Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.753
Filter
Add more filters

Publication year range
1.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38215751

ABSTRACT

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Subject(s)
CD8-Positive T-Lymphocytes , Serotonin , CD8-Positive T-Lymphocytes/metabolism , Serotonin/metabolism , Serotonin/pharmacology , Protein Processing, Post-Translational , Signal Transduction
2.
Nature ; 620(7973): 303-309, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37407822

ABSTRACT

Orbital observations suggest that Mars underwent a recent 'ice age' (roughly 0.4-2.1 million years ago), during which a latitude-dependent ice-dust mantle (LDM)1,2 was emplaced. A subsequent decrease in obliquity amplitude resulted in the emergence of an 'interglacial period'1,3 during which the lowermost latitude LDM ice4-6 was etched and removed, returning it to the polar cap. These observations are consistent with polar cap stratigraphy1,7, but lower- to mid-latitude in situ surface observations in support of a glacial-interglacial transition that can be reconciled with mesoscale and global atmospheric circulation models8 is lacking. Here we present a suite of measurements obtained by the Zhurong rover during its traverse across the southern LDM region in Utopia Planitia, Mars. We find evidence for a stratigraphic sequence involving initial barchan dune formation, indicative of north-easterly winds, cementation of dune sediments, followed by their erosion by north-westerly winds, eroding the barchan dunes and producing distinctive longitudinal dunes, with the transition in wind regime consistent with the end of the ice age. The results are compatible with the Martian polar stratigraphic record and will help improve our understanding of the ancient climate history of Mars9.

3.
Nat Immunol ; 16(11): 1195-203, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26390157

ABSTRACT

Sumoylation regulates many cellular processes, but its role in signaling via the T cell antigen receptor (TCR) remains unknown. We found that the kinase PKC-θ was sumoylated upon costimulation with antigen or via the TCR plus the coreceptor CD28, with Lys325 and Lys506 being the main sumoylation sites. We identified the SUMO E3 ligase PIASxß as a ligase for PKC-θ. Analysis of primary mouse and human T cells revealed that sumoylation of PKC-θ was essential for T cell activation. Desumoylation did not affect the catalytic activity of PKC-θ but inhibited the association of CD28 with PKC-θ and filamin A and impaired the assembly of a mature immunological synapse and central co-accumulation of PKC-θ and CD28. Our findings demonstrate that sumoylation controls TCR-proximal signaling and that sumoylation of PKC-θ is essential for the formation of a mature immunological synapse and T cell activation.


Subject(s)
Isoenzymes/metabolism , Protein Kinase C/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/enzymology , T-Lymphocytes/immunology , Animals , Binding Sites , CD28 Antigens/metabolism , Cell Differentiation , Cells, Cultured , Filamins/metabolism , HEK293 Cells , Humans , Immunological Synapses/metabolism , Isoenzymes/chemistry , Isoenzymes/deficiency , Isoenzymes/genetics , Jurkat Cells , Lymphocyte Activation , Lysine/chemistry , Mice , Mice, Knockout , Mutagenesis, Site-Directed , Protein Inhibitors of Activated STAT/metabolism , Protein Kinase C/chemistry , Protein Kinase C/deficiency , Protein Kinase C/genetics , Protein Kinase C-theta , Signal Transduction , Sumoylation , T-Lymphocytes/cytology , Th2 Cells/cytology , Th2 Cells/enzymology , Th2 Cells/immunology
4.
Plant Cell ; 36(2): 346-366, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37877462

ABSTRACT

The nuclear pore complex (NPC) has multiple functions beyond the nucleo-cytoplasmic transport of large molecules. Subnuclear compartmentalization of chromatin is critical for gene expression in animals and yeast. However, the mechanism by which the NPC regulates gene expression is poorly understood in plants. Here we report that the Y-complex (Nup107-160 complex, a subcomplex of the NPC) self-maintains its nucleoporin homeostasis and modulates FLOWERING LOCUS C (FLC) transcription via changing histone modifications at this locus. We show that Y-complex nucleoporins are intimately associated with FLC chromatin through their interactions with histone H2A at the nuclear membrane. Fluorescence in situ hybridization assays revealed that Nup96, a Y-complex nucleoporin, enhances FLC positioning at the nuclear periphery. Nup96 interacted with HISTONE DEACETYLASE 6 (HDA6), a key repressor of FLC expression via histone modification, at the nuclear membrane to attenuate HDA6-catalyzed deposition at the FLC locus and change histone modifications. Moreover, we demonstrate that Y-complex nucleoporins interact with RNA polymerase II to increase its occupancy at the FLC locus, facilitating transcription. Collectively, our findings identify an attractive mechanism for the Y-complex in regulating FLC expression via tethering the locus at the nuclear periphery and altering its histone modification.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Histones/genetics , Histones/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/genetics , Nuclear Pore/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , In Situ Hybridization, Fluorescence , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Chromatin/genetics , Chromatin/metabolism , Flowers/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism
5.
Nature ; 597(7875): 274-278, 2021 09.
Article in English | MEDLINE | ID: mdl-33208941

ABSTRACT

Tumours often contain B cells and plasma cells but the antigen specificity of these intratumoral B cells is not well understood1-8. Here we show that human papillomavirus (HPV)-specific B cell responses are detectable in samples from patients with HPV-positive head and neck cancers, with active production of HPV-specific IgG antibodies in situ. HPV-specific antibody secreting cells (ASCs) were present in the tumour microenvironment, with minimal bystander recruitment of influenza-specific cells, suggesting a localized and antigen-specific ASC response. HPV-specific ASC responses correlated with titres of plasma IgG and were directed against the HPV proteins E2, E6 and E7, with the most dominant response against E2. Using intratumoral B cells and plasma cells, we generated several HPV-specific human monoclonal antibodies, which exhibited a high degree of somatic hypermutation, consistent with chronic antigen exposure. Single-cell RNA sequencing analyses detected activated B cells, germinal centre B cells and ASCs within the tumour microenvironment. Compared with the tumour parenchyma, B cells and ASCs were preferentially localized in the tumour stroma, with well-formed clusters of activated B cells indicating ongoing germinal centre reactions. Overall, we show that antigen-specific activated and germinal centre B cells as well as plasma cells can be found in the tumour microenvironment. Our findings provide a better understanding of humoral immune responses in human cancer and suggest that tumour-infiltrating B cells could be harnessed for the development of therapeutic agents.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/virology , Lymphocytes, Tumor-Infiltrating/immunology , Papillomaviridae/immunology , Tumor Microenvironment/immunology , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , B-Lymphocytes/metabolism , Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/virology , Cell Separation , Germinal Center/cytology , Germinal Center/immunology , Head and Neck Neoplasms/blood , Humans , Immunity, Humoral , Immunoglobulin G/blood , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Papillomavirus Infections/blood , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Plasma Cells/immunology , Plasma Cells/metabolism , RNA-Seq , Single-Cell Analysis , Somatic Hypermutation, Immunoglobulin/genetics , Somatic Hypermutation, Immunoglobulin/immunology , Transcriptome
6.
Nature ; 597(7875): 279-284, 2021 09.
Article in English | MEDLINE | ID: mdl-34471285

ABSTRACT

T cells are important in tumour immunity but a better understanding is needed of the differentiation of antigen-specific T cells in human cancer1,2. Here we studied CD8 T cells in patients with human papillomavirus (HPV)-positive head and neck cancer and identified several epitopes derived from HPV E2, E5 and E6 proteins that allowed us to analyse virus-specific CD8 T cells using major histocompatibility complex (MHC) class I tetramers. HPV-specific CD8 T cells expressed PD-1 and were detectable in the tumour at levels that ranged from 0.1% to 10% of tumour-infiltrating CD8 T lymphocytes (TILs) for a given epitope. Single-cell RNA-sequencing analyses of tetramer-sorted HPV-specific PD-1+ CD8 TILs revealed three transcriptionally distinct subsets. One subset expressed TCF7 and other genes associated with PD-1+ stem-like CD8 T cells that are critical for maintaining T cell responses in conditions of antigen persistence. The second subset expressed more effector molecules, representing a transitory cell population, and the third subset was characterized by a terminally differentiated gene signature. T cell receptor clonotypes were shared between the three subsets and pseudotime analysis suggested a hypothetical differentiation trajectory from stem-like to transitory to terminally differentiated cells. More notably, HPV-specific PD-1+TCF-1+ stem-like TILs proliferated and differentiated into more effector-like cells after in vitro stimulation with the cognate HPV peptide, whereas the more terminally differentiated cells did not proliferate. The presence of functional HPV-specific PD-1+TCF-1+CD45RO+ stem-like CD8 T cells with proliferative capacity shows that the cellular machinery to respond to PD-1 blockade exists in HPV-positive head and neck cancer, supporting the further investigation of PD-1 targeted therapies in this malignancy. Furthermore, HPV therapeutic vaccination efforts have focused on E6 and E7 proteins; our results suggest that E2 and E5 should also be considered for inclusion as vaccine antigens to elicit tumour-reactive CD8 T cell responses of maximal breadth.


Subject(s)
Alphapapillomavirus/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/virology , Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/metabolism , Stem Cells/cytology , Alphapapillomavirus/isolation & purification , CD8-Positive T-Lymphocytes/classification , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/immunology , Cell Differentiation , Cell Proliferation , DNA-Binding Proteins/immunology , Humans , Lymphocytes, Tumor-Infiltrating/classification , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/metabolism , Oncogene Proteins, Viral/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Papillomavirus Vaccines/immunology , RNA-Seq , Receptors, Antigen, T-Cell/immunology , Single-Cell Analysis , Stem Cells/immunology , T Cell Transcription Factor 1/metabolism , T-Lymphocytes/immunology , Transcription, Genetic
7.
Proc Natl Acad Sci U S A ; 121(25): e2314314121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865262

ABSTRACT

Pyruvate lies at a pivotal node of carbon metabolism in eukaryotes. It is involved in diverse metabolic pathways in multiple organelles, and its interorganelle shuttling is crucial for cell fitness. Many apicomplexan parasites harbor a unique organelle called the apicoplast that houses metabolic pathways like fatty acid and isoprenoid precursor biosyntheses, requiring pyruvate as a substrate. However, how pyruvate is supplied in the apicoplast remains enigmatic. Here, deploying the zoonotic parasite Toxoplasma gondii as a model apicomplexan, we identified two proteins residing in the apicoplast membranes that together constitute a functional apicoplast pyruvate carrier (APC) to mediate the import of cytosolic pyruvate. Depletion of APC results in reduced activities of metabolic pathways in the apicoplast and impaired integrity of this organelle, leading to parasite growth arrest. APC is a pyruvate transporter in diverse apicomplexan parasites, suggesting a common strategy for pyruvate acquisition by the apicoplast in these clinically relevant intracellular pathogens.


Subject(s)
Apicoplasts , Pyruvic Acid , Toxoplasma , Apicoplasts/metabolism , Toxoplasma/metabolism , Pyruvic Acid/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Animals , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Biological Transport , Metabolic Networks and Pathways
8.
Development ; 150(20)2023 10 15.
Article in English | MEDLINE | ID: mdl-36975381

ABSTRACT

Methionine is important for intestinal development and homeostasis in various organisms. However, the underlying mechanisms are poorly understood. Here, we demonstrate that the methionine adenosyltransferase gene Mat2a is essential for intestinal development and that the metabolite S-adenosyl-L-methionine (SAM) plays an important role in intestinal homeostasis. Intestinal epithelial cell (IEC)-specific knockout of Mat2a exhibits impaired intestinal development and neonatal lethality. Mat2a deletion in the adult intestine reduces cell proliferation and triggers IEC apoptosis, leading to severe intestinal epithelial atrophy and intestinal inflammation. Mechanistically, we reveal that SAM maintains the integrity of differentiated epithelium and protects IECs from apoptosis by suppressing the expression of caspases 3 and 8 and their activation. SAM supplementation improves the defective intestinal epithelium and reduces inflammatory infiltration sequentially. In conclusion, our study demonstrates that methionine metabolism and its intermediate metabolite SAM play essential roles in intestinal development and homeostasis in mice.


Subject(s)
Methionine Adenosyltransferase , S-Adenosylmethionine , Mice , Animals , S-Adenosylmethionine/metabolism , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Intestinal Mucosa/metabolism , Methionine , Dietary Supplements
9.
Plant Cell ; 35(8): 3035-3052, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37225403

ABSTRACT

Effective cellular signaling relies on precise spatial localization and dynamic interactions among proteins in specific subcellular compartments or niches, such as cell-to-cell contact sites and junctions. In plants, endogenous and pathogenic proteins gained the ability to target plasmodesmata, membrane-lined cytoplasmic connections, through evolution to regulate or exploit cellular signaling across cell wall boundaries. For example, the receptor-like membrane protein PLASMODESMATA-LOCATED PROTEIN 5 (PDLP5), a potent regulator of plasmodesmal permeability, generates feed-forward or feed-back signals important for plant immunity and root development. However, the molecular features that determine the plasmodesmal association of PDLP5 or other proteins remain largely unknown, and no protein motifs have been identified as plasmodesmal targeting signals. Here, we developed an approach combining custom-built machine-learning algorithms and targeted mutagenesis to examine PDLP5 in Arabidopsis thaliana and Nicotiana benthamiana. We report that PDLP5 and its closely related proteins carry unconventional targeting signals consisting of short stretches of amino acids. PDLP5 contains 2 divergent, tandemly arranged signals, either of which is sufficient for localization and biological function in regulating viral movement through plasmodesmata. Notably, plasmodesmal targeting signals exhibit little sequence conservation but are located similarly proximal to the membrane. These features appear to be a common theme in plasmodesmal targeting.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Plasmodesmata/metabolism , Arabidopsis/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Carrier Proteins/metabolism
10.
Nat Chem Biol ; 20(9): 1164-1175, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38773330

ABSTRACT

The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.


Subject(s)
Protein Binding , Humans , Proteolysis , HEK293 Cells , Molecular Probes/chemistry , Molecular Probes/metabolism , DEAD-box RNA Helicases/metabolism , Ubiquitin-Protein Ligases/metabolism , Degrons , Receptors, Interleukin-17
11.
EMBO Rep ; 25(2): 570-592, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38253686

ABSTRACT

Patients with neuropsychiatric disorders often exhibit a combination of clinical symptoms such as autism, epilepsy, or schizophrenia, complicating diagnosis and development of therapeutic strategies. Functional studies of novel genes associated with co-morbidities can provide clues to understand the pathogenic mechanisms and interventions. NOMO1 is one of the candidate genes located at 16p13.11, a hotspot of neuropsychiatric diseases. Here, we generate nomo1-/- zebrafish to get further insight into the function of NOMO1. Nomo1 mutants show abnormal brain and neuronal development and activation of apoptosis and inflammation-related pathways in the brain. Adult Nomo1-deficient zebrafish exhibit multiple neuropsychiatric behaviors such as hyperactive locomotor activity, social deficits, and repetitive stereotypic behaviors. The Habenular nucleus and the pineal gland in the telencephalon are affected, and the melatonin level of nomo1-/- is reduced. Melatonin treatment restores locomotor activity, reduces repetitive stereotypic behaviors, and rescues the noninfectious brain inflammatory responses caused by nomo1 deficiency. These results suggest melatonin supplementation as a potential therapeutic regimen for neuropsychiatric disorders caused by NOMO1 deficiency.


Subject(s)
Autistic Disorder , Melatonin , Animals , Adult , Humans , Zebrafish/genetics , Autistic Disorder/genetics , Brain
12.
Proc Natl Acad Sci U S A ; 120(52): e2313009120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38109533

ABSTRACT

Genetic medicines have the potential to treat various diseases; however, certain ailments including inflammatory diseases and cancer would benefit from control over extracellular localization of therapeutic proteins. A critical gap therefore remains the need to develop and incorporate methodologies that allow for posttranslational control over expression dynamics, localization, and stability of nucleic acid-generated protein therapeutics. To address this, we explored how the body's endogenous machinery controls protein localization through signal peptides (SPs), including how these motifs could be incorporated modularly into therapeutics. SPs serve as a virtual zip code for mRNA transcripts that direct the cell where to send completed proteins within the cell and the body. Utilizing this signaling biology, we incorporated secretory SP sequences upstream of mRNA transcripts coding for reporter, natural, and therapeutic proteins to induce secretion of the proteins into systemic circulation. SP sequences generated secretion of various engineered proteins into the bloodstream following intravenous, intramuscular, and subcutaneous SP mRNA delivery by lipid, polymer, and ionizable phospholipid delivery carriers. SP-engineered etanercept/TNF-α inhibitor proteins demonstrated therapeutic efficacy in an imiquimod-induced psoriasis model by reducing hyperkeratosis and inflammation. An SP-engineered anti-PD-L1 construct mediated mRNA encoded proteins with longer serum half-lives that reduced tumor burden and extended survival in MC38 and B16F10 cancer models. The modular nature of SP platform should enable intracellular and extracellular localization control of various functional proteins for diverse therapeutic applications.


Subject(s)
Dermatitis , Melanoma , Psoriasis , Humans , Animals , Melanoma/drug therapy , Melanoma/genetics , Psoriasis/drug therapy , Psoriasis/genetics , Inflammation/pathology , Protein Sorting Signals , RNA, Messenger/genetics , Disease Models, Animal
13.
Clin Microbiol Rev ; 37(2): e0016123, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38634634

ABSTRACT

SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Lincosamides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Lincosamides/pharmacology , Lincosamides/therapeutic use , Humans , Drug Resistance, Bacterial/genetics , Bacteria/drug effects , Bacteria/genetics
14.
Plant J ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259667

ABSTRACT

Changes in plant morphology due to mechanical stimulation are known as thigmo responses. As climbing organs in plants, tendrils can sense mechanical stimulation after attaching to a support and then change their morphology within a short time. Here, the thigmo responses of cucumber tendril were investigated. Our results showed that mechanical stimulation stopped tendril elongation and that tendril length was determined by the distance from the support in cucumber. The mimicry touch treatment indicated that mechanical stimulation stopped tendril elongation by inhibiting cell expansion. RNA-seq data showed that three gibberellin (GA) metabolic genes (CsGA2ox3, CsCYP714A2, and CsCYP714A3) were upregulated in mechanically stimulated tendrils, and a major endogenous bio-active GA (GA4) was reduced in mechanically stimulated tendrils. The roles of CsGA2ox3, CsCYP714A2, and CsCYP714A3 in GA deactivation were confirmed by their overexpression in transgenic Arabidopsis. Moreover, exogenous GA treatment recovered tendril elongation under mechanical stimulation, whereas exogenous uniconazole treatment inhibited tendril elongation without mechanical stimulation, suggesting that mechanical stimulation stopped tendril elongation, depending on GA deactivation. In summary, our results suggest that GA deactivation plays an important role in tendril thigmo response, ensuring that tendrils obtain a suitable final length according to their distance from the support in cucumber.

15.
Cancer Metastasis Rev ; 43(3): 1075-1093, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38592427

ABSTRACT

The current CAR-T cell therapy products have been hampered in their druggability due to the personalized preparation required, unclear pharmacokinetic characteristics, and unpredictable adverse reactions. Enabling standardized manufacturing and having clear efficacy and pharmacokinetic characteristics are prerequisites for ensuring the effective practicality of CAR-T cell therapy drugs. This review provides a broad overview of the different approaches for controlling behaviors of CAR-T cells in vivo. The utilization of genetically modified vectors enables in vivo production of CAR-T cells, thereby abbreviating or skipping the lengthy in vitro expansion process. By equipping CAR-T cells with intricately designed control elements, using molecule switches or small-molecule inhibitors, the control of CAR-T cell activity can be achieved. Moreover, the on-off control of CAR-T cell activity would yield potential gains in phenotypic remodeling. These methods provide beneficial references for the future development of safe, controllable, convenient, and suitable for standardized production of CAR-T cell therapy products.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Animals , Neoplasms/therapy , Neoplasms/drug therapy , T-Lymphocytes/immunology
16.
Annu Rev Pharmacol Toxicol ; 62: 617-639, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34990202

ABSTRACT

Glyphosate (GLYP) is a widely used pesticide; it is considered to be a safe herbicide for animals and humans because it targets 5-enolpyruvylshikimate-3-phosphate synthase. However, there has been increasing evidence that GLYP causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. This review provides a comprehensive introduction to the toxicity of GLYP and, for the first time, systematically summarizes the toxicity mechanism of GLYP from the perspective of oxidative stress, including GLYP-mediated oxidative damage, changes in antioxidant status, altered signaling pathways, and the regulation of oxidative stress by exogenous substances. In addition, the metabolism of GLYP is discussed, including metabolites,metabolic pathways, metabolic enzymes, and the toxicity of metabolites. This review provides new ideas for the toxicity mechanism of GLYP and proposes effective strategies for reducing its toxicity.


Subject(s)
Glycine , Herbicides , Animals , Antioxidants , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Humans , Oxidative Stress , Glyphosate
17.
EMBO J ; 40(24): e108080, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34747049

ABSTRACT

Altered intestinal microbial composition promotes intestinal barrier dysfunction and triggers the initiation and recurrence of inflammatory bowel disease (IBD). Current treatments for IBD are focused on control of inflammation rather than on maintaining intestinal epithelial barrier function. Here, we show that the internalization of Gram-negative bacterial outer membrane vesicles (OMVs) in human intestinal epithelial cells promotes recruitment of caspase-5 and PIKfyve to early endosomal membranes via sorting nexin 10 (SNX10), resulting in LPS release from OMVs into the cytosol. Caspase-5 activated by cytosolic LPS leads to Lyn phosphorylation, which in turn promotes nuclear translocalization of Snail/Slug, downregulation of E-cadherin expression, and intestinal barrier dysfunction. SNX10 deletion or treatment with DC-SX029, a novel SNX10 inhibitor, rescues OMV-induced intestinal barrier dysfunction and ameliorates colitis in mice by blocking cytosolic LPS release, caspase-5 activation, and downstream signaling. Our results show that targeting SNX10 may be a new therapeutic approach for restoring intestinal epithelial barrier function and promising strategy for IBD treatment.


Subject(s)
Bacterial Outer Membrane/chemistry , Caspases/metabolism , Colitis/pathology , Lipopolysaccharides/metabolism , Sorting Nexins/genetics , Sorting Nexins/metabolism , Animals , Caco-2 Cells , Colitis/chemically induced , Colitis/genetics , Cytosol/metabolism , Disease Models, Animal , Endosomes/metabolism , Endosomes/transplantation , Female , Gene Deletion , Gene Expression Regulation/drug effects , Humans , Lipopolysaccharides/adverse effects , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Signal Transduction/drug effects , src-Family Kinases/metabolism
18.
Genome Res ; 32(10): 1918-1929, 2022 10.
Article in English | MEDLINE | ID: mdl-36220609

ABSTRACT

Extensive evidence indicates that the pathobiological processes of a complex disease are associated with perturbation in specific neighborhoods of the human protein-protein interaction (PPI) network (also known as the interactome), often referred to as the disease module. Many computational methods have been developed to integrate the interactome and omics profiles to extract context-dependent disease modules. Yet, existing methods all have fundamental limitations in terms of rigor and/or efficiency. Here, we developed a statistical physics approach based on the random-field Ising model (RFIM) for disease module detection, which is both mathematically rigorous and computationally efficient. We applied our RFIM approach to genome-wide association studies (GWAS) of ten complex diseases to examine its performance for disease module detection. We found that our RFIM approach outperforms existing methods in terms of computational efficiency, connectivity of disease modules, and robustness to the interactome incompleteness.


Subject(s)
Genome-Wide Association Study , Protein Interaction Maps , Humans , Genome-Wide Association Study/methods , Physics , Algorithms
19.
J Virol ; 98(9): e0082624, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39194246

ABSTRACT

We have demonstrated that SAMHD1 (sterile alpha motif and histidine-aspartic domain HD-containing protein 1) is a restriction factor for the human papillomavirus 16 (HPV16) life cycle. Here, we demonstrate that in HPV-negative cervical cancer C33a cells and human foreskin keratinocytes immortalized by HPV16 (HFK+HPV16), SAMHD1 is recruited to E1-E2 replicating DNA. Homologous recombination (HR) factors are required for HPV16 replication, and viral replication promotes phosphorylation of SAMHD1, which converts it from a dNTPase to an HR factor independent from E6/E7 expression. A SAMHD1 phospho-mimic (SAMHD1 T592D) reduces E1-E2-mediated DNA replication in C33a cells and has enhanced recruitment to the replicating DNA. In HFK+HPV16 cells, SAMHD1 T592D is recruited to the viral DNA and attenuates cellular growth, but does not attenuate growth in isogenic HFK cells immortalized by E6/E7 alone. SAMHD1 T592D also attenuates the development of viral replication foci following keratinocyte differentiation. The results indicated that enhanced SAMHD1 phosphorylation could be therapeutically beneficial in cells with HPV16 replicating genomes. Protein phosphatase 2A (PP2A) can dephosphorylate SAMHD1, and PP2A function can be inhibited by endothall. We demonstrate that endothall reduces E1-E2 replication and promotes SAMHD1 recruitment to E1-E2 replicating DNA, mimicking the SAMHD1 T592D phenotypes. Finally, we demonstrate that in head and neck cancer cell lines with HPV16 episomal genomes, endothall attenuates their growth and promotes recruitment of SAMHD1 to the viral genome. The results suggest that targeting cellular phosphatases has therapeutic potential for the treatment of HPV infections and cancers. IMPORTANCE: Human papillomaviruses (HPVs) are causative agents in around 5% of all human cancers. The development of anti-viral therapeutics depends upon an increased understanding of the viral life cycle. Here, we demonstrate that HPV16 replication converts sterile alpha motif and histidine-aspartic domain HD-containing protein 1 (SAMHD1) into a homologous recombination (HR) factor via phosphorylation. This phosphorylation promotes recruitment of SAMHD1 to viral DNA to assist with replication. A SAMHD1 mutant that mimics phosphorylation is hyper-recruited to viral DNA and attenuates viral replication. Expression of this mutant in HPV16-immortalized cells attenuates the growth of these cells, but not cells immortalized by the viral oncogenes E6/E7 alone. Finally, we demonstrate that the phosphatase inhibitor endothall promotes hyper-recruitment of endogenous SAMHD1 to HPV16 replicating DNA and can attenuate the growth of both HPV16-immortalized human foreskin keratinocytes (HFKs) and HPV16-positive head and neck cancer cell lines. We propose that phosphatase inhibitors represent a novel tool for combating HPV infections and disease.


Subject(s)
DNA, Viral , Human papillomavirus 16 , Keratinocytes , SAM Domain and HD Domain-Containing Protein 1 , Virus Replication , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Humans , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Human papillomavirus 16/physiology , DNA, Viral/genetics , DNA, Viral/metabolism , Keratinocytes/virology , Keratinocytes/metabolism , Phosphorylation , Cell Line, Tumor , Homologous Recombination , Papillomavirus Infections/virology , Papillomavirus Infections/metabolism , Papillomavirus Infections/genetics , DNA Replication
20.
J Virol ; : e0102424, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269177

ABSTRACT

Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERα) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+-specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+-specific estrogen growth responses. Continuing to monopolize on the HPV+-specific overexpression of ERα, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery. IMPORTANCE: Human papillomavirus-related cancers (HPV+ cancers) remain a significant public health concern, and specific clinical approaches are desperately needed. In translating drug response data from in vitro to in vivo, the fibroblasts of the adjacent stromal support network play a key role. Our study presents the utilization of a fibroblast 2D co-culture system to better predict translational drug assessments for HPV+ cancers. We also suggest that this co-culture system should be considered for other translational approaches. Predicting even a portion of treatment paradigms that may fail in vivo with a co-culture model will yield significant time, effort, resource, and cost efficiencies.

SELECTION OF CITATIONS
SEARCH DETAIL