Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 20(5): e1012228, 2024 May.
Article in English | MEDLINE | ID: mdl-38739679

ABSTRACT

The arthropod exoskeleton provides protection and support and is vital for survival and adaption. The integrity and mechanical properties of the exoskeleton are often impaired after pathogenic infection; however, the detailed mechanism by which infection affects the exoskeleton remains largely unknown. Here, we report that the damage to the shrimp exoskeleton is caused by modulation of host lipid profiles after infection with white spot syndrome virus (WSSV). WSSV infection disrupts the mechanical performance of the exoskeleton by inducing the expression of a chitinase (Chi2) in the sub-cuticle epidermis and decreasing the cuticle chitin content. The induction of Chi2 expression is mediated by a nuclear receptor that can be activated by certain enriched long-chain saturated fatty acids after infection. The damage to the exoskeleton, an aftereffect of the induction of host lipogenesis by WSSV, significantly impairs the motor ability of shrimp. Blocking the WSSV-caused lipogenesis restored the mechanical performance of the cuticle and improved the motor ability of infected shrimp. Therefore, this study reveals a mechanism by which WSSV infection modulates shrimp internal metabolism resulting in phenotypic impairment, and provides new insights into the interactions between the arthropod host and virus.


Subject(s)
Animal Shells , Lipid Metabolism , Penaeidae , White spot syndrome virus 1 , Animals , Penaeidae/virology , Penaeidae/metabolism , Animal Shells/metabolism , Animal Shells/virology , White spot syndrome virus 1/physiology , Lipid Metabolism/physiology , Host-Pathogen Interactions , Lipogenesis/physiology
2.
PLoS Pathog ; 18(1): e1010253, 2022 01.
Article in English | MEDLINE | ID: mdl-35073369

ABSTRACT

Flagellin is a key bacterial virulence factor that can stimulate molecular immune signaling in both animals and plants. The detailed mechanisms of recognizing flagellin and mounting an efficient immune response have been uncovered in vertebrates; however, whether invertebrates can discriminate flagellin remains largely unknown. In the present study, the homolog of human SHOC2 leucine rich repeat scaffold protein in kuruma shrimp (Marsupenaeus japonicus), designated MjShoc2, was found to interact with Vibrio anguillarum flagellin A (FlaA) using yeast two-hybrid and pull-down assays. MjShoc2 plays a role in antibacterial response by mediating the FlaA-induced expression of certain antibacterial effectors, including lectin and antimicrobial peptide. FlaA challenge, via MjShoc2, led to phosphorylation of extracellular regulated kinase (Erk), and the subsequent activation of signal transducer and activator of transcription (Stat), ultimately inducing the expression of effectors. Therefore, by establishing the FlaA/MjShoc2/Erk/Stat signaling axis, this study revealed a new antibacterial strategy in shrimp, and provides insights into the flagellin sensing mechanism in invertebrates.


Subject(s)
Arthropod Proteins/immunology , Flagellin/immunology , Intracellular Signaling Peptides and Proteins/immunology , Penaeidae/immunology , Vibrio Infections/immunology , Animals , MAP Kinase Signaling System/immunology , Penaeidae/microbiology , STAT Transcription Factors/immunology , Vibrio
3.
Bioorg Chem ; 148: 107434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744168

ABSTRACT

Azaphilones represent a particular group of fascinating pigments from fungal source, with easier industrialization and lower cost than the traditional plant-derived pigments, and they also display a wide range of pharmacological activities. Herein, 28 azaphilone analogs, including 12 new ones, were obtained from the fermentation culture of a marine fungus Penicillium sclerotium UJNMF 0503. Their structures were elucidated by MS, NMR and ECD analyses, together with NMR and ECD calculations and biogenetic considerations. Among them, compounds 1 and 2 feature an unusual natural benzo[d][1,3]dioxepine ring embedded with an orthoformate unit, while 3 and 4 represent the first azaphilone examples incorporating a novel rearranged 5/6 bicyclic core and a tetrahydropyran ring on the side chain, respectively. Our bioassays revealed that half of the isolates exhibited neuroprotective potential against H2O2-induced injury on RSC96 cells, while compound 13 displayed the best rescuing capacity toward the cell viability by blocking cellular apoptosis, which was likely achieved by upregulating the PI3K/Akt signaling pathway.


Subject(s)
Apoptosis , Benzopyrans , Dose-Response Relationship, Drug , Hydrogen Peroxide , Neuroprotective Agents , Penicillium , Phosphatidylinositol 3-Kinases , Pigments, Biological , Proto-Oncogene Proteins c-akt , Apoptosis/drug effects , Penicillium/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Pigments, Biological/pharmacology , Pigments, Biological/chemistry , Pigments, Biological/isolation & purification , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Molecular Structure , Benzopyrans/pharmacology , Benzopyrans/chemistry , Benzopyrans/isolation & purification , Structure-Activity Relationship , Animals , Cell Survival/drug effects , Rats , Signal Transduction/drug effects
4.
Appl Microbiol Biotechnol ; 108(1): 186, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300290

ABSTRACT

Steroid-based drugs are now mainly produced by the microbial transformation of phytosterol, and a two-step bioprocess is adopted to reach high space-time yields, but byproducts are frequently observed during the bioprocessing. In this study, the catabolic switch between the C19- and C22-steroidal subpathways was investigated in resting cells of Mycobacterium neoaurum NRRL B-3805, and a dose-dependent transcriptional response toward the induction of phytosterol with increased concentrations was found in the putative node enzymes including ChoM2, KstD1, OpccR, Sal, and Hsd4A. Aldolase Sal presented a dominant role in the C22 steroidal side-chain cleavage, and the byproduct was eliminated after sequential deletion of opccR and sal. Meanwhile, the molar yield of androst-1,4-diene-3,17-dione (ADD) was increased from 59.4 to 71.3%. With the regard of insufficient activity of rate-limiting enzymes may also cause byproduct accumulation, a chromosomal integration platform for target gene overexpression was established supported by a strong promoter L2 combined with site-specific recombination in the engineered cell. Rate-limiting steps of ADD bioconversion were further characterized and overcome. Overexpression of the kstD1 gene further strengthened the bioconversion from AD to ADD. After subsequential optimization of the bioconversion system, the directed biotransformation route was developed and allowed up to 82.0% molar yield with a space-time yield of 4.22 g·L-1·day-1. The catabolic diversion elements and the genetic overexpression tools as confirmed and developed in present study offer new ideas of M. neoaurum cell factory development for directed biotransformation for C19- and C22-steroidal drug intermediates from phytosterol. KEY POINTS: • Resting cells exhibited a catabolic switch between the C19- and C22-steroidal subpathways. • The C22-steroidal byproduct was eliminated after sequential deletion of opccR and sal. • Rate-limiting steps were overcome by promoter engineering and chromosomal integration.


Subject(s)
Aldehyde-Lyases , Phytosterols , Androstadienes , Cell Differentiation , Polyenes
5.
J Toxicol Environ Health A ; 87(11): 471-479, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38590254

ABSTRACT

Cannabidiol (CBD), a natural component extracted from Cannabis sativa L. exerts neuroprotective, antioxidant, and anti-inflammatory effects in Alzheimer's disease (AD), a disease characterized by impaired cognition and accumulation of amyloid-B peptides (Aß). Interactions between the gut and central nervous system (microbiota-gut-brain axis) play a critical role in the pathogenesis of neurodegenerative disorder AD. At present investigations into the mechanisms underlying the neuroprotective action of CBD in AD are not conclusive. The aim of this study was thus to examine the influence of CBD on cognition and involvement of the microbiota-gut-brain axis using a senescence-accelerated mouse prone 8 (SAMP8) model. Data demonstrated that administration of CBD to SAMP8 mice improved cognitive function as evidenced from the Morris water maze test and increased hippocampal activated microglia shift from M1 to M2. In addition, CBD elevated levels of Bacteriodetes associated with a fall in Firmicutes providing morphologically a protective intestinal barrier which subsequently reduced leakage of intestinal toxic metabolites. Further, CBD was found to reduce the levels of hippocampal and colon epithelial cells lipopolysaccharide (LPS), known to be increased in AD leading to impaired gastrointestinal motility, thereby promoting neuroinflammation and subsequent neuronal death. Our findings demonstrated that CBD may be considered a beneficial therapeutic drug to counteract AD-mediated cognitive impairment and restore gut microbial functions associated with the observed neuroprotective mechanisms.


Subject(s)
Alzheimer Disease , Cannabidiol , Cognitive Dysfunction , Mice , Animals , Alzheimer Disease/drug therapy , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Brain-Gut Axis , Cognition , Cognitive Dysfunction/drug therapy , Disease Models, Animal
6.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38557424

ABSTRACT

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Lamiaceae , Humans , Amyloid beta-Peptides/pharmacology , Alzheimer Disease/drug therapy , Flavonoids/pharmacology , Complement C3/metabolism , Complement C3/pharmacology , Complement C3/therapeutic use , Neuroinflammatory Diseases , Astrocytes/metabolism , Donepezil/metabolism , Donepezil/pharmacology , Donepezil/therapeutic use , Cytokines/metabolism , Peptide Fragments/metabolism , Peptide Fragments/toxicity
7.
Magn Reson Chem ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867454

ABSTRACT

Copper(II) chloride anionic coordination complexes with different imidazole-derived ligands due to the potential cytotoxic activity play the important role in protein. By investigating the experimental electron paramagnetic resonance (EPR) and ultraviolet-visible (UV-vis) spectra of [CuCl(C6H10N2)4]Cl, [CuCl(C6H10N2)4]Cl, [CuCl2(C4H6N2)4], and [Cu2Cl2(C5H8N2)6]Cl2·2H2O, the local structure of the corresponding Cu2+ centers and the role of different ligands are obtained. Based on the well-agreed EPR parameters and the d-d transitions (10Dq), the four Cu2+ centers show tetragonal and orthorhombic distortion, corresponding to the different anisotropies of EPR signals. In addition, the general rules of governing the impact of methanol in imidazolylalkyl derivatives are also discussed, especially the influence on the local environment (symmetry, distortion, covalency, and crystal field) of above four copper(II) chloride anionic coordination complexes. Therefore, the obtained results in this study will be beneficial to provide a theoretical basis for the experimental design of desired copper-containing imidazolyl alkyl derivatives.

8.
BMC Surg ; 24(1): 171, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822305

ABSTRACT

PURPOSE: The aim of this study is to investigate the effect of double-tract reconstruction on short-term clinical outcome, quality of life and nutritional status of patients after proximal gastrectomy by comparing with esophagogastrostomy and total gastrectomy with Roux-en-Y reconstruction. METHODS: The clinical data of patients who underwent double tract reconstruction (DTR), esophagogastrostomy (EG), total gastrectomy with Roux-en-Y reconstruction (TG-RY) were retrospectively collected from May 2020 to May 2022. The clinical characteristics, short-term surgical outcomes, postoperative quality of life and nutritional status were compared among the three groups. RESULTS: Compared with the DTR group, the operation time in the TG group was significantly shorter (200(180,240) minutes vs. 230(210,255) minutes, p < 0.01), and more lymph nodes were removed (28(22, 25) vs. 22(19.31), p < 0.01), there were no significant differences in intraoperative blood loss, first flatus time, postoperative hospital stay and postoperative complication rate among the three groups. Postoperative digestive tract angiography was completed in 36 patients in the DTR group, of which 21 (58.3%) showed double-tract type of food passing. The incidence of postoperative reflux symptoms was 9.2% in the DTR group, 43.8% in the EG group and 23.2% in the TG group, repectively (P < 0.01). EORTCQLQ-STO22 questionnaire survey showed that compared with EG group, DTR group had fewer reflux symptoms (P < 0.05), fewer anxiety symptoms (P < 0.05) and more swallowing symptoms (P < 0.05). Compared with TG group, DTR group had fewer reflux symptoms (P < 0.05). There were no other significant differences between the two groups. Compared with TG group and EG group, DTR can better maintain postoperative BMI, and there is no statistical difference between the three groups in terms of hemoglobin and albumin. CONCLUSIONS: Although partial double-tract reconstruction approach does not always ensure food to enter the distal jejunum along the two pathways as expected, it still shows satisfactory anti-reflux effect. Moreover, it might improve patients' quality of life and maintain better nutritional status comparing with gastroesophageal anastomosis and total gastrectomy with Roux-en-Y reconstruction.


Subject(s)
Body Mass Index , Gastrectomy , Quality of Life , Stomach Neoplasms , Humans , Stomach Neoplasms/surgery , Male , Female , Gastrectomy/methods , Middle Aged , Retrospective Studies , Aged , Anastomosis, Roux-en-Y/methods , Nutritional Status , Postoperative Complications/epidemiology , Treatment Outcome , Plastic Surgery Procedures/methods , Operative Time
9.
J Asian Nat Prod Res ; 26(6): 690-698, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38192122

ABSTRACT

Two neolignan glycosides including a new one (1), along with seven iridoid glycosides (3 - 9) and nine flavonoid glycosides (10 - 18), were isolated from the leaves of Vaccinium bracteatum. Their structures were established mainly on the basis of 1D/2D NMR and ESIMS analyses, as well as comparison to known compounds in the literature. The structure of 1 with absolute stereochemistry was also confirmed by chemical degradation and ECD calculation. Selective compounds showed antiradical activity against ABTS and/or DPPH. Moreover, several isolates also suppressed the production of ROS in RAW264.7 cells and exerted neuroprotective effect toward PC12 cells.


Subject(s)
Flavonoids , Glycosides , Lignans , Plant Leaves , Plant Leaves/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Animals , Mice , PC12 Cells , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Molecular Structure , Lignans/chemistry , Lignans/pharmacology , Lignans/isolation & purification , Rats , RAW 264.7 Cells , Vaccinium/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Iridoids/chemistry , Iridoids/pharmacology , Iridoids/isolation & purification , Iridoid Glycosides/chemistry , Iridoid Glycosides/pharmacology , Iridoid Glycosides/isolation & purification , Reactive Oxygen Species , Picrates/pharmacology
10.
Small ; 19(23): e2207421, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36890778

ABSTRACT

The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.

11.
Mar Drugs ; 21(11)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37999417

ABSTRACT

In our chemical investigation into Penicillium sp. UJNMF0740 derived from mangrove sediment, fourteen indole diterpene analogs, including four new ones, are purified by multiple chromatographic separation methods, with their structures being elucidated by the analyses of NMR, HR-ESIMS, and ECD data. The antibacterial and neuroprotective effects of these isolates were examined, and only compounds 6 and 9 exhibited weak antibacterial activity, while compounds 5, 8, and 10 showed protective effects against the injury of PC12 cells induced by 6-hydroxydopamine (6-OHDA). Additionally, compound 5 could suppress the apoptosis and production of reactive oxygen species (ROS) in 6-OHDA-stimulated PC12 cells as well as trigger the phosphorylation of PI3K and Akt. Taken together, our work enriches the structural diversity of indole diterpenes and hints that compounds of this skeleton can repress the 6-OHDA-induced apoptosis of PC12 cells via regulating the PI3K/Akt signaling pathway, which provides evidence for the future utilization of this fascinating class of molecules as potential neuroprotective agents.


Subject(s)
Diterpenes , Neuroprotective Agents , Penicillium , Rats , Animals , PC12 Cells , Proto-Oncogene Proteins c-akt/metabolism , Oxidopamine/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Penicillium/chemistry , Reactive Oxygen Species/metabolism , Apoptosis , Diterpenes/pharmacology , Diterpenes/chemistry , Indoles/pharmacology , Indoles/chemistry , Anti-Bacterial Agents/pharmacology , Neuroprotective Agents/pharmacology
12.
Eur Radiol ; 32(8): 5446-5457, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35286409

ABSTRACT

OBJECTIVE: Perivascular spaces (PVS), components of the glymphatic system in the brain, have been known to be important conduits for clearing metabolic waste, and this process mainly increases during sleep. Sleep disruption might result in PVS dysfunction and cognitive impairment. In this study, we aim to explore whether MRI-visible enlarged perivascular spaces (EPVS) could be imaging markers to predict cognitive impairment in chronic insomnia patients. METHOD: We obtained data from 156 patients with chronic insomnia and 79 age-matched healthy individuals. Using T2-weighted MRI images, visible EPVS in various brain regions were measured and analyzed. The associations between EPVS numbers and cerebrospinal fluid (CSF) ß-amyloid 42 (Aß42), total tau (t-tau), and phosphorylated tau (p-tau) level in chronic insomnia patients were evaluated. RESULT: Our results showed that MRI-visible EPVS in the frontal cortex, centrum semiovale, basal ganglia, and hippocampus of chronic insomnia patients with impaired cognition (ICG) significantly increased than that in normal cognition (NCG) patients. The increased MRI-visible EPVS in the frontal cortex, centrum semiovale, and basal ganglia were also associated with the increased CSF Aß42, t-tau, and p-tau level in ICG patients. MRI-visible EPVS in the basal ganglia and centrum semiovale had high sensitivity and specificity in distinguishing ICG chronic insomnia patients from those with NCG. CONCLUSION: Our study indicated that MRI-visible EPVS in the basal ganglia and centrum semiovale might be valuable imaging markers to predict cognitive impairment in chronic insomnia patients. It will be meaningful to discern those cognitive decline patients in preclinical stage and take some measures to prevent disease progression. KEY POINTS: • Increased MRI-visible EPVS were associated with the increased CSF Aß42, t-tau, and p-tau level in older chronic insomnia patients with impaired cognition.


Subject(s)
Cognitive Dysfunction , Sleep Initiation and Maintenance Disorders , Aged , Basal Ganglia , Biomarkers , Cognition , Cognitive Dysfunction/complications , Cognitive Dysfunction/diagnostic imaging , Humans , Magnetic Resonance Imaging , Sleep Initiation and Maintenance Disorders/complications , Sleep Initiation and Maintenance Disorders/diagnostic imaging
13.
Br J Nutr ; 127(11): 1613-1620, 2022 06 14.
Article in English | MEDLINE | ID: mdl-34176541

ABSTRACT

Sarcopenic obesity is regarded as a risk factor for the progression and development of non-alcoholic fatty liver disease (NAFLD). Since male sex is a risk factor for NAFLD and skeletal muscle mass markedly varies between the sexes, we examined whether sex influences the association between appendicular skeletal muscle mass to visceral fat area ratio (SVR), that is, an index of skeletal muscle mass combined with abdominal obesity, and the histological severity of NAFLD. The SVR was measured by bioelectrical impedance in a cohort of 613 (M/F = 443/170) Chinese middle-aged individuals with biopsy-proven NAFLD. Multivariable logistic regression and subgroup analyses were used to test the association between SVR and the severity of NAFLD (i.e. non-alcoholic steatohepatitis (NASH) or NASH with the presence of any stage of liver fibrosis). NASH was identified by a NAFLD activity score ≥5, with a minimum score of 1 for each of its categories. The presence of fibrosis was classified as having a histological stage ≥1. The SVR was inversely associated with NASH in men (adjusted OR 0·62; 95 % CI 0·42, 0·92, P = 0·017 for NASH, adjusted OR 0·65; 95 % CI 0·43, 0·99, P = 0·043 for NASH with the presence of fibrosis), but not in women (1·47 (95 % CI 0·76, 2·83), P = 0·25 for NASH, and 1·45 (95 % CI 0·74, 2·83), P = 0·28 for NASH with the presence of fibrosis). There was a significant interaction for sex and SVR (Pinteraction = 0·017 for NASH and Pinteraction = 0·033 for NASH with the presence of fibrosis). Our findings show that lower skeletal muscle mass combined with abdominal obesity is strongly associated with the presence of NASH only in men.


Subject(s)
Non-alcoholic Fatty Liver Disease , Middle Aged , Humans , Male , Female , Non-alcoholic Fatty Liver Disease/pathology , Obesity, Abdominal/complications , Intra-Abdominal Fat , Liver Cirrhosis/complications , Biopsy , Obesity/complications , Muscle, Skeletal/pathology
14.
Acta Pharmacol Sin ; 43(3): 529-540, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34168317

ABSTRACT

Our previous studies confirm that exogenous reduced nicotinamide adenine dinucleotide phosphate (NADPH) exerts a neuroprotective effect in animal models of ischemic stroke, and its primary mechanism is related to anti-oxidative stress and improved energy metabolism. However, it is unknown whether nicotinamide adenine dinucleotide (NADH) also plays a neuroprotective role and whether NADPH is superior to NADH against ischemic stroke? In this study we compared the efficacy of NADH, NADPH, and edaravone in ameliorating brain injury and metabolic stress in ischemic stroke. Transient middle cerebral artery occlusion/reperfusion (t-MCAO/R) mouse model and in vitro oxygen glucose deprivation/reoxygenation (OGD/R) model were established. The mice were intravenously administered the optimal dose of NADPH (7.5 mg/kg), NADH (22.5 mg/kg), or edaravone (3 mg/kg) immediately after reperfusion. We showed that the overall efficacy of NADPH in ameliorating ischemic injury was superior to NADH and edaravone. NADPH had a longer therapeutic time window (within 5 h) after reperfusion than NADH and edaravone (within 2 h) for ischemic stroke. In addition, NADPH and edaravone were better in alleviating the brain atrophy, while NADH and NADPH were better in increasing the long-term survival rate. NADPH showed stronger antioxidant effects than NADH and edaravone; but NADH was the best in terms of maintaining energy metabolism. Taken together, this study demonstrates that NADPH exerts better neuroprotective effects against ischemic stroke than NADH and edaravone.


Subject(s)
Edaravone/pharmacology , Ischemic Stroke/pathology , NADP/pharmacology , NAD/pharmacology , Neuroprotective Agents/pharmacology , Reperfusion Injury/prevention & control , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Infarction, Middle Cerebral Artery/pathology , Male , Mice , Mice, Inbred ICR , Random Allocation , Stress, Physiological/drug effects
15.
Clin Lab ; 68(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254038

ABSTRACT

BACKGROUND: Over past decades, the instability of parathyroid hormone (PTH) causes great interference for the clinical laboratory. Contradictory results were reported in many reports about storage conditions and suitable blood collection tubes to ensure PTH stability in the pretreatment phase. METHODS: This study recruited 30 participants including 10 healthy persons, 10 hemodialysis, and 10 hyperparathyroidism patients. Five types of blood collection tubes (EDTA-K3 tube, coagulant tube, heparin anticoagulant tube, gel separating tube, and plain tube) were included to determine whether they were suitable as blood-collecting vessels. The time points and conditions for testing samples included less than 2 hours, 4 hours, and 8 hours at room temperature, and, in parallel, 24 hours, 48 hours, and 72 hours in refrigeration. Two different judgement criteria were used to compare the stability of PTH in different blood vessels. RESULTS: Purely statistical analysis showed that 4 types of blood collection tubes could not perform the same storage ability as EDTA-K3 tube at "T0" time point. Plain tube had the largest drop among all types of blood collection tubes. Compared by pairwise t-test, EDTA-K3 tube could maintain intact PTH for 8 hours (p = 0.998) at room temperature and 24 hours (p = 0.053) in refrigeration. When comparing the total change limit (TCL = 18.8%), at room temperature, EDTA-K3 tube (7.0%), heparin tube (12.7%), coagulant tube (16.2%), and plain tube (17.6%) could maintain intact PTH for 8 hours, and GST can preserve PTH for 4 hours (18.2%). In refrigeration, EDTA-K3 tube could maintain PTH for 72 hours (7.5%) and heparin tube could maintain 24 hours (18.4%). The other three blood collection tubes could not preserve PTH in refrigeration (GST = 22.1%, coagulant tube = 20.3%, plain tube = 20.8%). CONCLUSIONS: PTH seems more stable in the EDTA-K3 tube than any other blood collection tubes and is followed next by the heparin anticoagulant tube. Plain tube and GST have faster degradation than other tubes and are not suggested to preserve intact PTH.


Subject(s)
Blood Specimen Collection , Parathyroid Hormone , Anticoagulants , Blood Specimen Collection/methods , Edetic Acid , Hematologic Tests/methods , Humans , Renal Dialysis
16.
World J Microbiol Biotechnol ; 38(11): 191, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35974205

ABSTRACT

Steroidal resource occupies a vital proportion in the pharmaceutical industry attributing to their important therapeutic effects on fertility, anti-inflammatory and antiviral activities. Currently, microbial transformation from phytosterol has become the dominant strategy of steroidal drug intermediate synthesis that bypasses the traditional chemical route. Mycobacterium sp. serve as the main industrial microbial strains that are capable of introducing selective functional modifications of steroidal intermediate, which has become an indispensable platform for steroid biomanufacturing. By reviewing the progress in past two decades, the present paper concentrates mainly on the microbial rational modification aspects that include metabolic pathway editing, key enzymes engineering, material transport pathway reinforcement, toxic metabolic intermediates removal and byproduct reconciliation. In addition, progress on omics analysis and direct genetic manipulation are summarized and classified that may help reform the industrial hosts with more efficiency. The paper provides an insightful present for steroid biomanufacturing especially on the current trends and prospects of mycobacteria.


Subject(s)
Mycobacterium , Phytosterols , Metabolic Engineering , Metabolic Networks and Pathways , Mycobacterium/genetics , Phytosterols/metabolism , Steroids/metabolism
17.
Cell Biol Int ; 45(6): 1202-1210, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33501754

ABSTRACT

Oncolytic viruses (OV) have shown excellent safety and efficacy in preclinical and clinical studies. Influenza A virus (IAV) is considered a promising oncolytic virus. In this report, we generated a recombinant influenza virus expressing an immune checkpoint blockade agent targeting CTLA4. Using reverse genetics, a recombinant influenza virus, termed rFlu-CTLA4, encoding the heavy chain of a CTLA4 antibody on the PB1 segment and the light chain of the CTLA4 antibody on the PA segment was produced. RFlu-CTLA4 could replicate to high titers, and antibodies were produced in the allantoic fluid of infected eggs. Furthermore, the selective cytotoxicity of the virus was higher in various hepatocellular carcinoma cancer cell lines than in the normal cell line L02 in vitro, as indicated by MTS assays. More importantly, in a subcutaneous H22 mouse hepatocarcinoma model, intratumoral injections of rFlu-CTLA4 inhibited the growth of treated tumors and increased the overall survival of mice compared with injections of the PR8 virus. Taken together, these results warrant further exploration of this novel recombinant influenza virus for its potential use as a single or combination agent for cancer immunotherapy.


Subject(s)
CTLA-4 Antigen/immunology , Immunotherapy/methods , Influenza A virus/immunology , Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Animals , Hep G2 Cells , Humans , Mice , Mice, Inbred BALB C
18.
Inorg Chem ; 60(12): 9097-9109, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34075743

ABSTRACT

Polyoxometalate-based organic-inorganic hybrid compounds (POIHCs) have been greatly developed due to their wide application prospects, but the pursuit of their directed synthesis via molecular design still remains a challenge. Herein, we demonstrate that the coordination modes of the Keggin-type [ZnW12O40]6- anion can be tuned, which leads to different semiconductor characteristics. Using the same building block, ligand, and metal ion (ZnW12, phen, Cu2+), we synthesized three new POIHCs with different bonding patterns by means of different coordination modes of ZnW12. The three POIHCs (H2phen){ZnW12O40[Cu(phen)2]2}·3H2O (1), {ZnW12O40[Cu(phen)(H2O)2]2[Cu(phen)(H2O)]}n·3H2O (2), and (Me4N)2{ZnW12O40[Cu(phen)(H2O)]2}n·5H2O (3) (phen = 1,10-phenanthroline) have been structurally characterized by single-crystal X-ray diffraction. Compound 1 appears as a zero-dimensional coordination complex cluster, while compounds 2 and 3 are both 1D chain structures with different Cu2+ bridge linkages. Although these three POIHCs possess the same chemical components, their semiconductor properties are different, which is demonstrated by measurements of transient photocurrent and band gap (Eg) values. Furthermore, we carried out comparative experiments on the photoconductivity performance of compounds 1-3 and their photocatalytic reduction from O2 to H2O2, indicating the significant influence of the energy level matching on the photocatalytic activity.

19.
J Gastroenterol Hepatol ; 36(10): 2925-2934, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34031913

ABSTRACT

BACKGROUND AND AIM: Cytochrome P450 2E1 (CYP2E1) plays a role in lipid metabolism, and by increasing hepatic oxidative stress and inflammation, the upregulation of CYP2E1 is involved in development of nonalcoholic steatohepatitis (NASH). We aimed to explore the relationship between CYP2E1-333A>T (rs2070673) and the histological severity of nonalcoholic fatty liver disease (NAFLD). METHODS: We studied 438 patients with biopsy-proven NAFLD. NASH was defined as NAFLD Activity Score ≥ 5 with existence of steatosis, ballooning, and lobular inflammation. CYP2E1-333A>T (rs2070673) was genotyped by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Serum cytokines related to inflammation were measured by the Bio-plex 200 system to investigate possible mediating factors involved in the process. RESULTS: The TA genotype of rs2070673 had a higher prevalence of moderate/severe lobular inflammation (27.6% vs 20.3% vs 13.3%, P < 0.01) and NASH (55.7% vs 42.4% vs 40.5%, P < 0.01) compared with the AA and TT genotypes, respectively. In multivariable regression modeling, the heterozygote state TA was associated with moderate/severe lobular inflammation (adjusted odds ratio: 2.31, 95% confidence interval 1.41-3.78, P < 0.01) or NASH (adjusted odds ratio: 1.82, 95% confidence interval 1.22-2.69, P < 0.01), independently of age, sex, common metabolic risk factors, and presence of liver fibrosis. Compared with no-NASH, NASH patients had significantly higher levels of serum interleukin-1 receptor antagonist, interleukin-18, and interferon-inducible protein-10 (IP-10), whereas only IP-10 was increased with the rs2070673 TA variant (P = 0.01). Mediation analysis showed that IP-10 was responsible for ~60% of the association between the rs2070672 and NASH. CONCLUSIONS: The TA allele of rs2070673 is strongly associated with lobular inflammation and NASH, and this effect appears to be largely mediated by serum IP-10 levels.


Subject(s)
Non-alcoholic Fatty Liver Disease , Alleles , Biopsy , Chemokine CXCL10 , Cytochrome P-450 CYP2E1/genetics , Humans , Inflammation/genetics , Non-alcoholic Fatty Liver Disease/genetics
20.
World J Surg Oncol ; 19(1): 203, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34229720

ABSTRACT

BACKGROUND: To evaluate the outcomes of pancreaticogastrostomy and pancreaticojejunostomy after pancreatoduodenectomy with the help of a meta-analysis. METHODS: Randomized controlled trials comparing pancreaticogastrostomy and pancreaticojejunostomy were searched electronically using PubMed, The Cochrane Library, and EMBASE. Fixed and random-effects were used to measure pooled estimates. Research indicators included pancreatic fistula, delayed gastric emptying, postoperative hemorrhage, intraperitoneal fluid collection, wound infection, overall postoperative complications, reoperation, and mortality. RESULTS: Overall, 10 randomized controlled trials were included in this meta-analysis, with a total of 1629 patients. The overall incidences of pancreatic fistula and intra-abdominal collections were lower in the pancreaticogastrostomy group than in the pancreaticojejunostomy group (OR=0.73, 95% CI 0.55~0.96, p=0.02; OR=0.59, 95% CI 0.37~0.96, p=0.02, respectively). The incidence of B/C grade pancreatic fistula in the pancreaticogastrostomy group was lower than that in the pancreaticojejunostomy group, but no significant difference was observed (OR=0.61, 95%CI 0.34~1.09, p=0.09). Postoperative hemorrhage was more frequent in the pancreaticogastrostomy group than in the pancreaticojejunostomy group (OR=1.52; 95% CI 1.08~2.14, p=0.02). No significant differences in terms of delayed gastric emptying, wound infection, reoperation, overall postoperative complications, mortality, exocrine function, and hospital readmission were observed between groups. CONCLUSION: This meta-analysis suggests that pancreaticogastrostomy reduces the incidence of postoperative pancreatic fistula and intraperitoneal fluid collection but increases the risk of postoperative hemorrhage compared with pancreaticojejunostomy.


Subject(s)
Pancreaticoduodenectomy , Pancreaticojejunostomy , Gastrostomy/adverse effects , Humans , Pancreatic Fistula/epidemiology , Pancreatic Fistula/etiology , Pancreaticoduodenectomy/adverse effects , Pancreaticojejunostomy/adverse effects , Postoperative Complications/etiology , Prognosis , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL