Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.172
Filter
Add more filters

Publication year range
1.
Cell ; 186(10): 2193-2207.e19, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37098343

ABSTRACT

Somatic hypermutation (SHM), initiated by activation-induced cytidine deaminase (AID), generates mutations in the antibody-coding sequence to allow affinity maturation. Why these mutations intrinsically focus on the three nonconsecutive complementarity-determining regions (CDRs) remains enigmatic. Here, we found that predisposition mutagenesis depends on the single-strand (ss) DNA substrate flexibility determined by the mesoscale sequence surrounding AID deaminase motifs. Mesoscale DNA sequences containing flexible pyrimidine-pyrimidine bases bind effectively to the positively charged surface patches of AID, resulting in preferential deamination activities. The CDR hypermutability is mimicable in in vitro deaminase assays and is evolutionarily conserved among species using SHM as a major diversification strategy. We demonstrated that mesoscale sequence alterations tune the in vivo mutability and promote mutations in an otherwise cold region in mice. Our results show a non-coding role of antibody-coding sequence in directing hypermutation, paving the way for the synthetic design of humanized animal models for optimal antibody discovery and explaining the AID mutagenesis pattern in lymphoma.


Subject(s)
Cytidine Deaminase , Somatic Hypermutation, Immunoglobulin , Animals , Mice , Antibodies/genetics , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA/genetics , DNA, Single-Stranded , Mutation , Evolution, Molecular , Complementarity Determining Regions/genetics , Nucleotide Motifs
2.
Mol Cell ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38936361

ABSTRACT

The bacterial world offers diverse strains for understanding medical and environmental processes and for engineering synthetic biological chassis. However, genetically manipulating these strains has faced a long-standing bottleneck: how to efficiently transform DNA. Here, we report imitating methylation patterns rapidly in TXTL (IMPRINT), a generalized, rapid, and scalable approach based on cell-free transcription-translation (TXTL) to overcome DNA restriction, a prominent barrier to transformation. IMPRINT utilizes TXTL to express DNA methyltransferases from a bacterium's restriction-modification systems. The expressed methyltransferases then methylate DNA in vitro to match the bacterium's DNA methylation pattern, circumventing restriction and enhancing transformation. With IMPRINT, we efficiently multiplex methylation by diverse DNA methyltransferases and enhance plasmid transformation in gram-negative and gram-positive bacteria. We also develop a high-throughput pipeline that identifies the most consequential methyltransferases, and we apply IMPRINT to screen a ribosome-binding site library in a hard-to-transform Bifidobacterium. Overall, IMPRINT can enhance DNA transformation, enabling the use of sophisticated genetic manipulation tools across the bacterial world.

3.
Nat Immunol ; 16(3): 246-57, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25642822

ABSTRACT

Immune responses need to be tightly controlled to avoid excessive inflammation and prevent unwanted host damage. Here we report that germinal center kinase MST4 responded dynamically to bacterial infection and acted as a negative regulator of inflammation. We found that MST4 directly interacted with and phosphorylated the adaptor TRAF6 to prevent its oligomerization and autoubiquitination. Accordingly, MST4 did not inhibit lipopolysaccharide-induced cytokine production in Traf6(-/-) embryonic fibroblasts transfected to express a mutant form of TRAF6 that cannot be phosphorylated at positions 463 and 486 (with substitution of alanine for threonine at those positions). Upon developing septic shock, mice in which MST4 was knocked down showed exacerbated inflammation and reduced survival, whereas heterozygous deletion of Traf6 (Traf6(+/-)) alleviated such deleterious effects. Our findings reveal a mechanism by which TRAF6 is regulated and highlight a role for MST4 in limiting inflammatory responses.


Subject(s)
Inflammation/metabolism , Phosphorylation/physiology , Protein Serine-Threonine Kinases/metabolism , TNF Receptor-Associated Factor 6/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Knockdown Techniques , HEK293 Cells , Humans , Inflammation/chemically induced , Lipopolysaccharides/pharmacology , Male , Mice , Middle Aged , Sepsis/blood , Shock, Septic/chemically induced , Shock, Septic/metabolism
4.
Trends Immunol ; 45(3): 167-176, 2024 03.
Article in English | MEDLINE | ID: mdl-38402044

ABSTRACT

Antibody-coding genes accumulate somatic mutations to achieve antibody affinity maturation. Genetic dissection using various mouse models has shown that intrinsic hypermutations occur preferentially and are predisposed in the DNA region encoding antigen-contacting residues. The molecular basis of nonrandom/preferential mutations is a long-sought question in the field. Here, we summarize recent findings on how single-strand (ss)DNA flexibility facilitates activation-induced cytidine deaminase (AID) activity and fine-tunes the mutation rates at a mesoscale within the antibody variable domain exon. We propose that antibody coding sequences are selected based on mutability during the evolution of adaptive immunity and that DNA mechanics play a noncoding role in the genome. The mechanics code may also determine other cellular DNA metabolism processes, which awaits future investigation.


Subject(s)
Genes, Immunoglobulin , Somatic Hypermutation, Immunoglobulin , Animals , Mice , Somatic Hypermutation, Immunoglobulin/genetics , Mutation , DNA , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism
5.
Nature ; 600(7888): 308-313, 2021 12.
Article in English | MEDLINE | ID: mdl-34795452

ABSTRACT

Nutrients are emerging regulators of adaptive immunity1. Selective nutrients interplay with immunological signals to activate mechanistic target of rapamycin complex 1 (mTORC1), a key driver of cell metabolism2-4, but how these environmental signals are integrated for immune regulation remains unclear. Here we use genome-wide CRISPR screening combined with protein-protein interaction networks to identify regulatory modules that mediate immune receptor- and nutrient-dependent signalling to mTORC1 in mouse regulatory T (Treg) cells. SEC31A is identified to promote mTORC1 activation by interacting with the GATOR2 component SEC13 to protect it from SKP1-dependent proteasomal degradation. Accordingly, loss of SEC31A impairs T cell priming and Treg suppressive function in mice. In addition, the SWI/SNF complex restricts expression of the amino acid sensor CASTOR1, thereby enhancing mTORC1 activation. Moreover, we reveal that the CCDC101-associated SAGA complex is a potent inhibitor of mTORC1, which limits the expression of glucose and amino acid transporters and maintains T cell quiescence in vivo. Specific deletion of Ccdc101 in mouse Treg cells results in uncontrolled inflammation but improved antitumour immunity. Collectively, our results establish epigenetic and post-translational mechanisms that underpin how nutrient transporters, sensors and transducers interplay with immune signals for three-tiered regulation of mTORC1 activity and identify their pivotal roles in licensing T cell immunity and immune tolerance.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Nutrients , Protein Interaction Maps , T-Lymphocytes, Regulatory , Animals , Female , Male , Mice , Carrier Proteins/metabolism , CRISPR-Cas Systems/genetics , Forkhead Transcription Factors/metabolism , Genome/genetics , Homeostasis , Immune Tolerance , Inflammation/pathology , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasms/immunology , Nuclear Proteins/metabolism , Nutrients/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , S-Phase Kinase-Associated Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Trans-Activators/metabolism
6.
Nat Immunol ; 15(5): 473-81, 2014 May.
Article in English | MEDLINE | ID: mdl-24633226

ABSTRACT

Regulatory T cells (Treg cells) express members of the tumor-necrosis factor (TNF) receptor superfamily (TNFRSF), but the role of those receptors in the thymic development of Treg cells is undefined. We found here that Treg cell progenitors had high expression of the TNFRSF members GITR, OX40 and TNFR2. Expression of those receptors correlated directly with the signal strength of the T cell antigen receptor (TCR) and required the coreceptor CD28 and the kinase TAK1. The neutralization of ligands that are members of the TNF superfamily (TNFSF) diminished the development of Treg cells. Conversely, TNFRSF agonists enhanced the differentiation of Treg cell progenitors by augmenting responsiveness of the interleukin 2 receptor (IL-2R) and transcription factor STAT5. Costimulation with the ligand of GITR elicited dose-dependent enrichment for cells of lower TCR affinity in the Treg cell repertoire. In vivo, combined inhibition of GITR, OX40 and TNFR2 abrogated the development of Treg cells. Thus, expression of members of the TNFRSF on Treg cell progenitors translated strong TCR signals into molecular parameters that specifically promoted the development of Treg cells and shaped the Treg cell repertoire.


Subject(s)
Receptor Cross-Talk , Receptors, Antigen, T-Cell/agonists , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism , Animals , CD28 Antigens/genetics , CD28 Antigens/metabolism , Cell Differentiation/genetics , Cells, Cultured , Glucocorticoid-Induced TNFR-Related Protein/genetics , Glucocorticoid-Induced TNFR-Related Protein/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptor Cross-Talk/immunology , Receptors, OX40/genetics , Receptors, OX40/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , STAT5 Transcription Factor/metabolism , Signal Transduction/genetics , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics
7.
Immunity ; 46(3): 488-503, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28285833

ABSTRACT

The molecular circuits by which antigens activate quiescent T cells remain poorly understood. We combined temporal profiling of the whole proteome and phosphoproteome via multiplexed isobaric labeling proteomics technology, computational pipelines for integrating multi-omics datasets, and functional perturbation to systemically reconstruct regulatory networks underlying T cell activation. T cell receptors activated the T cell proteome and phosphoproteome with discrete kinetics, marked by early dynamics of phosphorylation and delayed ribosome biogenesis and mitochondrial activation. Systems biology analyses identified multiple functional modules, active kinases, transcription factors and connectivity between them, and mitochondrial pathways including mitoribosomes and complex IV. Genetic perturbation revealed physiological roles for mitochondrial enzyme COX10-mediated oxidative phosphorylation in T cell quiescence exit. Our multi-layer proteomics profiling, integrative network analysis, and functional studies define landscapes of the T cell proteome and phosphoproteome and reveal signaling and bioenergetics pathways that mediate lymphocyte exit from quiescence.


Subject(s)
Lymphocyte Activation/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Alkyl and Aryl Transferases/immunology , Animals , Energy Metabolism , Mass Spectrometry , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Phosphorylation , Proteomics , Receptors, Antigen, T-Cell/immunology
8.
Proc Natl Acad Sci U S A ; 120(20): e2303479120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155876

ABSTRACT

The human tumor suppressor Ring finger protein 20 (RNF20)-mediated histone H2B monoubiquitination (H2Bub) is essential for proper chromosome segregation and DNA repair. However, what is the precise function and mechanism of RNF20-H2Bub in chromosome segregation and how this pathway is activated to preserve genome stability remain unknown. Here, we show that the single-strand DNA-binding factor Replication protein A (RPA) interacts with RNF20 mainly in the S and G2/M phases and recruits RNF20 to mitotic centromeres in a centromeric R-loop-dependent manner. In parallel, RPA recruits RNF20 to chromosomal breaks upon DNA damage. Disruption of the RPA-RNF20 interaction or depletion of RNF20 increases mitotic lagging chromosomes and chromosome bridges and impairs BRCA1 and RAD51 loading and homologous recombination repair, leading to elevated chromosome breaks, genome instability, and sensitivities to DNA-damaging agents. Mechanistically, the RPA-RNF20 pathway promotes local H2Bub, H3K4 dimethylation, and subsequent SNF2H recruitment, ensuring proper Aurora B kinase activation at centromeres and efficient loading of repair proteins at DNA breaks. Thus, the RPA-RNF20-SNF2H cascade plays a broad role in preserving genome stability by coupling H2Bub to chromosome segregation and DNA repair.


Subject(s)
Recombinational DNA Repair , Replication Protein A , Humans , Chromatin , Chromosome Segregation , DNA Repair , Genomic Instability , Histones/genetics , Histones/metabolism , Homologous Recombination , Replication Protein A/genetics , Replication Protein A/metabolism
9.
Nature ; 576(7787): 471-476, 2019 12.
Article in English | MEDLINE | ID: mdl-31827283

ABSTRACT

Adoptive cell therapy represents a new paradigm in cancer immunotherapy, but it can be limited by the poor persistence and function of transferred T cells1. Here we use an in vivo pooled CRISPR-Cas9 mutagenesis screening approach to demonstrate that, by targeting REGNASE-1, CD8+ T cells are reprogrammed to long-lived effector cells with extensive accumulation, better persistence and robust effector function in tumours. REGNASE-1-deficient CD8+ T cells show markedly improved therapeutic efficacy against mouse models of melanoma and leukaemia. By using a secondary genome-scale CRISPR-Cas9 screening, we identify BATF as the key target of REGNASE-1 and as a rheostat that shapes antitumour responses. Loss of BATF suppresses the increased accumulation and mitochondrial fitness of REGNASE-1-deficient CD8+ T cells. By contrast, the targeting of additional signalling factors-including PTPN2 and SOCS1-improves the therapeutic efficacy of REGNASE-1-deficient CD8+ T cells. Our findings suggest that T cell persistence and effector function can be coordinated in tumour immunity and point to avenues for improving the efficacy of adoptive cell therapy for cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Leukemia/immunology , Leukemia/therapy , Melanoma/immunology , Melanoma/therapy , Molecular Targeted Therapy , Ribonucleases/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/cytology , CRISPR-Cas Systems/genetics , Disease Models, Animal , Female , Gene Deletion , Humans , Leukemia/genetics , Leukemia/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/genetics , Melanoma/metabolism , Mice , Mitochondria/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Reproducibility of Results , Ribonucleases/deficiency , Ribonucleases/genetics , Ribonucleases/immunology , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Tumor Microenvironment/immunology
10.
Nucleic Acids Res ; 51(11): 5565-5583, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37140030

ABSTRACT

The single-stranded DNA (ssDNA) binding protein complex RPA plays a critical role in promoting DNA replication and multiple DNA repair pathways. However, how RPA is regulated to achieve its functions precisely in these processes remains elusive. Here, we found that proper acetylation and deacetylation of RPA are required to regulate RPA function in promoting high-fidelity DNA replication and repair. We show that yeast RPA is acetylated on multiple conserved lysines by the acetyltransferase NuA4 upon DNA damage. Mimicking constitutive RPA acetylation or blocking its acetylation causes spontaneous mutations with the signature of micro-homology-mediated large deletions or insertions. In parallel, improper RPA acetylation/deacetylation impairs DNA double-strand break (DSB) repair by the accurate gene conversion or break-induced replication while increasing the error-prone repair by single-strand annealing or alternative end joining. Mechanistically, we show that proper acetylation and deacetylation of RPA ensure its normal nuclear localization and ssDNA binding ability. Importantly, mutation of the equivalent residues in human RPA1 also impairs RPA binding on ssDNA, leading to attenuated RAD51 loading and homologous recombination repair. Thus, timely RPA acetylation and deacetylation likely represent a conserved mechanism promoting high-fidelity replication and repair while discriminating the error-prone repair mechanisms in eukaryotes.


Subject(s)
Replication Protein A , Saccharomyces cerevisiae Proteins , Humans , Acetylation , DNA Repair , DNA Replication , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/genetics , Histone Acetyltransferases/metabolism , Rad51 Recombinase/metabolism , Replication Protein A/genetics , Replication Protein A/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , HeLa Cells
11.
Mol Med ; 30(1): 77, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840035

ABSTRACT

BACKGROUND: Ischemic stroke presents a significant threat to human health due to its high disability rate and mortality. Currently, the clinical treatment drug, rt-PA, has a narrow therapeutic window and carries a high risk of bleeding. There is an urgent need to find new effective therapeutic drugs for ischemic stroke. Icariin (ICA), a key ingredient in the traditional Chinese medicine Epimedium, undergoes metabolism in vivo to produce Icaritin (ICT). While ICA has been reported to inhibit neuronal apoptosis after cerebral ischemia-reperfusion (I/R), yet its underlying mechanism remains unclear. METHODS: PC-12 cells were treated with 200 µM H2O2 for 8 h to establish a vitro model of oxidative damage. After administration of ICT, cell viability was detected by Thiazolyl blue tetrazolium Bromide (MTT) assay, reactive oxygen species (ROS) and apoptosis level, mPTP status and mitochondrial membrane potential (MMP) were detected by flow cytometry and immunofluorescence. Apoptosis and mitochondrial permeability transition pore (mPTP) related proteins were assessed by Western blotting. Middle cerebral artery occlusion (MCAO) model was used to establish I/R injury in vivo. After the treatment of ICA, the neurological function was scored by ZeaLonga socres; the infarct volume was observed by 2,3,5-Triphenyltetrazolium chloride (TTC) staining; HE and Nissl staining were used to detect the pathological state of the ischemic cortex; the expression changes of mPTP and apoptosis related proteins were detected by Western blotting. RESULTS: In vitro: ICT effectively improved H2O2-induced oxidative injury through decreasing the ROS level, inhibiting mPTP opening and apoptosis. In addition, the protective effects of ICT were not enhanced when it was co-treated with mPTP inhibitor Cyclosporin A (CsA), but reversed when combined with mPTP activator Lonidamine (LND). In vivo: Rats after MCAO shown cortical infarct volume of 32-40%, severe neurological impairment, while mPTP opening and apoptosis were obviously increased. Those damage caused was improved by the administration of ICA and CsA. CONCLUSIONS: ICA improves cerebral ischemia-reperfusion injury by inhibiting mPTP opening, making it a potential candidate drug for the treatment of ischemic stroke.


Subject(s)
Apoptosis , Flavonoids , Ischemic Stroke , Membrane Potential, Mitochondrial , Mitochondrial Permeability Transition Pore , Oxidative Stress , Reactive Oxygen Species , Animals , Oxidative Stress/drug effects , Rats , Flavonoids/pharmacology , Flavonoids/therapeutic use , Mitochondrial Permeability Transition Pore/metabolism , Apoptosis/drug effects , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/etiology , PC12 Cells , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Male , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Disease Models, Animal , Hydrogen Peroxide/metabolism , Cell Survival/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley
12.
Anal Chem ; 96(4): 1630-1639, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38217493

ABSTRACT

Fluorescence resonance energy transfer (FRET) finds widespread utility in biochemical sensing, single-molecule experiments, cell physiology, and various other domains due to its inherent simplicity and high sensitivity. Nevertheless, the efficiency of energy transfer between the FRET donor and acceptor is significantly contingent on the local photonic environment, a factor that limits its application in complex systems or multianalyte detections. Here, a fluorescent selectivity-enhanced acridine orange (AO)-aflatoxins (AFs) FRET system based on a range of 3D topological photonic crystals (PCs) was developed with the aim of enhancing the selectivity and discrimination capabilities of FRET. By exploring the angle-dependent characteristics of the photonic stopband, the stopband distribution across different 3D topological PCs pixels was investigated. This approach led to selective fluorescence enhancement in PCs that matched the stopbands, enabling the successful discrimination of six distinct aflatoxins and facilitating complex multianalysis of moldy food samples. In particular, the stopband, which was strategically positioned within the blue-purple structural color range, exhibited a strong alignment with the fluorescence peaks of both the FRET donor and acceptor. This alignment allowed the 3D three-pointed star PCs to be effectively employed for the identification of mixed samples containing six distinct aflatoxins as well as the detection of real aflatoxin samples present in moldy potatoes, bread, oats, and peanuts. Impressively, this approach achieved a remarkable accuracy rate of 100%. This innovative strategy not only presents a novel avenue for developing a multitarget discrimination analysis system but also offers a convenient pretreatment method for the quantitative detection of various aflatoxins.


Subject(s)
Aflatoxins , Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Coloring Agents , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry
13.
Small ; 20(8): e2306854, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37828639

ABSTRACT

Recently, the power conversion efficiency (PCE) of organic solar cells (OSCs) has increased dramatically, making a big step toward the industrial application of OSCs. Among numerous OSCs, benzodithiophene (BDT)-based OSCs stand out in achieving efficient PCE. Notably, single-junction OSCs using BDT-based polymers as donor materials have completed a PCE of over 19%, indicating a dramatic potential for preparing high-performance large-scale OSCs. This paper reviews the recent progress of OSCs based on BDT polymer donor materials (PDMs). The development of BDT-based OSCs is concisely summarized. Meanwhile, the relationship between the structure of PDMs and the performance of OSCs is further described in this review. Besides, the development and prospect of single junction OSCs are also discussed.

14.
Small ; 20(5): e2304362, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37752782

ABSTRACT

Atomicforce microscopy (AFM)-based scanning probing techniques, including Kelvinprobe force microscopy (KPFM) and conductive atomic force microscopy (C-AFM), have been widely applied to investigate thelocal electromagnetic, physical, or molecular characteristics of functional materials on a microscopic scale. The microscopic inhomogeneities of the electronic properties of polycrystalline photovoltaic materials can be examined by these advanced AFM techniques, which bridge the local properties of materials to overall device performance and guide the optimization of the photovoltaic devices. In this review, the critical roles of local optoelectronic heterogeneities, especially at grain interiors (GIs) and grain boundaries (GBs) of polycrystalline photovoltaic materials, including versatile polycrystalline silicon, inorganic compound materials, and emerging halide perovskites, studied by KPFM and C-AFM, are systematically identified. How the band alignment and electrical properties of GIs and GBs affect the carrier transport behavior are discussed from the respective of photovoltaic research. Further exploiting the potential of such AFM-based techniques upon a summary of their up-to-date applications in polycrystalline photovoltaic materials is beneficial to acomprehensive understanding of the design and manipulation principles of thenovel solar cells and facilitating the development of the next-generation photovoltaics and optoelectronics.

15.
J Transl Med ; 22(1): 199, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402404

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of heart failure cases. The molecular mechanisms by which HFpEF leads to impaired diastolic function of the heart have not been clarified, nor have the drugs that target the clinical symptoms of HFpEF patients. METHODS: HFpEF chip data (GSE180065) was downloaded from the National Center for Biotechnology Information (NCBI) database. Differentially expressed genes (DEGs) were filtered by the limma package in R and processed for GO and KEGG pathway analyses. Then, ferroptosis-related genes in HFpEF were identified by taking the intersection between DEGs and ferroptosis-related genes. CytoHubba and MCODE were used to screen ferroptosis-related hub DEGs in the protein-protein interaction (PPI) network. Establishment of a mouse HFpEF model to validate the transcript levels of ferroptosis-related hub DEGs and ferroptosis-related phenotypes. Transcript levels of ferroptosis-related hub DEGs and HFpEF phenotypic changes in the hearts of HFpEF mice were further examined after the use of ferroptosis inhibitors. RESULTS: GO and KEGG enrichment analyses suggested that the DEGs in HFpEF were significantly enriched in ferroptosis-related pathways. A total of 24 ferroptosis-related DEGs were identified between the ferroptosis gene dataset and the DEGs. The established PPI network was further analyzed by CytoHubba and MCODE modules, and 11 ferroptosis-related hub DEGs in HFpEF were obtained. In animal experiments, HFpEF mice showed significant abnormal activation of ferroptosis. The expression trends of the 11 hub DEGs associated with ferroptosis, except for Cdh1, were consistent with the results of the bioinformatics analysis. Inhibition of ferroptosis alters the transcript levels of 11 ferroptosis-related hub DEGs and ameliorates HFpEF phenotypes. CONCLUSIONS: The present study contributes to a deeper understanding of the specific mechanisms by which ferroptosis is involved in the development of HFpEF and suggests that inhibition of ferroptosis may mitigate the progression of HFpEF. In addition, eleven hub genes were recognized as potential drug binding targets.


Subject(s)
Ferroptosis , Heart Failure , Humans , Animals , Mice , Heart Failure/drug therapy , Heart Failure/genetics , Stroke Volume , Heart , Computational Biology , Disease Models, Animal
16.
Nat Immunol ; 13(2): 152-61, 2012 Jan 08.
Article in English | MEDLINE | ID: mdl-22231518

ABSTRACT

Dendritic cells (DCs) bridge innate and adaptive immunity, but how DC-derived signals regulate T cell lineage choices remains unclear. We report here that the mitogen-activated protein kinase p38α programmed DCs to drive the differentiation of the T(H)17 subset of helper T cells. Deletion of p38α in DCs protected mice from T(H)17 cell-mediated autoimmune neuroinflammation, but deletion of p38α in macrophages or T cells did not. We also found that p38α orchestrated the expression of cytokines and costimulatory molecules in DCs and further 'imprinted' signaling via the receptor for interleukin 23 (IL-23R) in responding T cells to promote T(H)17 differentiation. Moreover, p38α was required for tissue-infiltrating DCs to sustain T(H)17 responses. This activity of p38α was conserved in mouse and human DCs and was dynamically regulated by pattern recognition and fungal infection. Our results identify p38α signaling as a central pathway for the integration of instructive signals in DCs for T(H)17 differentiation and inflammation.


Subject(s)
Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymphocyte Activation/immunology , Mitogen-Activated Protein Kinase 14/metabolism , Th17 Cells/immunology , Animals , Cytokines/immunology , Dendritic Cells/enzymology , Encephalomyelitis, Autoimmune, Experimental/enzymology , Gene Deletion , Humans , Macrophages/enzymology , Macrophages/immunology , Mice , Mitogen-Activated Protein Kinase 14/genetics , Mycoses/immunology , Mycoses/metabolism , Receptors, Interleukin/immunology , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism , T-Lymphocytes/enzymology , T-Lymphocytes/immunology , Th17 Cells/enzymology
17.
J Autoimmun ; 143: 103163, 2024 02.
Article in English | MEDLINE | ID: mdl-38301505

ABSTRACT

BACKGROUND: In patients with primary biliary cholangitis (PBC) treated with ursodeoxycholic acid (UDCA), the presence of moderate-to-severe interface hepatitis is associated with a higher risk of liver transplantation and death. This highlights the need for novel treatment approaches. In this study, we aimed to investigate whether combination therapy of UDCA and immunosuppressant (IS) was more effective than UDCA monotherapy. METHODS: We conducted a multicenter study involving PBC patients with moderate-to-severe interface hepatitis who underwent paired liver biopsies. Firstly, we compared the efficacy of the combination therapy with UDCA monotherapy on improving biochemistry, histology, survival rates, and prognosis. Subsequently we investigated the predictors of a beneficial response. RESULTS: This retrospective cohort study with prospectively collected data was conducted in China from January 2009 to April 2023. Of the 198 enrolled patients, 32 underwent UDCA monotherapy, while 166 received combination therapy, consisting of UDCA combined with prednisolone, prednisolone plus mycophenolate mofetil (MMF), or prednisolone plus azathioprine (AZA). The monotherapy group was treated for a median duration of 37.6 months (IQR 27.5-58.1), and the combination therapy group had a median treatment duration of 39.3 months (IQR 34.5-48.8). The combination therapy showed a significantly greater efficacy in reducing fibrosis compared to UDCA monotherapy, with an 8.3-fold increase in the regression rate (from 6.3% to 52.4%, P < 0.001). Other parameters, including biochemistry, survival rates, and prognosis, supported its effectiveness. Baseline IgG >1.3 × ULN and ALP <2.4 × ULN were identified as predictors of regression following the combination therapy. A predictive score named FRS, combining these variables, accurately identified individuals achieving fibrosis regression with a cut-off point of ≥ -0.163. The predictive value was validated internally and externally. CONCLUSION: Combination therapy with IS improves outcomes in PBC patients with moderate-to-severe interface hepatitis compared to UDCA monotherapy. Baseline IgG and ALP are the most significant predictors of fibrosis regression. The new predictive score, FRS, incorporating baseline IgG and ALP, can effectively identify individuals who would benefit from the combination therapy.


Subject(s)
Hepatitis , Liver Cirrhosis, Biliary , Humans , Liver Cirrhosis, Biliary/diagnosis , Liver Cirrhosis, Biliary/drug therapy , Cholagogues and Choleretics/therapeutic use , Retrospective Studies , Treatment Outcome , Ursodeoxycholic Acid/therapeutic use , Immunosuppressive Agents/therapeutic use , Prednisolone/therapeutic use , Immunosuppression Therapy , Hepatitis/complications , Immunoglobulin G
18.
Hepatology ; 78(6): 1711-1726, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-36630996

ABSTRACT

BACKGROUND AND AIMS: HCC is an aggressive disease with poor clinical outcome. Understanding the mechanisms that drive cancer stemness, which we now know is the root cause of therapy failure and tumor recurrence, is fundamental for designing improved therapeutic strategies. This study aims to identify molecular players specific to CD133 + HCC to better design drugs that can precisely interfere with cancer stem cells but not normal stem cell function. APPROACH AND RESULTS: Transcriptome profiling comparison of epithelial-specific "normal" CD133 + cells isolated from fetal and regenerating liver against "HCC" CD133 + cells isolated from proto-oncogene-driven and inflammation-associated HCC revealed preferential overexpression of SERPINA12 in HCC but not fetal and regenerating liver CD133 + cells. SERPINA12 upregulation in HCC is tightly associated with aggressive clinical and stemness features, including survival, tumor stage, cirrhosis, and stemness signatures. Enrichment of SERPINA12 in HCC is mediated by promoter binding of the well-recognized ß-catenin effector TCF7L2 to drive SERPINA12 transcriptional activity. Functional characterization identified a unique and novel role of endogenous SERPINA12 in promoting self-renewal, therapy resistance, and metastatic abilities. Mechanistically, SERPINA12 functioned through binding to GRP78, resulting in a hyperactivated AKT/GSK3ß/ß-catenin signaling cascade, forming a positive feed-forward loop. Intravenous administration of rAAV8-shSERPINA12 sensitized HCC cells to sorafenib and impeded the cancer stem cell subset in an immunocompetent HCC mouse model. CONCLUSIONS: Collectively, our findings revealed that SERPINA12 is preferentially overexpressed in epithelial HCC CD133 + cells and is a key contributor to HCC initiation and progression by driving an AKT/ß-catenin feed-forward loop.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , beta Catenin/metabolism , Cell Line, Tumor , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/metabolism , Cell Proliferation
19.
Plant Physiol ; 192(3): 1836-1857, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36805285

ABSTRACT

Drought stress substantially reduces the productivity of apple plants and severely restricts the development of apple industry. Malus sieversii, wild apples with excellent drought resistance, is a valuable wild resource for a rootstock improvement of cultivated apple (Malus domestica). miRNAs and their targets play essential roles in plant growth and stress responses, but their roles in drought stress responses in apple are unknown. Here, we demonstrate that microRNA156ab is upregulated in M. sieversii in response to drought stress. Overexpressing msi-miR156ab promoted auxin accumulation, maintained the growth of apple plants, and increased plant resistance to osmotic stress. Antioxidant enzyme activities and proline contents were also increased in miR156ab-OE transgenic apple lines, which improved drought resistance. The squamosa promoter binding protein-like transcription factor MsSPL13 is the target of msi-miR156ab, as demonstrated by 5'-RACE and dual luciferase assays. Heterologous expression of MsSPL13 decreased auxin contents and inhibited growth in Arabidopsis (Arabidopsis thaliana) under normal and stress conditions. The activities of antioxidant enzymes were also suppressed in MsSPL13-OE transgenic Arabidopsis, reducing drought resistance. We showed that MsSPL13 regulates the expression of the auxin-related genes MsYUCCA5, PIN-FORMED7 (MsPIN7), and Gretchen Hagen3-5 (MsGH3-5) by binding to the GTAC cis-elements in their promoters, thereby regulating auxin metabolism. Finally, we demonstrated that the miR156ab-SPL13 module is involved in mediating the difference in auxin metabolism and stress responses between M. sieversii and M26 (M. domestica) rootstocks. Overall, these findings reveal that the miR156ab-SPL13 module enhances drought stress tolerance in apples by regulating auxin metabolism and antioxidant enzyme activities.


Subject(s)
Arabidopsis , Malus , Malus/metabolism , Drought Resistance , Transcription Factors/genetics , Transcription Factors/metabolism , Antioxidants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Droughts , Indoleacetic Acids/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism
20.
Plant Physiol ; 192(3): 2030-2048, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36930566

ABSTRACT

Anthocyanin production in bicolored sweet cherry (Prunus avium cv. Rainier) fruit is induced by light exposure, leading to red coloration. The phytohormone abscisic acid (ABA) is essential for this process, but the regulatory relationships that link light and ABA with anthocyanin-associated coloration are currently unclear. In this study, we determined that light treatment of bicolored sweet cherry fruit increased anthocyanin accumulation and induced ABA production and that ABA participates in light-modulated anthocyanin accumulation in bicolored sweet cherry. Two B-box (BBX) genes, PavBBX6/9, were highly induced by light and ABA treatments, as was anthocyanin accumulation. The ectopic expression of PavBBX6 or PavBBX9 in Arabidopsis (Arabidopsis thaliana) increased anthocyanin biosynthesis and ABA accumulation. Overexpressing PavBBX6 or PavBBX9 in sweet cherry calli also enhanced light-induced anthocyanin biosynthesis and ABA accumulation. Additionally, transient overexpression of PavBBX6 or PavBBX9 in sweet cherry peel increased anthocyanin and ABA contents, whereas silencing either gene had the opposite effects. PavBBX6 and PavBBX9 directly bound to the G-box elements in the promoter of UDP glucose-flavonoid-3-O-glycosyltransferase (PavUFGT), a key gene for anthocyanin biosynthesis, and 9-cis-epoxycarotenoid dioxygenase 1 (PavNCED1), a key gene for ABA biosynthesis, and enhanced their activities. These results suggest that PavBBX6 and PavBBX9 positively regulate light-induced anthocyanin and ABA biosynthesis by promoting PavUFGT and PavNCED1 expression, respectively. Our study provides insights into the relationship between the light-induced ABA biosynthetic pathway and anthocyanin accumulation in bicolored sweet cherry fruit.


Subject(s)
Prunus avium , Prunus avium/genetics , Anthocyanins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism , Plant Growth Regulators/metabolism , Promoter Regions, Genetic/genetics , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL