Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 132(26): 260802, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38996307

ABSTRACT

Twin-field quantum key distribution (TFQKD) overcomes the linear rate-loss limit, which promises a boost of secure key rate over long distance. However, the complexity of eliminating the frequency differences between the independent laser sources hinders its practical application. We analyzed and determined the frequency stability requirements for implementing TFQKD using frequency-stabilized lasers. Based on this analysis, we proposed and demonstrated a simple and practical approach that utilizes the saturated absorption spectroscopy of acetylene as an absolute reference, eliminating the need for fast frequency locking to achieve TFQKD. Adopting the 4-intensity sending-or-not-sending TFQKD protocol, we experimentally demonstrated the TFQKD over 502, 301, and 201 km ultralow-loss optical fiber, respectively. We expect this high-performance scheme will find widespread usage in future intercity and free-space quantum communication networks.

2.
Sci Rep ; 14(1): 7680, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561440

ABSTRACT

Gaussian boson sampling (GBS) plays a crucially important role in demonstrating quantum advantage. As a major imperfection, the limited connectivity of the linear optical network weakens the quantum advantage result in recent experiments. In this work, we introduce an enhanced classical algorithm for simulating GBS processes with limited connectivity. It computes the loop Hafnian of an n × n symmetric matrix with bandwidth w in O ( n w 2 w ) time. It is better than the previous fastest algorithm which runs in O ( n w 2 2 w ) time. This classical algorithm is helpful on clarifying how limited connectivity affects the computational complexity of GBS and tightening the boundary for achieving quantum advantage in the GBS problem.

SELECTION OF CITATIONS
SEARCH DETAIL