Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 860
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 22(4): 460-470, 2021 04.
Article in English | MEDLINE | ID: mdl-33767425

ABSTRACT

Targeting the p53-MDM2 pathway to reactivate tumor p53 is a chemotherapeutic approach. However, the involvement of this pathway in CD8+ T cell-mediated antitumor immunity is unknown. Here, we report that mice with MDM2 deficiency in T cells exhibit accelerated tumor progression and a decrease in tumor-infiltrating CD8+ T cell survival and function. Mechanistically, MDM2 competes with c-Cbl for STAT5 binding, reduces c-Cbl-mediated STAT5 degradation and enhances STAT5 stability in tumor-infiltrating CD8+ T cells. Targeting the p53-MDM2 interaction with a pharmacological agent, APG-115, augmented MDM2 in T cells, thereby stabilizing STAT5, boosting T cell immunity and synergizing with cancer immunotherapy. Unexpectedly, these effects of APG-115 were dependent on p53 and MDM2 in T cells. Clinically, MDM2 abundance correlated with T cell function and interferon-γ signature in patients with cancer. Thus, the p53-MDM2 pathway controls T cell immunity, and targeting this pathway may treat patients with cancer regardless of tumor p53 status.


Subject(s)
CD8-Positive T-Lymphocytes/enzymology , Lymphocytes, Tumor-Infiltrating/enzymology , Neoplasms/enzymology , Proto-Oncogene Proteins c-mdm2/metabolism , STAT5 Transcription Factor/metabolism , Animals , Antineoplastic Agents/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Cell Line, Tumor , Combined Modality Therapy , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Immunotherapy, Adoptive , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/transplantation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Protein Stability , Proteolysis , Proto-Oncogene Proteins c-mdm2/genetics , STAT5 Transcription Factor/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
2.
Cell ; 165(5): 1092-1105, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27133165

ABSTRACT

Effector T cells and fibroblasts are major components in the tumor microenvironment. The means through which these cellular interactions affect chemoresistance is unclear. Here, we show that fibroblasts diminish nuclear accumulation of platinum in ovarian cancer cells, resulting in resistance to platinum-based chemotherapy. We demonstrate that glutathione and cysteine released by fibroblasts contribute to this resistance. CD8(+) T cells abolish the resistance by altering glutathione and cystine metabolism in fibroblasts. CD8(+) T-cell-derived interferon (IFN)γ controls fibroblast glutathione and cysteine through upregulation of gamma-glutamyltransferases and transcriptional repression of system xc(-) cystine and glutamate antiporter via the JAK/STAT1 pathway. The presence of stromal fibroblasts and CD8(+) T cells is negatively and positively associated with ovarian cancer patient survival, respectively. Thus, our work uncovers a mode of action for effector T cells: they abrogate stromal-mediated chemoresistance. Capitalizing upon the interplay between chemotherapy and immunotherapy holds high potential for cancer treatment.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Drug Resistance, Neoplasm , Ovarian Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Cell Culture Techniques , Cell Line, Tumor , Cisplatin/therapeutic use , Female , Fibroblasts/metabolism , Glutathione/metabolism , Humans , Interferon-gamma/metabolism , Mice , Mice, Inbred NOD , Mice, Nude
3.
Nat Immunol ; 18(12): 1332-1341, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29083399

ABSTRACT

Live regulatory T cells (Treg cells) suppress antitumor immunity, but how Treg cells behave in the metabolically abnormal tumor microenvironment remains unknown. Here we show that tumor Treg cells undergo apoptosis, and such apoptotic Treg cells abolish spontaneous and PD-L1-blockade-mediated antitumor T cell immunity. Biochemical and functional analyses show that adenosine, but not typical suppressive factors such as PD-L1, CTLA-4, TGF-ß, IL-35, and IL-10, contributes to apoptotic Treg-cell-mediated immunosuppression. Mechanistically, apoptotic Treg cells release and convert a large amount of ATP to adenosine via CD39 and CD73, and mediate immunosuppression via the adenosine and A2A pathways. Apoptosis in Treg cells is attributed to their weak NRF2-associated antioxidant system and high vulnerability to free oxygen species in the tumor microenvironment. Thus, the data support a model wherein tumor Treg cells sustain and amplify their suppressor capacity through inadvertent death via oxidative stress. This work highlights the oxidative pathway as a metabolic checkpoint that controls Treg cell behavior and affects the efficacy of therapeutics targeting cancer checkpoints.


Subject(s)
Apoptosis/immunology , B7-H1 Antigen/metabolism , Immune Tolerance/immunology , Ovarian Neoplasms/immunology , Oxidative Stress/physiology , T-Lymphocytes, Regulatory/immunology , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Adenosine/metabolism , Animals , Antigens, CD/metabolism , Apyrase/metabolism , CTLA-4 Antigen/metabolism , Female , GPI-Linked Proteins/genetics , Humans , Interleukin-10/metabolism , Interleukins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Oxygen/metabolism , Receptor, Adenosine A2A/metabolism , Transforming Growth Factor beta/metabolism , Tumor Cells, Cultured , Tumor Microenvironment/immunology
4.
Mol Cell ; 80(3): 384-395, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32997964

ABSTRACT

Metabolism reprogramming is critical for both cancer progression and effective immune responses in the tumor microenvironment. Amino acid metabolism in different cells and their cross-talk shape tumor immunity and therapy efficacy in patients with cancer. In this review, we focus on multiple amino acids and their transporters, solute carrier (SLC) members. We discuss their involvement in regulation of immune responses in the tumor microenvironment and assess their associations with cancer immunotherapy, chemotherapy, and radiation therapy, and we review their potential as targets for cancer therapy. We stress the necessity to understand individual amino acids and their transporters in different cell subsets, the molecular intersection between amino acid metabolism, and effective T cell immunity and its relevance in cancer therapies.


Subject(s)
Amino Acid Transport Systems/metabolism , Neoplasms/immunology , Solute Carrier Proteins/metabolism , Amino Acid Transport Systems/physiology , Amino Acids/metabolism , Animals , Humans , Immunity , Immunotherapy , Membrane Transport Proteins/physiology , Neoplasms/pathology , Solute Carrier Proteins/physiology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology
5.
FASEB J ; 38(4): e23488, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38358359

ABSTRACT

Myocardial infarction (MI) is defined as sudden ischemic death of myocardial tissue. Amphiregulin (Areg) regulates cell survival and is crucial for the healing of tissues after damage. However, the functions and mechanisms of Areg after MI remain unclear. Here, we aimed to investigate Areg's impact on myocardial remodeling. Mice model of MI was constructed and Areg-/- mice were used. Expression of Areg was analyzed using western blotting, RT-qPCR, flow cytometry, and immunofluorescence staining. Echocardiographic analysis, Masson's trichrome, and triphenyltetrazolium chloride staining were used to assess cardiac function and structure. RNA sequencing was used for unbiased analysis. Apoptosis and autophagy were determined by western blotting, TUNEL staining, electron microscopy, and mRFP-GFP-LC3 lentivirus. Lysosomal acidity was determined by Lysotracker staining. Areg was elevated in the infarct border zone after MI. It was mostly secreted by macrophages. Areg deficiency aggravated adverse ventricular remodeling, as reflected by worsening cardiac function, a lower survival rate, increased scar size, and interstitial fibrosis. RNA sequencing analyses showed that Areg related to the epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase/protein kinase B (PI3K-Akt), mammalian target of rapamycin (mTOR) signaling pathways, V-ATPase and lysosome pathways. Mechanistically, Areg exerts beneficial effects via increasing lysosomal acidity to promote autophagosome clearance, and activating the EGFR/PI3K/Akt/mTOR signaling pathway, subsequently inhibiting excessive autophagosome formation and apoptosis in cardiomyocytes. This study provides a novel evidence for the role of Areg in inhibiting ventricular remodeling after MI by regulating autophagy and apoptosis and identifies Areg as a potential therapeutic target in ventricular remodeling after MI.


Subject(s)
Myocardial Infarction , Phosphatidylinositol 3-Kinases , Animals , Mice , Amphiregulin/genetics , Apoptosis , Autophagy , ErbB Receptors , Mammals , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Ventricular Remodeling
6.
Nature ; 569(7755): 270-274, 2019 05.
Article in English | MEDLINE | ID: mdl-31043744

ABSTRACT

Cancer immunotherapy restores or enhances the effector function of CD8+ T cells in the tumour microenvironment1,2. CD8+ T cells activated by cancer immunotherapy clear tumours mainly by inducing cell death through perforin-granzyme and Fas-Fas ligand pathways3,4. Ferroptosis is a form of cell death that differs from apoptosis and results from iron-dependent accumulation of lipid peroxide5,6. Although it has been investigated in vitro7,8, there is emerging evidence that ferroptosis might be implicated in a variety of pathological scenarios9,10. It is unclear whether, and how, ferroptosis is involved in T cell immunity and cancer immunotherapy. Here we show that immunotherapy-activated CD8+ T cells enhance ferroptosis-specific lipid peroxidation in tumour cells, and that increased ferroptosis contributes to the anti-tumour efficacy of immunotherapy. Mechanistically, interferon gamma (IFNγ) released from CD8+ T cells downregulates the expression of SLC3A2 and SLC7A11, two subunits of the glutamate-cystine antiporter system xc-, impairs the uptake of cystine by tumour cells, and as a consequence, promotes tumour cell lipid peroxidation and ferroptosis. In mouse models, depletion of cystine or cysteine by cyst(e)inase (an engineered enzyme that degrades both cystine and cysteine) in combination with checkpoint blockade synergistically enhanced T cell-mediated anti-tumour immunity and induced ferroptosis in tumour cells. Expression of system xc- was negatively associated, in cancer patients, with CD8+ T cell signature, IFNγ expression, and patient outcome. Analyses of human transcriptomes before and during nivolumab therapy revealed that clinical benefits correlate with reduced expression of SLC3A2 and increased IFNγ and CD8. Thus, T cell-promoted tumour ferroptosis is an anti-tumour mechanism, and targeting this pathway in combination with checkpoint blockade is a potential therapeutic approach.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Ferroptosis , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Amino Acid Transport System y+/metabolism , Animals , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Cysteine/metabolism , Female , Ferroptosis/drug effects , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Humans , Interferon-gamma/immunology , Lipid Peroxidation , Melanoma/genetics , Melanoma/immunology , Melanoma/metabolism , Melanoma/therapy , Mice , Neoplasms/metabolism , Nivolumab/therapeutic use , Reactive Oxygen Species/metabolism , Treatment Outcome
7.
Glia ; 72(4): 692-707, 2024 04.
Article in English | MEDLINE | ID: mdl-38192185

ABSTRACT

Schwann cells (SCs), the primary glial cells of the peripheral nervous system, which have been identified in many solid tumors, play an important role in cancer development and progression by shaping the tumor immunoenvironment and supporting the development of metastases. Using different cellular, molecular, and genetic approaches with integrated bioinformatics analysis and functional assays, we revealed the role of human SC-derived exosomal miRNAs in lung cancer progression in vitro and in vivo. We found that exosomal miRNA-21 from SCs up-regulated the proliferation, motility, and invasiveness of human lung cancer cells in vitro, which requires functional Rab small GTPases Rab27A and Rab27B in SCs for exosome release. We also revealed that SC exosomal miRNA-21-5p regulated the functional activation of tumor cells by targeting metalloprotease inhibitor RECK in tumor cells. Integrated bioinformatic analyses showed that hsa-miRNA-21-5p is associated with poor prognosis in patients with lung adenocarcinoma and can promote lung cancer progression through multiple signaling pathways including the MAPK, PI3K/Akt, and TNF signaling. Furthermore, in mouse xenograft models, SC exosomes and SC exosomal hsa-miRNA-21-5p augmented human lung cancer cell growth and lymph node metastasis in vivo. Together our data revealed, for the first time, that SC-secreted exosomes and exosomal miRNA-21-5p promoted the proliferation, motility, and spreading of human lung cancer cells in vitro and in vivo. Thus, exosomal miRNA-21 may play an oncogenic role in SC-accelerated progression of lung cancer and this pathway may serve as a new therapeutic target for further evaluation.


Subject(s)
Exosomes , Lung Neoplasms , MicroRNAs , Humans , Mice , Animals , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Exosomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Schwann Cells/metabolism , Disease Models, Animal , Cell Proliferation/genetics , GPI-Linked Proteins/metabolism
8.
Immunology ; 172(4): 600-613, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637948

ABSTRACT

Immune cell infiltration is a significant pathological process in abdominal aortic aneurysms (AAA). T cells, particularly CD4+ T cells, are essential immune cells responsible for substantial infiltration of the aorta. Regulatory T cells (Tregs) in AAA have been identified as tissue-specific; however, the time, location, and mechanism of acquiring the tissue-specific phenotype are still unknown. Using single-cell RNA sequencing (scRNA-seq) on CD4+ T cells from the AAA aorta and spleen, we discovered heterogeneity among CD4+ T cells and identified activated, proliferating and developed aorta Tregs. These Tregs originate in the peripheral tissues and acquire the tissue-specific phenotype in the aorta. The identification of precursors for Tregs in AAA provides new insight into the pathogenesis of AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Single-Cell Analysis , T-Lymphocytes, Regulatory , Aortic Aneurysm, Abdominal/immunology , Aortic Aneurysm, Abdominal/pathology , T-Lymphocytes, Regulatory/immunology , Humans , Animals , Male , CD4-Positive T-Lymphocytes/immunology , Mice , Sequence Analysis, RNA , Spleen/immunology , Lymphocyte Activation , Mice, Inbred C57BL
9.
Opt Lett ; 49(12): 3476-3479, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875649

ABSTRACT

A high average power re-frequency operation Fe:ZnSe laser using laser diode side-pumped free-running Er:YAG lasers as activating sources is presented. Two pieces of subsurface layer doped Fe:ZnSe polycrystal are adoptive in a reflective resonator configuration and face-cooled by liquid nitrogen. A maximal Fe:ZnSe laser power of 105 W at a wavelength of 4.1 µm is achieved upon pumping by ten home-made Er:YAG lasers with fiber coupled output working at a frequency of 250 Hz and a pulse duration of ∼420 µs. Corresponding to the maximum Fe:ZnSe laser power, the optical-optical efficiency and slope efficiency with respect to the absorbed pump power are 43% and 44% respectively. The beam quality factor M2 is measured to be 3.4. To the best of our knowledge, it is the highest output average power of an Fe:ZnSe laser reported.

10.
Phys Rev Lett ; 132(6): 065105, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38394557

ABSTRACT

Stable transport of laser beams in highly overdense plasmas is of significance in the fast ignition of inertial confinement fusion, relativistic electron generation, and powerful electromagnetic emission, but hard to realize. Early in 1996, Harris proposed an electromagnetically induced transparency (EIT) mechanism, analogous to the concept in atomic physics, to transport a low-frequency (LF) laser in overdense plasmas aided by a high-frequency pump laser. However, subsequent investigations show that EIT cannot occur in real plasmas with boundaries. Here, our particle-in-cell simulations show that EIT can occur in the strongly relativistic regime and result in stable propagation of a LF laser in bounded plasmas with tens of its critical density. A relativistic three-wave coupling model is developed, and the criteria and frequency passband for EIT occurrence are presented. The passband is sufficiently wide in the strongly relativistic regime, allowing EIT to work sustainably. Nevertheless, it is narrowed to nearly an isolated point in the weakly relativistic regime, which can explain the quenching of EIT in bounded plasmas found in previous investigations.

11.
Phys Rev Lett ; 132(23): 235001, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905668

ABSTRACT

Relativistic positron sources with high spin polarization have important applications in nuclear and particle physics and many frontier fields. However, it is challenging to produce dense polarized positrons. Here we present a simple and effective method to achieve such a positron source by directly impinging a relativistic high-density electron beam on the surface of a solid target. During the interaction, a strong return current of plasma electrons is induced and subsequently asymmetric quasistatic magnetic fields as high as megatesla are generated along the target surface. This gives rise to strong radiative spin flips and multiphoton processes, thus leading to efficient generation of copious polarized positrons. With three-dimensional particle-in-cell simulations, we demonstrate the production of a dense highly polarized multi-GeV positron beam with an average spin polarization above 40% and nC-scale charge per shot. This offers a novel route for the studies of laserless strong-field quantum electrodynamics physics and for the development of high-energy polarized positron sources.

12.
BMC Cancer ; 24(1): 715, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862908

ABSTRACT

BACKGROUND: Resistance to immune checkpoint inhibitors (ICIs) represents a major unmet medical need in non-small cell lung cancer (NSCLC) patients. Vascular endothelial growth factor (VEGF) inhibition may reverse a suppressive microenvironment and recover sensitivity to subsequent ICIs. METHODS: This phase Ib/IIa, single-arm study, comprised dose-finding (Part A) and expansion (Part B) cohorts. Patients with ICIs-refractory NSCLC were enrolled to receive anlotinib (a multi-target tyrosine kinase inhibitor) orally (from days 1 to 14 in a 21-day cycle) and nivolumab (360 mg every 3 weeks, intravenously) on a 21-day treatment cycle. The first 21-day treatment cycle was a safety observation period (phase Ib) followed by a phase II expansion cohort. The primary objectives were recommended phase 2 dose (RP2D, part A), safety (part B), and objective response rate (ORR, part B), respectively. RESULTS: Between November 2020 and March 2022, 34 patients were screened, and 21 eligible patients were enrolled (6 patients in Part A). The RP2D of anlotinib is 12 mg/day orally (14 days on and 7 days off) and nivolumab (360 mg every 3 weeks). Adverse events (AEs) of any cause and treatment-related AEs (TRAEs) were reported in all treated patients. Two patients (9.5%) experienced grade 3 TRAE. No grade 4 or higher AEs were observed. Serious AEs were reported in 4 patients. Six patients experienced anlotinib interruption and 4 patients experienced nivolumab interruption due to TRAEs. ORR and disease control rate (DCR) was 19.0% and 76.2%, respectively. Median PFS and OS were 7.4 months (95% CI, 4.3-NE) and 15.2 months (95% CI, 12.1-NE), respectively. CONCLUSION: Our study suggests that anlotinib combined with nivolumab shows manageable safety and promising efficacy signals. Further studies are warranted. TRIAL REGISTRATION: NCT04507906 August 11, 2020.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Nivolumab , Protein Kinase Inhibitors , Adult , Aged , Female , Humans , Male , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use , Indoles/administration & dosage , Indoles/adverse effects , Indoles/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Nivolumab/administration & dosage , Nivolumab/adverse effects , Nivolumab/therapeutic use , Prospective Studies , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Quinolines/administration & dosage , Quinolines/adverse effects , Quinolines/therapeutic use , Adolescent
13.
Pharmacol Res ; 201: 107091, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316371

ABSTRACT

Inhibition of checkpoint kinase 1 (Chk1) has shown to overcome resistance to poly (ADP-ribose) polymerase (PARP) inhibitors and expand the clinical utility of PARP inhibitors in a broad range of human cancers. Pristimerin, a naturally occurring pentacyclic triterpenoid, has been the focus of intensive studies for its anticancer potential. However, it is not yet known whether low dose of pristimerin can be combined with PARP inhibitors by targeting Chk1 signaling pathway. In this study, we investigated the efficacy, safety and molecular mechanisms of the synergistic effect produced by the combination olaparib and pristimerin in TP53-deficient and BRCA-proficient cell models. As a result, an increased expression of Chk1 was correlated with TP53 mutation, and pristimerin preferentially sensitized p53-defective cells to olaparib. The combination of olaparib and pristimerin resulted in a more pronounced abrogation of DNA synthesis and induction of DNA double-strand breaks (DSBs). Moreover, pristimerin disrupted the constitutional levels of Chk1 and DSB repair activities. Mechanistically, pristimerin promoted K48-linked polyubiquitination and proteasomal degradation of Chk1 while not affecting its kinase domain and activity. Importantly, combinatorial therapy led to a higher rate of tumor growth inhibition without apparent hematological toxicities. In addition, pristimerin suppressed olaparib-induced upregulation of Chk1 and enhanced olaparib-induced DSB marker γΗ2ΑΧ in vivo. Taken together, inhibition of Chk1 by pristimerin has been observed to induce DNA repair deficiency, which may expand the application of olaparib in BRCA-proficient cancers harboring TP53 mutations. Thus, pristimerin can be combined for PARP inhibitor-based therapy.


Subject(s)
Antineoplastic Agents , Triterpenes , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Checkpoint Kinase 1/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Pentacyclic Triterpenes , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Ubiquitination , DNA
14.
BMC Vet Res ; 20(1): 242, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831422

ABSTRACT

BACKGROUND: ATPase activity and the antioxidant function of intestinal tissue can reflect intestinal cell metabolic activity and oxidative damage, which might be related to intestinal function. However, the specific influence of intestinal ATPase activity and antioxidant function on growth performance, feed conversion efficiency, and the intestinal microbiota in sheep remains unclear. RESULTS: This study analyzed the correlation between ATPase activity and antioxidant function in the jejunum of 92 Hu sheep and their growth performance and feed conversion efficiency. Additionally, individuals with the highest (H group) and lowest (L group) jejunum MDA content and Na+ K+-ATPase activity were further screened, and the effects of jejunum ATPase activity and MDA content on the morphology and microbial community of sheep intestines were analyzed. There was a significant correlation between jejunum ATPase and SOD activity and the initial weight of Hu sheep (P < 0.01). The H-MDA group exhibited significantly higher average daily gain (ADG) from 0 to 80 days old and higher body weight (BW) after 80 days. ATPase and SOD activities, and MDA levels correlated significantly and positively with heart weight. The jejunum crypt depth and circular muscle thickness in the H-ATP group were significantly higher than in the L-ATP group, and the villus length, crypt depth, and longitudinal muscle thickness in the H-MDA group were significantly higher than in the L-MDA group (P < 0.01). High ATPase activity and MDA content significantly reduced the jejunum microbial diversity, as indicated by the Chao1 index and observed species, and affected the relative abundance of specific taxa. Among species, the relative abundance of Olsenella umbonata was significantly higher in the H-MDA group than in the L-MDA group (P < 0.05), while Methanobrevibacter ruminantium abundance was significantly lower than in the L-MDA group (P < 0.05). In vitro culture experiments confirmed that MDA promoted the proliferation of Olsenella umbonata. Thus, ATPase and SOD activities in the jejunum tissues of Hu sheep are predominantly influenced by congenital factors, and lambs with higher birth weights exhibit lower Na+ K+-ATPase, Ca2+ Mg2+-ATPase, and SOD activities. CONCLUSIONS: The ATPase activity and antioxidant performance of intestinal tissue are closely related to growth performance, heart development, and intestinal tissue morphology. High ATPase activity and MDA content reduced the microbial diversity of intestinal tissue and affect the relative abundance of specific taxa, representing a potential interaction between the host and its intestinal microbiota.


Subject(s)
Adenosine Triphosphatases , Antioxidants , Gastrointestinal Microbiome , Jejunum , Animals , Jejunum/microbiology , Jejunum/enzymology , Antioxidants/metabolism , Gastrointestinal Microbiome/physiology , Adenosine Triphosphatases/metabolism , Sheep , Male , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism
15.
Med Educ ; 58(2): 247-257, 2024 02.
Article in English | MEDLINE | ID: mdl-37455132

ABSTRACT

BACKGROUND: Although the accreditation approach is widely used to ensure the quality of medical education in many countries, there is scant empirical evidence on whether and how it improves actual medical school performance. We focused on conditions in China, which introduced an accreditation system during the 2010s. Specifically, we examined the relationship between first-round accreditation and actual performance based on the results of medical licensing examinations. Referring to organisation theory, we hypothesised that the impacts of accreditation would depend on existing performance gaps. METHOD: In 2022, we analysed panel data from 105 Chinese medical schools during accreditation (2012 to 2021) and pass rates on medical licensing examinations (2011 to 2019), as matched into 834 school-year records in a window of years before and after accreditation. We employed fixed-effects regression models with a comparison group to exclude factors that may have confounded the impacts of accreditation time. We also demonstrated the heterogeneous effects of accreditation by tier and performance gap of medical schools. RESULTS: The conservative estimates showed a substantial cumulative improvement (over 15 percentage points) in pass rates during the years before accreditation, with no clear trend indicating performance drops in the years after accreditation. Lower-tiered medical schools gained greater benefits from accreditation. Medical schools with a larger prior performance gap achieved a greater percentage point increase in pass rates with the passage of time in pre-accreditation years. CONCLUSIONS: This is the first empirical study to investigate whether accreditation has bridged performance gaps among medical schools. The results support the value of accreditation in China, a country that recently established the system, and might work as a substitute for missing information on early accreditation history in countries with long-established accreditation systems. We encourage more studies in countries that have recently introduced accreditation systems.


Subject(s)
Education, Medical , Schools, Medical , Humans , Accreditation , Licensure , China
16.
Neurosurg Rev ; 47(1): 481, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186095

ABSTRACT

We explored the impact of brainstem auditory evoked potentials monitoring, as well as anatomical characteristics, in relation to their influence on hearing deficits. A total of 851 patients diagnosed with idiopathic hemifacial spasm underwent microvascular decompression treatment were recruited in our study. A nomogram was developed based on the regression analysis. Nomogram performance was evaluated through receiver operating characteristic (ROC), decision curve analyses and calibration curve. The rate of positive wave V change was also higher in the hearing deficit group (71.8% vs no hearing deficit group, p < 0.001). Furthermore, greater retraction depth (0.78 ± 0.25 cm vs 0.55 ± 0.12 cm, p < 0.001), duration (74.43 ± 15.74 min vs 55.71 ± 7.01 min, p < 0.001) and retraction distance (4.38 ± 0.38 cm vs 4.17 ± 0.24 cm, p = 0.001) were evident in the hearing deficit patients. Multivariate logistic regression showed that positive wave V change (OR 5.43), greater retraction depth (OR 55.57) and longer retraction duration (OR 1.14) emerged as significant independent predictors of postoperative hearing deficit. The external validation cohort exhibited a favorable discrimination with an AUC of 0.88. The calibration curves further confirmed the reliability of the predicted outcome in relation to the observed outcome in the external validation cohort (p = 0.89). The decision curves demonstrated that the nomogram outperformed the All or None scheme when the threshold probability ranged from > 2% to < 60% in the external validation cohort. We constructed a nomogram, including wave V, retraction depth, and retraction duration, which can effectively predict the occurrence of hearing deficits and has good clinical applicability.


Subject(s)
Evoked Potentials, Auditory, Brain Stem , Hemifacial Spasm , Microvascular Decompression Surgery , Nomograms , Humans , Male , Female , Middle Aged , Microvascular Decompression Surgery/methods , Microvascular Decompression Surgery/adverse effects , Adult , Evoked Potentials, Auditory, Brain Stem/physiology , Hemifacial Spasm/surgery , Hearing Loss/etiology , Aged , Treatment Outcome , Postoperative Complications/epidemiology , Postoperative Complications/diagnosis , ROC Curve
17.
Anim Biotechnol ; 35(1): 2295926, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38149679

ABSTRACT

The body size traits are major traits in livestock, which intuitively displays the development of the animal's bones and muscles. This study used PCR amplification, Sanger sequencing, KASPar genotyping, and quantitative real-time reverse transcription PCR (qRT-PCR) to analyze the Single-nucleotide polymorphism and expression characteristics of Argonaute RISC catalytic component 2 (AGO2) and Plectin (PLEC) genes in Hu sheep. Two intron mutations were found in Hu sheep, which were AGO2 g.51700 A > C and PLEC g.23157 C > T, respectively. Through association analysis of two mutation sites and body size traits, it was found that AGO2 g.51700 A > C mainly affects the chest and cannon circumference of Hu sheep of while PLEC g.23157 C mainly affects body height and body length. The combined genotypes of AGO2 and PLEC genes with body size traits showed SNPs at the AGO2 g.51700 A > C and PLEC g.23157 C > T loci significantly improved the body size traits of Hu sheep. In addition, the AGO2 gene has the highest expression levels in the heart, rumen, and tail fat, and the PLEC gene is highly expressed in the heart. These two loci can provide new research ideas for improving the body size traits of Hu sheep.


Subject(s)
Plectin , Polymorphism, Single Nucleotide , Sheep/genetics , Animals , Plectin/genetics , Body Size/genetics , Polymorphism, Single Nucleotide/genetics , Genotype , Phenotype
18.
Anim Biotechnol ; 35(1): 2344207, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38669223

ABSTRACT

As a crucial economic trait, fat deposition is directly related to carcass quality and feed efficiency in sheep. The purpose of this study was to investigate the polymorphisms of the FGB gene related to fat deposition and detect the expression features of the FGB gene in different adipose tissues of sheep by using Sanger sequencing, MassARRAY® SNP technique, and quantitative real-time PCR (qRT-PCR). Results showed that in the intron region of the FGB gene, a SNP g. 3378953 A > T has been identified, and significant association was found between perirenal fat weight, perirenal fat relative weight, mesenteric fat weight, and mesenteric fat relative weight (P < 0.05). Moreover, qRT-PCR analysis showed that FGB was expressed in all three adipose tissues, and FGB gene expression level in the AA genotype was significantly lower than that in the AT or TT genotypes (P < 0.05). Therefore, the FGB gene can be used as a candidate gene to reduce fat deposition in Hu sheep breeding, and the selection of the AA genotype in Hu sheep in production practice is more conducive to improving production efficiency.


Subject(s)
Adipose Tissue , Polymorphism, Single Nucleotide , Animals , Polymorphism, Single Nucleotide/genetics , Adipose Tissue/metabolism , Sheep/genetics , Sheep/physiology , Genotype , Sheep, Domestic/genetics , Sheep, Domestic/physiology , Male , Female , Breeding
19.
Anim Biotechnol ; 35(1): 2295928, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38174897

ABSTRACT

Scrotal circumference is an important reproductive index of breeding rams, which has a high genetic correlation with ejaculation volume and semen quality. In this study, the scrotal circumference of 1353 male Hu sheep at different stages of development was measured and descriptive statistical analysis was performed. The results showed that the coefficient of variation of scrotal circumference at each stage was greater than 10%, and its heritability were moderately to high, ranging from 0.318 to 0.719. We used PCR amplification and Sanger sequencing to scan the polymorphisms of the IGFALS gene, and performed association analysis with the circumference of the scrotum at different stages. We identified a synonymous mutation g.918 G > C in exon 1 of the IGFALS gene, and this mutation was significantly associated with scrotal circumference at 100, 120, 140, 160 and 180 days (p < 0.05). Therefore, IGFALS gene polymorphism can be used as a molecular marker affecting scrotal circumference of Hu sheep, which can provide a reference for future molecular marker-assisted selection of scrotal circumference in sheep.


Subject(s)
Scrotum , Semen Analysis , Sheep/genetics , Male , Animals , Semen Analysis/veterinary , Sheep, Domestic , Reproduction , Polymorphism, Genetic/genetics
20.
Ecotoxicol Environ Saf ; 280: 116579, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38865940

ABSTRACT

Environmental exposure to the cadmium (Cd) has been shown to be a risk factor for colorectal cancer (CRC) progression, but the exact mechanism has not been fully elucidated. In this study, we found that chronic Cd (3 µM) exposure promoted the proliferation, adhesion, migration, and invasion of CRC cells in vitro, as well as lung metastasis in vivo. RNA-seq and TCGA-COAD datasets revealed that decreased hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) expression may be a crucial factor in Cd-induced CRC progression. Further analysis using qRT-PCR and tissue microarrays from CRC patients showed that HADHB expression was significantly reduced in CRC tissues compared to adjacent normal tissues, and low HADHB expression was associated with adverse clinical features and poor overall survival, either directly or through TNM stage. Furthermore, HADHB was found to play an important role in the Cd-induced malignant metastatic phenotype of CRC cells and lung metastasis in mice. Mechanistically, we discovered that chronic Cd exposure resulted in hypermethylation of the HADHB promoter region via inhibition of DNA demethylase tet methylcytosine dioxygenase 2 (TET2), which then led to decreased HADHB expression and activation of the FAK signaling pathway, and ultimately contributed to CRC progression. In conclusion, this study provided a new potential insight and evaluable biomarker for Cd exposure-induced CRC progression and treatment.


Subject(s)
Cadmium , Colorectal Neoplasms , DNA-Binding Proteins , Dioxygenases , Disease Progression , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/chemically induced , Humans , Dioxygenases/genetics , Animals , Mice , Cadmium/toxicity , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Cell Line, Tumor , Male , Cell Proliferation/drug effects , Female , Mice, Nude , DNA Methylation/drug effects , Cell Movement/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL