nanosheets and polyelectrolytes. It is found that electrons from polyelectrolytes are transferred to g-C3N4 nanosheets, which enhances the separation of photogenerated electron-hole pairs. Thus, the encapsulated g-C3N4 nanosheets as the photozyme accelerate oxidation of glucose into gluconic acid to yield protons under light illumination. The outward transmembrane proton gradient is established to drive ATP synthase to synthesize adenosine triphosphate. With such an assembled system, light-driven oxidative phosphorylation is achieved. This indicates that an assembled photozyme can be used for oxidative phosphorylation, which creates an unusual way for chemical-to-biological energy conversion. Compared to conventional oxidative phosphorylation systems, such an artificial design enables higher energy conversion efficiency.


Subject(s)
Adenosine Triphosphate , Protons , Polyelectrolytes , Capsules , Catalysis
9.
Angew Chem Int Ed Engl ; 62(45): e202312020, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37728941

ABSTRACT

Single-ion conductive electrolytes can largely eliminate electrode polarization, reduce the proportion of anion migration and inhibit side reactions in batteries. However, they usually suffer from insufficient ion conductivity due to the strong interaction between cations and cationic receptors. Here we report an ultrafast light-responsive covalent organic frameworks (COF) with sulfonic acid groups modification as the acrylamide polymerization initiator. Benefiting from the reduced electrostatic interaction between Zn2+ and sulfonic acid groups through solvation effects, the as-prepared COF-based hydrogel electrolyte (TCOF-S-Gel) receives an ion conductivity of up to 27.2 mS/cm and Zn2+ transference number of up to 0.89. In addition, sufficient hydrogen bonds endow the single-ion conductive TCOF-S-Gel electrolyte to have good water retention and superb mechanical properties. The assembled Zn||TCOF-S-Gel||MnO2 full zinc-ion battery exhibits high discharge capacity (248 mAh/g at 1C), excellent rate capability (90 mAh/g at 10C) and superior cycling performance. These enviable results enlist the instantaneously photocured TCOF-S-Gel electrolyte to be qualified to large-scaled flexible high-performance quasi-solid-state zinc-ion batteries.

10.
J Am Chem Soc ; 143(4): 1822-1835, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33492129

ABSTRACT

In bulk-heterojunction organic solar cells, it is well established that the active-layer morphology significantly impacts device performance. However, morphology control remains very challenging. An interesting step in that direction was recently provided by the development of polymer donors that display a temperature-dependent aggregation behavior in solution; the aggregation characteristics were found indeed to play a determining role in the eventual active-layer morphology. Here, a combination of thermodynamic analyses, molecular dynamics simulations, and long-range corrected density functional theory calculations enables us (i) to establish the Flory-Huggins interaction parameter, χ, as a useful figure of merit that allows us to integrate the contributions from all inter-related molecular interactions and to describe the extent of polymer preaggregation in solution at room temperature; (ii) to correlate the χ values for various polymer solutions to the extent of polymer aggregation and the morphological characteristics of the active layers; and (iii) to assess how polymer-polymer and polymer-solvent intermolecular interactions contribute to the variations in χ values among different polymer solutions. We have chosen to examine four representative polymer donors (PBT4T-2OD, PBTff4T-2OD, PffBT4T-2OD, and PffBTff4T-2DT) in solution in chlorobenzene or dichlorobenzene. With χ as a robust bridge, our results provide an unprecedented, detailed description of the relationships among intermolecular interactions, extent of polymer solution aggregation, and morphological features of the active layers.

11.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(5): 571-575, 2020 May 28.
Article in English, Zh | MEDLINE | ID: mdl-32879109

ABSTRACT

OBJECTIVES: To explore the prescribing habits of doctors, and to provide basis for rational use of antibiotics in clinical practice via investigating and analyzing the applications of antibiotics in treatment of coronavirus disease 2019 (COVID-19) in the designated hospital. METHODS: Specification, quantity, amount, defined daily dose system (DDDs), defined daily dose consumption (DDDc), antibiotics use density (AUD), composition, frequency of use, combined use of antibacterial drugs used in the hospital were analyzed between Feb. 2020 and Mar. 2020. RESULTS: A total of 25 antibiotic drugs in 12 categories were used. The total cost for antibiotic drugs was 1 million 238 thousand yuan, in which quinolone accounts for 48%, the third generation cephalosporin/lactamase inhibitors accounts for 15.86%, antifungals accounts for 14.17%, oxazolidone accounts for 13.46%, and carbapenms account for 12.73%. The top three drugs of DDDs and AUD were moxifloxacin hydrochloride tablets, moxifloxacin hydrochloride and sodium chloride injection, cefoperazone sodium and sulbactam sodium for injection. The proportion of patients who had been used more than two kinds of antibiotics was 22.36%. CONCLUSIONS: Broad-spectrum, high-potency antibiotics are used at the beginning of COVID-19 treatment. The varieties of antibiotics meet the requirements of the management of antibiotics, and the utilization rate of antibiotics and the cost proportion of antibiotics in COVID-19 patients are within a reasonable range.In the future, for the treatment of COVID-19, we should continue to summarize the experience, improve the strategies, and rationally apply antibiotics on the basis of guidelines.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Anti-Bacterial Agents/classification , Betacoronavirus , COVID-19 , Humans , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment
12.
Nat Mater ; 17(3): 253-260, 2018 03.
Article in English | MEDLINE | ID: mdl-29403053

ABSTRACT

Although it is known that molecular interactions govern morphology formation and purity of mixed domains of conjugated polymer donors and small-molecule acceptors, and thus largely control the achievable performance of organic solar cells, quantifying interaction-function relations has remained elusive. Here, we first determine the temperature-dependent effective amorphous-amorphous interaction parameter, χaa(T), by mapping out the phase diagram of a model amorphous polymer:fullerene material system. We then establish a quantitative 'constant-kink-saturation' relation between χaa and the fill factor in organic solar cells that is verified in detail in a model system and delineated across numerous high- and low-performing materials systems, including fullerene and non-fullerene acceptors. Our experimental and computational data reveal that a high fill factor is obtained only when χaa is large enough to lead to strong phase separation. Our work outlines a basis for using various miscibility tests and future simulation methods that will significantly reduce or eliminate trial-and-error approaches to material synthesis and device fabrication of functional semiconducting blends and organic blends in general.

13.
Nanotechnology ; 29(23): 235704, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29528846

ABSTRACT

Insulator-based dielectrophoresis (iDEP) is a simple, scalable mechanism that can be used for directly manipulating particle trajectories in pore-based filtration and separation processes. However, iDEP manipulation of nanoparticles presents unique challenges as the dielectrophoretic force [Formula: see text] exerted on the nanoparticles can easily be overshadowed by opposing kinetic forces. In this study, a molecularly thin, SiN-based nanoporous membrane (NPN) is explored as a breakthrough technology that enhances [Formula: see text] By numerically assessing the gradient of the electric field square [Formula: see text]-a common measure for [Formula: see text] magnitude-it was found that the unique geometrical features of NPN (pore tapering, sharp pore corner and ultrathin thickness) act in favor of intensifying the overall [Formula: see text] A comparative study indicated that [Formula: see text] generated in NPN are four orders of magnitude larger than track-etched polycarbonate membranes with comparable pore size. The stronger [Formula: see text] suggests that iDEP can be conducted under lower voltage bias with NPN: reducing joule heating concerns and enabling solutions to have higher ionic strength. Enabling higher ionic strength solutions may also extend the opportunities of iDEP applications under physiologically relevant conditions. This study also highlights the effects of [Formula: see text] induced by the ion accumulation along charged surfaces (electric-double layer (EDL)). EDL-based [Formula: see text] exists along the entire charged surface, including locations where geometry-based iDEP is negligible. The high surface-to-volume ratio of NPN offers a unique platform for exploiting such EDL-based DEP systems. The EDL-based [Formula: see text] was also found to offset the geometry-based [Formula: see text] but this effect was easily circumvented by reducing the EDL thickness (e.g. increasing the ionic strength from 0.1 to 100 mM). The results from this study imply the potential application of iDEP as a direct, in-operando antifouling mechanism for ultrafiltration technology, and also as an active tuning mechanism to control the cut-off size limit for continuous selectivity of nanomembrane-based separations.

14.
Cancer Sci ; 108(4): 671-677, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28164408

ABSTRACT

It is well documented that human epidermal growth factor receptor 2 (HER2) overexpression/amplification is associated with poor survival in breast cancer patients. However, it is largely unknown whether HER2 somatic mutations are associated with survival in HER2-negative breast cancer patients. Here, we identified HER2 somatic mutations in tumors from 1348 unselected breast cancer patients by sequencing the entire HER2 coding region. All of these mutations were tested for in corresponding blood samples to determine whether they were somatic or germline mutations. We further investigated the associations between HER2 somatic mutations and recurrence-free survival and distant recurrence-free survival in this cohort of patients. We found that 27 of 1348 (2.0%) of these patients carried a HER2 somatic mutation. In vitro experiments indicated that some of the novel mutations and those with unknown functions increased HER2 activity. HER2 status was available for 1306 patients, and the HER2 somatic mutation rates in HER2-positive (n = 353) and HER2-negative breast cancers (n = 953) were 1.4% and 2.3%, respectively. Among the HER2-negative patients, those with a HER2 somatic mutation had a significantly worse recurrence-free survival (unadjusted hazard ratio = 2.67; 95% confidence interval, 1.25-5.72, P = 0.002) and distant recurrence-free survival (unadjusted hazard ratio = 2.50; 95% confidence interval, 1.10-5.68, P = 0.004) than those with wild-type HER2. Taken together, our findings suggested that HER2 somatic mutations occur at a higher frequency in HER2-negative breast cancer, and HER2-negative breast cancer patients with these mutations have poor survival. Therefore, HER2-negative patients with a HER2 somatic mutation are potentially good candidates for HER2-targeted therapy.


Subject(s)
Breast Neoplasms/genetics , Mutation , Receptor, ErbB-2/genetics , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cohort Studies , DNA Mutational Analysis/methods , Female , HEK293 Cells , Humans , Kaplan-Meier Estimate , MCF-7 Cells , Middle Aged , Receptor, ErbB-2/metabolism , Treatment Outcome
15.
Electrophoresis ; 38(20): 2587-2591, 2017 10.
Article in English | MEDLINE | ID: mdl-28375577

ABSTRACT

Electrokinetically controlled microinjection is reported as an effective transport mechanism for microinjection into the wild-type strain of the widely studied model microalga Chlamydomonas reinhardtii. A microinjection system using glass capillary pipettes was developed to capture and impale the motile cells. To apply an electric field and induce electrokinetic flow (e.g., electrophoresis and electroosmosis), an electrode was inserted directly into the solution inside the impaling injection pipette and another electrode was inserted into the external cell media. The viability of the impaled cells was confirmed for more than an hour under 0.01 V using the fluorescein diacetate/propidium iodide dual fluorescent dye based assay. The viability was also found to increase almost logarithmically with decreasing voltage and to depend strongly on the solution within the injection pipette. Successful electrokinetic microinjection into cells was confirmed by both an increase in cell volume under an applied voltage and electric field dependent delivery of fluorescent fluorescein molecules into an impaled cell. Our study offers novel opportunities for quantitative delivery of biomolecules into microalgae and advancing the research and development of these organisms as biosynthetic factories.


Subject(s)
Electrophoresis/instrumentation , Microalgae/chemistry , Microinjections/instrumentation , Computer Simulation , Electricity , Electroosmosis , Kinetics , Microfluidic Analytical Techniques
17.
Med Biol Eng Comput ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031329

ABSTRACT

Precise segmentation of breast tumors from MRI is crucial for breast cancer diagnosis, as it allows for detailed calculation of tumor characteristics such as shape, size, and edges. Current segmentation methodologies face significant challenges in accurately modeling the complex interrelationships inherent in multi-sequence MRI data. This paper presents a hybrid deep network framework with three interconnected modules, aimed at efficiently integrating and exploiting the spatial-temporal features among multiple MRI sequences for breast tumor segmentation. The first module involves an advanced multi-sequence encoder with a densely connected architecture, separating the encoding pathway into multiple streams for individual MRI sequences. To harness the intricate correlations between different sequence features, we propose a sequence-awareness and temporal-awareness method that adeptly fuses spatial-temporal features of MRI in the second multi-scale feature embedding module. Finally, the decoder module engages in the upsampling of feature maps, meticulously refining the resolution to achieve highly precise segmentation of breast tumors. In contrast to other popular methods, the proposed method learns the interrelationships inherent in multi-sequence MRI. We justify the proposed method through extensive experiments. It achieves notable improvements in segmentation performance, with Dice Similarity Coefficient (DSC), Intersection over Union (IoU), and Positive Predictive Value (PPV) scores of 80.57%, 74.08%, and 84.74% respectively.

18.
Adv Mater ; : e2406711, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046064

ABSTRACT

Constructing well-defined active multisites is an effective strategy to break linear scaling relationships to develop high-efficiency catalysts toward multiple-intermediate reactions. Here, dual-intermetallic heterostructure composed of tungsten-bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high-performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column-nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel-supported Co3W-WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm-2) and hydrogen evolution reaction (current density of ≈1.45 A cm-2 at overpotential of 200 mV). Such atom-ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide-exchange-membrane water electrolyzers and fuel cells.

19.
Adv Mater ; 36(26): e2403803, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598181

ABSTRACT

Aqueous zinc-ion batteries are attractive post-lithium battery technologies for grid-scale energy storage because of their inherent safety, low cost and high theoretical capacity. However, their practical implementation in wide-temperature surroundings persistently confronts irregular zinc electrodeposits and parasitic side reactions on metal anode, which leads to poor rechargeability, low Coulombic efficiency and short lifespan. Here, this work reports lamellar nanoporous Cu/Al2Cu heterostructure electrode as a promising anode host material to regulate high-efficiency and dendrite-free zinc electrodeposition and stripping for wide-temperatures aqueous zinc-ion batteries. In this unique electrode, the interconnective Cu/Al2Cu heterostructure ligaments not only facilitate fast electron transfer but work as highly zincophilic sites for zinc nucleation and deposition by virtue of local galvanic couples while the interpenetrative lamellar channels serving as mass transport pathways. As a result, it exhibits exceptional zinc plating/stripping behaviors in aqueous hybrid electrolyte of diethylene glycol dimethyl ether and zinc trifluoromethanesulfonate at wide temperatures ranging from 25 to -30 °C, with ultralow voltage polarizations at various current densities and ultralong lifespan of >4000 h. The outstanding electrochemical properties enlist full cell of zinc-ion batteries constructed with nanoporous Cu/Al2Cu and ZnxV2O5/C to maintain high capacity and excellent stability for >5000 cycles at 25 and -30 °C.

20.
J Colloid Interface Sci ; 638: 76-83, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36736120

ABSTRACT

Herein, we develop a strategy of matched spectral and temporal light management to improve photosynthetic efficiency by co-assembling natural thylakoid membrane (TM) with artificial long afterglow particle (LAP). To be specific, LAP with excellent stability and biocompatibility possesses the capabilities of light conversion and storage, optically-matched with the absorption of TM. These favorable features permit LAP as an additional well-functioned light source of photosynthesis performed by TM. As a consequence, enhanced photosynthesis is achieved after co-assembly, compared with pure TM. Under light, the rates of electron transfer, oxygen yield and adenosine triphosphate (ATP) production in this biohybrid architecture are boosted owing to down-conversion fluorescence emission from LAP. Under dark, persistent phosphorescence emission in charged LAP facilitates continual photosynthesis of TM, while that of pure TM almost stops immediately. This proof-of-concept work opens a new route to augment the photosynthetic efficiency of green plants by utilizing precise light-managed materials.


Subject(s)
Photosynthesis , Thylakoids , Electron Transport , Thylakoids/metabolism , Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL