Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 419
Filter
Add more filters

Publication year range
1.
Development ; 150(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37218508

ABSTRACT

The accumulation and storage of maternal mRNA is crucial for oocyte maturation and embryonic development. PATL2 is an oocyte-specific RNA-binding protein, and previous studies have confirmed that PATL2 mutation in humans and knockout mice cause oocyte maturation arrest or embryonic development arrest, respectively. However, the physiological function of PATL2 in the process of oocyte maturation and embryonic development is largely unknown. Here, we report that PATL2 is highly expressed in growing oocytes and couples with EIF4E and CPEB1 to regulate maternal mRNA expression in immature oocytes. The germinal vesicle oocytes from Patl2-/- mice exhibit decreasing maternal mRNA expression and reduced levels of protein synthesis. We further confirmed that PATL2 phosphorylation occurs in the oocyte maturation process and identified the S279 phosphorylation site using phosphoproteomics. We found that the S279D mutation decreased the protein level of PATL2 and led to subfertility in Palt2S279D knock-in mice. Our work reveals the previously unrecognized role of PATL2 in regulating the maternal transcriptome and shows that phosphorylation of PATL2 leads to the regulation of PATL2 protein levels via ubiquitin-mediated proteasomal degradation in oocytes.


Subject(s)
Eukaryotic Initiation Factor-4E , Nuclear Proteins , RNA, Messenger, Stored , RNA-Binding Proteins , Animals , Female , Humans , Mice , Pregnancy , Eukaryotic Initiation Factor-4E/metabolism , Homeostasis , Mice, Knockout , mRNA Cleavage and Polyadenylation Factors/metabolism , Nuclear Proteins/metabolism , Oocytes/metabolism , RNA, Messenger/metabolism , RNA, Messenger, Stored/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism
2.
Proc Natl Acad Sci U S A ; 119(23): e2118566119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35648826

ABSTRACT

Recent work indicates that killing of bacteria by diverse antimicrobial classes can involve reactive oxygen species (ROS), as if a common, self-destructive response to antibiotics occurs. However, the ROS-bacterial death theory has been challenged. To better understand stress-mediated bacterial death, we enriched spontaneous antideath mutants of Escherichia coli that survive treatment by diverse bactericidal agents that include antibiotics, disinfectants, and environmental stressors, without a priori consideration of ROS. The mutants retained bacteriostatic susceptibility, thereby ruling out resistance. Surprisingly, pan-tolerance arose from carbohydrate metabolism deficiencies in ptsI (phosphotransferase) and cyaA (adenyl cyclase); these genes displayed the activity of upstream regulators of a widely shared, stress-mediated death pathway. The antideath effect was reversed by genetic complementation, exogenous cAMP, or a Crp variant that bypasses cAMP binding for activation. Downstream events comprised a metabolic shift from the TCA cycle to glycolysis and to the pentose phosphate pathway, suppression of stress-mediated ATP surges, and reduced accumulation of ROS. These observations reveal how upstream signals from diverse stress-mediated lesions stimulate shared, late-stage, ROS-mediated events. Cultures of these stable, pan-tolerant mutants grew normally and were therefore distinct from tolerance derived from growth defects described previously. Pan-tolerance raises the potential for unrestricted disinfectant use to contribute to antibiotic tolerance and resistance. It also weakens host defenses, because three agents (hypochlorite, hydrogen peroxide, and low pH) affected by pan-tolerance are used by the immune system to fight infections. Understanding and manipulating the PtsI-CyaA-Crp­mediated death process can help better control pathogens and maintain beneficial microbiota during antimicrobial treatment.


Subject(s)
Anti-Infective Agents , Colicins , Cyclic AMP Receptor Protein , Escherichia coli Proteins , Escherichia coli , Monosaccharide Transport Proteins , Oxidative Stress , Phosphoenolpyruvate Sugar Phosphotransferase System , Anti-Infective Agents/pharmacology , Colicins/metabolism , Cyclic AMP/metabolism , Cyclic AMP Receptor Protein/metabolism , Drug Tolerance , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Reactive Oxygen Species/metabolism
3.
Hum Genet ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252283

ABSTRACT

Preimplantation embryonic arrest is an important pathogenesis of female infertility, but little is known about the genetic factors behind this phenotype. MEI4 is an essential protein for DNA double-strand break formation during meiosis, and Mei4 knock-out female mice are viable but sterile, indicating that MEI4 plays a crucial role in reproduction. To date, MEI4 has not been found to be associated with any human reproductive diseases. Here, we identified six compound heterozygous and homozygous MEI4 variants-namely, c.293C > T, p.(Ser98Leu), c.401C > G, p.(Pro134Arg), c.391C > G, p.(Pro131Ala), c.914A > T, p.(Tyr305Phe), c.908C > G, p.(Ala303Gly), and c.899A > T, p.(Gln300Leu)-in four independent families that were responsible for female infertility mainly characterized by preimplantation embryonic arrest. In vitro, we found that these variants reduced the interaction between MEI4 and DNA. In vivo, we generated a knock-in mouse model and demonstrated that female mice were infertile and were characterized by developmental defects during oogenesis. Our findings reveal the important roles of MEI4 in human reproduction and provide a new diagnostic marker for genetic counseling of clinical infertility patients.

4.
BMC Med ; 22(1): 117, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481216

ABSTRACT

BACKGROUND: Paxlovid has been shown to be effective in reducing mortality and hospitalization rates in patients with coronavirus disease 2019 (COVID-19). It is not known whether Paxlovid can reduce the risk of cardiovascular diseases (CVD) in COVID-19-surviving patients with autoimmune rheumatic diseases (AIRDs). METHODS: TriNetX data from the US Collaborative Network were used in this study. A total of 5,671,395 patients with AIRDs were enrolled between January 1, 2010, and December 31, 2021. People diagnosed with COVID-19 were included in the cohort (n = 238,142) from January 1, 2022, to December 31, 2022. The Study population was divided into two groups based on Paxlovid use. Propensity score matching was used to generate groups with matched baseline characteristics. The hazard ratios (HRs) and 95% confidence intervals of cardiovascular outcomes, admission rate, mortality rate, and intensive care unit (ICU) admission rate were calculated between Paxlovid and non-Paxlovid groups. Subgroup analyses on sex, age, race, autoimmune diseases group, and sensitivity analyses for Paxlovid use within the first day or within 2-5 days of COVID-19 diagnosis were performed. RESULTS: Paxlovid use was associated with lower risks of cerebrovascular complications (HR = 0.65 [0.47-0.88]), arrhythmia outcomes (HR = 0.81 [0.68-0.94]), ischemic heart disease, other cardiac disorders (HR = 0.51 [0.35-0.74]) naming heart failure (HR = 0.41 [0.26-0.63]) and deep vein thrombosis (HR = 0.46 [0.24-0.87]) belonging to thrombotic disorders in AIRD patients with COVID-19. Compared with the Non-Paxlovid group, risks of major adverse cardiac events (HR = 0.56 [0.44-0.70]) and any cardiovascular outcome mentioned above (HR = 0.76 [0.66-0.86]) were lower in the Paxlovid group. Moreover, the mortality (HR = 0.21 [0.11-0.40]), admission (HR = 0.68 [0.60-0.76]), and ICU admission rates (HR = 0.52 [0.33-0.80]) were significantly lower in the Paxlovid group than in the non-Paxlovid group. Paxlovid appears to be more effective in male, older, and Black patients with AIRD. The risks of cardiovascular outcomes and severe conditions were reduced significantly with Paxlovid prescribed within the first day of COVID-19 diagnosis. CONCLUSIONS: Paxlovid use is associated with a lower risk of CVDs and severe conditions in COVID-19-surviving patients with AIRD.


Subject(s)
Autoimmune Diseases , COVID-19 , Cardiovascular Diseases , Lactams , Leucine , Nitriles , Proline , Rheumatic Diseases , Ritonavir , Humans , Male , Infant, Newborn , COVID-19/complications , COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/complications , Retrospective Studies , COVID-19 Testing , Risk Factors , Autoimmune Diseases/complications , Autoimmune Diseases/drug therapy , Autoimmune Diseases/epidemiology , Rheumatic Diseases/complications , Rheumatic Diseases/drug therapy , Rheumatic Diseases/epidemiology , Drug Combinations
5.
Small ; 20(25): e2308063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38200674

ABSTRACT

The ligament, which connects bones at the joints, has both high water content and excellent mechanical properties in living organisms. However, it is still challenging to fabricate fibrous materials that possess high water content and ligament-like mechanical characteristics simultaneously. Herein, the design and preparation of a ligament-mimicking multicomponent fiber is reported through stepwise assembly of polysaccharide, calcium, and dopamine. In simulated body fluid, the resulting fiber has a water content of 40 wt%, while demonstrating strength of ≈120 MPa, a Young's modulus of ≈3 GPa, and a toughness of ≈25 MJ m-3. Additionally, the multicomponent fiber exhibits excellent creep and fatigue resistance, as well as biocompatibility to support cell growth in vitro. These findings suggest that the fiber has potential for engineering high-performance artificial ligament.

6.
J Med Virol ; 96(6): e29731, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888065

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is associated with a high death rate and lacks a targeted therapy plan. The ratio of blood urea nitrogen to albumin, known as BAR, is a valuable method for assessing the outlook of various infectious diseases. The objective of this research was to evaluate the effectiveness of BAR in forecasting the outcome of individuals with SFTS. Four hundred and thirty-seven patients with SFTS from two clinical centers were included in this study according to inclusion and exclusion criteria. Clinical characteristics and test parameters of SFTS patients were analyzed between survival and fatal groups. Least absolute shrinkage and selection operator (LASSO) regression and Cox regression suggested that BAR might serve as a standalone prognostic indicator for patients with SFTS in the initial phase (hazard ratio = 18.669, 95% confidence interval [CI]: 8.558-40.725, p < 0.001). And BAR had a better predictive effectiveness in clinical outcomes in patients with SFTS with an AUC of 0.832 (95% CI: 0.788-0.876, p < 0.001), a cutoff value of 0.19, a sensitivity of 0.812, and a specificity of 0.726 compared to C-reactive protein, procalcitonin, and platelet to lymphocyte ratio via receiver operating characteristic curve. KM (Kaplan Meier) curves demonstrated that high level of BAR was associated with poor survival condition in patients with SFTS. Furthermore, the high level of BAR was associated with long hospital stays and test paraments of kidney, liver, and coagulation function in survival patients. So, BAR could be used as a promising early warning biomarker of adverse outcomes in patients with SFTS.


Subject(s)
Blood Urea Nitrogen , Severe Fever with Thrombocytopenia Syndrome , Humans , Female , Male , Middle Aged , Severe Fever with Thrombocytopenia Syndrome/mortality , Severe Fever with Thrombocytopenia Syndrome/blood , Severe Fever with Thrombocytopenia Syndrome/diagnosis , Severe Fever with Thrombocytopenia Syndrome/virology , Aged , Prognosis , Biomarkers/blood , Retrospective Studies , Adult , Aged, 80 and over
7.
Org Biomol Chem ; 22(26): 5385-5392, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38869462

ABSTRACT

A copper-catalyzed syn-hydrocarbonization of internal alkynes with N,N-dimethylformamide dimethylacetal and silanes has been disclosed that offers an efficient and expedient access to (E)-α,ß-unsaturated aldehydes. This highly selective process, which can be performed at gram-scale, enjoys operational simplicity, as well as syngas-free conditions.

8.
Bioorg Chem ; 144: 107117, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266324

ABSTRACT

The scope of bioengineering is expanding from the design of single strain to the microbial communities, allowing for the division-of-labor in synthesizing the multi-protein systems. Predicting the composition of the final product during the biomanufacturing process, however, can be difficult. Consortia-based manufacturing has the potential to boost production efficiency, but this benefit primarily holds in the upstream. The current format of downstream process heavily relies on the centralized facility, and is not economical and flexible to address the demands in small-scale. Here, we present a concise and manageable platform to enable the multi-protein system assembly. We engineer a self-lysis microbial consortium, where each strain lyses autonomously at high densities and produces a single protein component. The product fraction can be precisely tuned by varying the inoculation ratio. Utilizing this platform, we assemble a classical 34-component PURE (protein synthesis using recombinant elements) system. We have further optimized the downstream process of the biomanufacturing by incorporating the porous structure of polymeric materials. The encapsulated autolysis consortium can produce and release the proteins while maintaining the cell factories enclosed in the materials by exporting the multi-protein system for collection. Our research provides a novel approach to the flexible and controllable production of multi-protein systems, opening up new possibilities for pathway assembly and portable biomanufacturing.


Subject(s)
Bioengineering , Microbial Consortia , Proteins/chemistry
9.
Hepatobiliary Pancreat Dis Int ; 23(3): 293-299, 2024 Jun.
Article in English | MEDLINE | ID: mdl-36690523

ABSTRACT

BACKGROUND: Acute suppurative terminal cholangitis (ASTC) is rarer than acute obstructive cholangitis and is not well studied. To explore this subtype of acute cholangitis, we described our clinical experience with ASTC. METHODS: We performed a retrospective review of patients with ASTC admitted to our center from September 2014 to August 2020. We analyzed their clinical characteristics, including etiology, clinical manifestations, imaging features, treatment and prognosis. RESULTS: A total of 32 ASTC patients were included in the analysis. The majority of the patients had a history of biliary operations, and clinical manifestations were occult and atypical. The positive rate of bacterial culture was 46.9%. All the patients had typical imaging features on computed tomography and magnetic resonance imaging. Treatment with effective antibiotics was provided as soon as diagnosis was established. After treatment, most patients had a good outcome. Elevated levels of total bilirubin, aspartate aminotransferase, procalcitonin and gamma-glutamyltransferase were the characteristics of critically ill patients and were associated with relatively poor prognosis. CONCLUSIONS: Our results demonstrated that ASTC should be recognized as a new subtype of acute cholangitis, and that earlier diagnosis and more personalized treatments are needed.


Subject(s)
Cholangitis , Humans , Suppuration/complications , Prognosis , Cholangitis/diagnosis , Cholangitis/therapy , Hospitalization , Tomography, X-Ray Computed , Acute Disease , Retrospective Studies
10.
Sensors (Basel) ; 24(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38339483

ABSTRACT

In order to improve the accuracy and convergence speed of the steering law under the conditions of high dynamics, high bandwidth, and a small deflection angle, and in an effort to improve attitude measurement and control accuracy of the spacecraft, a spacecraft attitude measurement and control method based on variable speed magnetically suspended control sensitive gyroscopes (VSMSCSGs) and the fractional-order zeroing neural network (FO-ZNN) steering law is proposed. First, a VSMSCSG configuration is designed to realize attitude measurement and control integration in which the VSMSCSGs are employed as both actuators and attitude-rate sensors. Second, a novel adaptive steering law using FO-ZNN is designed. The matrix pseudoinverses are replaced by FO-ZNN outputs, which solves the problem of accuracy degradation in the traditional pseudoinverse steering laws due to the complexity of matrix pseudoinverse operations under high dynamics conditions. In addition, the convergence and robustness of the FO-ZNN are proven. The results show that the proposed FO-ZNN converges faster than the traditional zeroing neural network under external disturbances. Finally, a new weighting function containing rotor deflection angles is added to the steering law to ensure that the saturation of the rotor deflection angles can be avoided. Semi-physical simulation results demonstrate the correctness and superiority of the proposed method.

11.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732789

ABSTRACT

Aiming at the influence of the magnetic flux density uniformity error (MFDUE) of the Lorentz force magnetic bearing (LFMB) on the sensitivity accuracy of magnetically suspended control and sensing gyroscopes (MSCSGs) on the angular rate of a spacecraft, a high precision measurement method of the angular rate of a spacecraft based on the MFDUE compensation of LFMB is proposed. Firstly, the structure of MSCSG and the sensitivity principle of MSCSG to the spacecraft angular rate are introduced. The mechanism influencing the accuracy of MSCSG to spacecraft angular rate sensitivity is deduced based on the definition of magnetic flux density uniformity. Secondly, the 3D magnetic flux distribution of LFMB is analyzed using ANSYS. The relationship between the rotor tilt angle, tilt angular rate, and magnetic flux density is established. The induced current calculation model due to MFDUE is proposed, and the LFMB magnetic flux density error compensation is realized. Finally, the simulation results show that the estimation accuracy of the induced current by the proposed method can reach 96%, and the simulation and the experiment show that the error compensation method can improve the accuracy of MSCSG in measuring the spacecraft angular rate by 12.5%.

12.
BMC Plant Biol ; 23(1): 559, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37957552

ABSTRACT

BACKGROUND: The formation of a tree's heartwood gives the wood properties such as natural decay resistance and aesthetic color, and often directly determines the value of wood products. Regulating the quantity and quality of heartwood is of great importance to the use of wood. However, the mechanism of heartwood formation has been poorly understood. RESULTS: Using Dalbergia odorifera as the study species, the number of starch grains, the morphology of the nuclei, the changes in the content of water and secondary metabolites were observed continuously in the radial direction of the xylem. The results show that from the outer toward inner sapwood, the starch grains are abundant, the length to diameter ratio of the nuclei is decreasing, and the morphology changes from elongated elliptical and then to round. In the outer transition zone, the starch grains begin to decrease abruptly and the nuclei shrink at a slower rate, with a radial width of approximately 2 mm. In the inner transition zone, the heartwood color begins to appear, the starch grains disappear and a few nuclei with reduced fluorescence are present, with a radial width of approximately 1 mm. Heartwood formation after complete disappearance of the nuclei. The moisture content of the heartwood is higher than that of the sapwood, and the inner transition zone is where the content rises. The secondary metabolites of the heartwood begin to accumulate in large quantities in the inner transition zone. CONCLUSION: Based on the physiological changes of parenchyma cells in the xylem, the radial width of the transition zone of Dalbergia odorifera is clearly defined as approximately 3 mm. Both the water and secondary metabolite abrupt changes occur at the final stage of programmed cell death, and neither is a direct cause of programmed cell death in parenchyma cells.


Subject(s)
Dalbergia , Dalbergia/metabolism , Xylem/metabolism , Wood/metabolism , Water/metabolism , Starch/metabolism
13.
BMC Plant Biol ; 23(1): 546, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936056

ABSTRACT

BACKGROUND: Dalbergia odorifera is a precious tree species with unique economic and medicinal values, which is difficult to distinguish from Dalbergia tonkinensis by traditional identification methods such as morphological characteristics and wood structure characteristics. It has been demonstrated that the identification of tree species can be effectively achieved using DNA barcoding, but there is a lack of study of the combined sequences used as DNA barcodes in the two tree species. In this study, 10 single sequences and 4 combined sequences were selected for analysis, and the identification effect of each sequence was evaluated by the distance-based method, BLAST-based search, character-based method, and tree-based method. RESULTS: Among the single sequences and the combined sequences, the interspecies distance of trnH-psbA and ITS2 + trnH-psbA was greater than the intraspecies distance, and there was no overlap in their frequency distribution plots. The results of the Wilcoxon signed-rank test for the interspecies distance of each sequence showed that the interspecies differences of the single sequences except trnL-trnF, trnH-psbA, and ycf3 were significantly smaller than those of the combined sequences. The results of BLAST analysis showed that trnH-psbA could accurately identify D. odorifera and D. tonkinensis at the species level. In the character-based method, single sequences of trnL-trnF, trnH-psbA with all the combined sequences can be used for the identification of D. odorifera and D. tonkinensis. In addition, the neighbor-joining (NJ) trees constructed based on trnH-psbA and ITS2 + trnH-psbA were able to cluster D. odorifera and D. tonkinensis on two clades. CONCLUSIONS: The results showed that the character-based method with the BLOG algorithm was the most effective among all the evaluation methods, and the combined sequences can improve the ability to identify tree species compared with single sequences. Finally, the trnH-psbA and ITS2 + trnH-psbA were proposed as DNA barcodes to identify D. odorifera and D. tonkinensis.


Subject(s)
DNA Barcoding, Taxonomic , Dalbergia , DNA Barcoding, Taxonomic/methods , Dalbergia/genetics , DNA, Plant/genetics , Sequence Analysis, DNA
14.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34368837

ABSTRACT

The identification of protein-ligand interaction plays a key role in biochemical research and drug discovery. Although deep learning has recently shown great promise in discovering new drugs, there remains a gap between deep learning-based and experimental approaches. Here, we propose a novel framework, named AIMEE, integrating AI model and enzymological experiments, to identify inhibitors against 3CL protease of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), which has taken a significant toll on people across the globe. From a bioactive chemical library, we have conducted two rounds of experiments and identified six novel inhibitors with a hit rate of 29.41%, and four of them showed an IC50 value <3 µM. Moreover, we explored the interpretability of the central model in AIMEE, mapping the deep learning extracted features to the domain knowledge of chemical properties. Based on this knowledge, a commercially available compound was selected and was proven to be an activity-based probe of 3CLpro. This work highlights the great potential of combining deep learning models and biochemical experiments for intelligent iteration and for expanding the boundaries of drug discovery. The code and data are available at https://github.com/SIAT-code/AIMEE.


Subject(s)
COVID-19 Drug Treatment , Protease Inhibitors/chemistry , SARS-CoV-2/chemistry , Small Molecule Libraries/chemistry , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Artificial Intelligence , COVID-19/genetics , COVID-19/virology , Drug Discovery , Humans , Ligands , Protease Inhibitors/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Small Molecule Libraries/therapeutic use
15.
Cardiovasc Diabetol ; 22(1): 331, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38017499

ABSTRACT

BACKGROUND: Endothelial-mesenchymal transition (EndMT) plays a crucial role in promoting myocardial fibrosis and exacerbating cardiac dysfunction. Dapagliflozin (DAPA) is a sodium-glucose-linked transporter 2 (SGLT-2) inhibitor that has been shown to improve cardiac function in non-diabetic patients with heart failure (HF). However, the precise mechanisms by which DAPA exerts its beneficial effects are yet to be fully elucidated. METHODS: Isoproterenol (ISO) was used to generate a HF model in mice. For in vitro experiments, we used TGF-ß1-stimulated human umbilical vein endothelial cells (HUVECs) and mouse aortic endothelial cells (MAECs). RESULTS: Both our in vivo and in vitro results showed that EndMT occurred with decreased SIRT1 (NAD+-dependent deacetylase) protein expression, which could be reversed by DAPA therapy. We found that the protective effect of DAPA was significantly impaired upon SIRT1 inhibition. Mechanistically, we observed that SIRT1 phosphorylation, a required modification for its ubiquitination and degradation, was reduced by DAPA treatment, which induces the nucleus translocation of SIRT1 and promotes its binding to the active intracellular domain of Notch1 (NICD). This interaction led to the deacetylation and degradation of NICD, and the subsequent inactivation of the Notch1 signaling pathway which contributes to ameliorating EndMT. CONCLUSIONS: Our study revealed that DAPA can attenuate EndMT induced by ISO in non-diabetic HF mice. This beneficial effect is achieved through SIRT1-mediated deacetylation and degradation of NICD. Our findings provide greater insight into the underlying mechanisms of the therapeutic effects of DAPA in non-diabetic HF.


Subject(s)
Epithelial-Mesenchymal Transition , Sirtuin 1 , Humans , Animals , Mice , Sirtuin 1/metabolism , Acetylation , Endothelium , Human Umbilical Vein Endothelial Cells/metabolism
16.
Langmuir ; 39(47): 16854-16862, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37956463

ABSTRACT

The behavior of giant amphiphilic molecules at the air-water interface has become a subject of concern to researchers. Small changes in the molecular structure can cause obvious differences in the molecular arrangement and interfacial properties of the monolayer. In this study, we have systematically investigated the interfacial behaviors of the giant amphiphilic molecules with different number of hydrophobic BPOSS blocks and one hydrophilic ACPOSS block ((BPOSS)n-ACPOSS (n = 1-5)) at the air-water interface by the surface pressure-area (π-A) isotherm, Brewster angle microscopy (BAM), compression modulus measurement, and hysteresis measurement. We found that both the number of BPOSS blocks and the compression rate can significantly influence the interfacial behaviors of giant molecules. The π-A isotherms of giant molecules (BPOSS)n-ACPOSS (n = 2-5) exhibit a "cusp" phenomenon which can be attributed to the transition from monolayer to multilayer. However, the cusp is dramatically different from the "collapse" of the monolayer studied in other molecular systems, which is highly dependent on the compression rate of the monolayer. In addition, the compression modulus and hysteresis measurements reveal that the number of BPOSS blocks of (BPOSS)n-ACPOSS plays an important role in the static elasticity, stability, and reversibility of the Langmuir films.

17.
Liver Int ; 43(7): 1473-1485, 2023 07.
Article in English | MEDLINE | ID: mdl-37088973

ABSTRACT

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. Aberrant lipid metabolism and accumulation of extracellular matrix proteins are hallmarks of the disease, but the underlying mechanisms are largely unknown. This study aims to elucidate the key role of sine oculis homeobox homologue 1 (SIX1) in the development of NAFLD. METHODS: Alb-Cre mice were administered the AAV9 vector for SIX1 liver-specific overexpression or knockdown. Metabolic disorders, hepatic steatosis, and inflammation were monitored in mice fed with HFHC or MCD diet. High throughput CUT&Tag analysis was employed to investigate the mechanism of SIX1 in diet-induced steatohepatitis. RESULTS: Here, we found increased SIX1 expression in the livers of NAFLD patients and animal models. Liver-specific overexpression of SIX1 using adeno-associated virus serotype 9 (AAV9) provoked more severe inflammation, metabolic disorders, and hepatic steatosis in the HFHC or MCD-induced mice model. Mechanistically, we demonstrated that SIX1 directly activated the expression of liver X receptor α (LXRα) and liver X receptor ß (LXRß), thus inducing de novo lipogenesis (DNL). In addition, our results also illustrated a critical role of SIX1 in regulating the TGF-ß pathway by increasing the levels of type I and II TGF-ß receptor (TGFßRI/TGFßRII) in hepatic stellate cells (HSCs). Finally, we found that liver-specific SIX1 deficiency could ameliorate diet-induced NAFLD pathogenesis. CONCLUSION: Our findings suggest a detrimental function of SIX1 in the progression of NAFLD. The direct regulation of LXRα/ß and TGF-ß signalling by SIX1 provides a new regulatory mechanism in hepatic steatosis and fibrosis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Lipogenesis/physiology , Liver/pathology , Fibrosis , Inflammation/pathology , Transforming Growth Factor beta/metabolism , Mice, Inbred C57BL , Diet, High-Fat
18.
J Fluoresc ; 33(1): 177-184, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36323832

ABSTRACT

A novel fluorescence probe for the detection of Al3+ was developed based on methionine protected gold nanoclusters (Met-AuNCs). A fluorescent Schiff base (an aldimine) is formed between the aldehyde group of salicylaldehyde (SA) and the amino groups of Met on the AuNCs, and developed for selective detection of Al3+ in aqueous solution. Al3+ can strongly bind with the Schiff base ligands, accompanied by the blue-shift and an obvious fluorescence emission enhancement at 455 nm. The limits of detection (LODs) of the probe are 2 pmol L-1 for Al3+. Moreover, the probe can successfully be used in fluorescence imaging of Al3+ in living cells (SHSY5Y cells), suggesting that the simple fluorescent probe has great potential use in biological imaging.


Subject(s)
Metal Nanoparticles , Fluorescent Dyes , Schiff Bases , Spectrometry, Fluorescence/methods , Water , Gold
19.
Appl Microbiol Biotechnol ; 107(20): 6351-6362, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37606789

ABSTRACT

The structural integrity and esthetic appeal of concrete can be compromised by concrete cracks. Promise has been shown by microbe-induced calcium carbonate precipitation (MICP) as a solution for concrete cracking, with a focus on urease-producing microorganisms in research. Bacillus cereus was isolated from soil and employed for this purpose in this study due to its high urease activity. The strain exhibited strong tolerance for alkaline media and high salt levels, which grew at a pH of 13 and 4% salt concentration. The repair of concrete cracks with this strain was evaluated by assessing the effects of four different thickeners at varying concentrations. The most effective results were achieved with 10 g/L of sodium carboxymethyl cellulose (CMC-Na). The data showed that over 90% repair of cracks was achieved by this system with an initial water penetration time of 30 s. The study also assessed the quantity and sizes of crystals generated during the bacterial mineralization process over time to improve our understanding of the process. KEY POINTS: • MICP using Bacillus cereus shows potential for repairing concrete cracks. • Strain tolerates alkaline media and high salt levels, growing at pH 13 and 4% salt concentration. • Sodium carboxymethyl cellulose (CMC-Na) at 10 g/L achieved over 90% repair of cracks.


Subject(s)
Bacillus cereus , Bacillus , Urease , Carboxymethylcellulose Sodium , Calcium Carbonate/chemistry , Sodium Chloride , Sodium , Chemical Precipitation , Construction Materials/microbiology
20.
Appl Opt ; 62(32): 8606-8613, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38037977

ABSTRACT

The terahertz (THz) to infrared (IR) neural signal model is a potential mechanism for explaining neural communication. Myelinated neurons could be a lossy dielectric waveguide that can propagate these THz-IR neural signals. We propose an electromagnetic loss-amplification model to describe the propagation characteristics of mid-IR signals on myelinated neurons. During transmission with loss and amplification, neural signal intensity can be consistently maintained at 15.9 pW in bands 55 to 75 THz. This phenomenon becomes more pronounced as the number of myelin sheaths increases. However, escalated degrees of demyelination result in a reduction of signal intensity from 15.9 to 10 pW. This phenomenon eventually disrupts the process of loss amplification, consequently impeding the transmission of the signal. These results may contribute to a deeper understanding of mid-IR signal propagation mechanisms in myelinated nerves and studies of diseases associated with demyelination.


Subject(s)
Demyelinating Diseases , Myelin Sheath , Humans
SELECTION OF CITATIONS
SEARCH DETAIL