Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Ecotoxicol Environ Saf ; 269: 115780, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38056123

ABSTRACT

The granulosa cells (GCs) of birds are essential for the reproduction and maintenance of populations in nature. Atrazine (ATR) is a potent endocrine disruptor that can interfere with reproductive function in females and Diaminochlorotriazine (DACT) is the primary metabolite of ATR in the organism. Melatonin (MT) is an endogenous hormone with antioxidant properties that plays a crucial role in development of animal germ cells. However, how ATR causes mitochondrial dysfunction, abnormal secretion of steroid hormones, and whether MT prevents ATR-induced female reproductive toxicity remains unclear. Thus, the purpose of this study is to investigate the protective effect of MT against ATR-induced female reproduction. In the present study, the GCs of quail were divided into 6 groups, as follows: C (Serum-free medium), MT (10 µM MT), A250 (250 µM ATR), MA250 (10 µM MT+250 µM ATR), D200 (200 µM DACT) and MD200 (10 µM MT+200 µM DACT), and were cultured for 24 h. The results revealed that ATR prevented GCs proliferation and decreased cell differentiation. ATR caused oxidative damage and mitochondrial dysfunction, leading to disruption of steroid synthesis, which posed a severe risk to GC's function. However, MT supplements reversed these changes. Mechanistically, our study exhibited that the ROS/SIRT1/STAR axis as a target for MT to ameliorate ATR-induced mitochondrial dysfunction and steroid disorders in GCs, which provides new insights into the role of MT in ATR-induced reproductive capacity and species conservation in birds.


Subject(s)
Atrazine , Herbicides , Melatonin , Mitochondrial Diseases , Animals , Female , Atrazine/toxicity , Atrazine/metabolism , Granulosa Cells/metabolism , Herbicides/toxicity , Herbicides/metabolism , Melatonin/pharmacology , Mitochondrial Diseases/chemically induced , Reactive Oxygen Species/metabolism , Sirtuin 1/drug effects , Sirtuin 1/metabolism , Steroids/metabolism , Quail/genetics , Quail/metabolism
2.
Soft Matter ; 17(26): 6298-6304, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34160542

ABSTRACT

Chiral assemblies by combining natural biomolecules with plasmonic nanostructures hold great promise for plasmonic enhanced sensing, imaging, and catalytic applications. Herein, we demonstrate that human serum albumin (HSA) and porcine serum albumin (PSA) can guide the chiral assembly of gold nanorods (GNRs) with left-handed chiroptical responses opposite to those by a series of other homologous animal serum albumins (SAs) due to the difference of their surface charge distributions. Under physiological pH conditions, the assembly of HSA or PSA with GNRs yielded left-handed twisted aggregates, while bovine serum albumin (BSA), sheep serum albumin, and equine serum albumin behaved on the contrary. The driving force for the chiral assembly is mainly attributed to electrostatic interaction. The opposite chiroptical signals acquired are correlated with the chiral surface charge distributions of the tertiary structures of SAs. Moreover, the chirality of the assembly induced by both HSA and BSA can be enhanced or reversed by adjusting the pH values. This work provides new insights into the modulation of protein-induced chiral assemblies and promotes their applications.


Subject(s)
Nanostructures , Nanotubes , Animals , Gold , Horses , Serum Albumin , Serum Albumin, Bovine , Sheep
3.
Zhongguo Zhong Yao Za Zhi ; 46(2): 320-332, 2021 Jan.
Article in Zh | MEDLINE | ID: mdl-33645118

ABSTRACT

With the increasing incidence of hepatobiliary diseases, it is particularly important to understand the role of molecular, cellular and physiological factors in the clinical diagnosis and treatment with traditional Chinese medicine(TCM) in the development of liver disease. Appropriate animal models can help us identify the possible mechanisms of relevant diseases. Danio rerio(zebrafish) model was traditionally used to study embryonic development, and has been gradually used in screening and evaluation of liver diseases and relevant drug in recent years. Zebrafish embryos develop rapidly and the digestive organs of 5-day-old juvenile fish are all mature. At this stage, they may develop hepatobiliary diseases induced by developmental defects or compounds. Zebrafish liver is similar to human liver in cell composition, function, signal transduction, response to injury and cell process mediating liver disease. Furthermore, due to the high conservation of genes and proteins between humans and zebrafish, zebrafish becomes an alternative system for studying basic mechanisms of liver disease. Therefore, genetic screening could be performed to identify new genes involving specific disease processes, and chemical screening could be made for drugs in specific processes. This paper briefly introduced the experimental properties of zebrafish as model system, emphasized the study progress of zebrafish models for pathological mechanism of liver diseases, especially fatty liver, and drug screening and evaluation, so as to provide ideas and techniques for the future liver toxicity assessment of TCM.


Subject(s)
Liver Diseases , Zebrafish , Animals , Drug Evaluation, Preclinical , Humans , Liver , Liver Diseases/genetics , Medicine, Chinese Traditional , Zebrafish/genetics
4.
Opt Express ; 28(25): 38355-38365, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379649

ABSTRACT

All-dielectric meta-surfaces composed of dielectric meta-atoms with electric and magnetic multipole resonances provide a low loss alternative to plasmonic meta-surfaces in some optical research fields such as meta-lens and meta-surface holography. We utilize the digital holography lithography technique to obtain the large area meta-surface perfect reflector made of high refractive index and low loss silicon discs arrays, with the capability to delicately control the optical response in the near infrared spectrum. Three types of meta-surface reflectors (discs, truncated cones and diamond-shaped discs) were fabricated, which correspondingly exhibited nearly 1 peak reflectance and greater than 97% average reflectance in their respective perfect reflectance spectral regions. Digital holography lithography only takes 4 min to fabricate millions of photoresist disks over an area of 100 mm2, which is high processing efficiency and low cost. The fabrication strategy opens a new avenue for the production of large-area meta-surfaces in the optical field, especially in the mass production of optical communication devices, semiconductor lasers, etc.

5.
J Agric Food Chem ; 72(23): 13382-13392, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814005

ABSTRACT

Cadmium (Cd) is a transition metal ion that is extremely harmful to human and animal biological systems. Cd is a toxic substance that can accumulate in the food chain and cause various health issues. Sulforaphane (SFN) is a natural bioactive compound with potent antioxidant properties. In our study, 80 1 day-old chicks were fed with Cd (140 mg/kg BW/day) and/or SFN (50 mg/kg BW/day) for 90 days. The blood-thymus barrier (BTB) is a selective barrier separating T-lymphocytes from blood and cortical capillaries in the thymus cortex. Our research revealed that Cd could destroy the BTB by downregulating Wnt/ß-catenin signaling and induce immunodeficiency, leading to irreversible injury to the immune system. The study emphasizes the health benefits of SFN in the thymus. SFN could ameliorate Cd-triggered BTB dysfunction and pyroptosis in the thymus tissues. SFN modulated the PI3K/AKT/FOXO1 axis, improving the level of claudin-5 (CLDN5) in the thymus to alleviate BTB breakdown. Our findings indicated the toxic impact of Cd on thymus, and BTB could be the specific target of Cd toxicity. The finding also provides evidence for the role of SFN in maintaining thymic homeostasis for Cd-related health issues.


Subject(s)
Cadmium , Chickens , Isothiocyanates , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sulfoxides , Thymus Gland , Animals , Isothiocyanates/pharmacology , Cadmium/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Thymus Gland/drug effects , Thymus Gland/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Signal Transduction/drug effects , Humans , Male
6.
Sci Total Environ ; 935: 173249, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38754502

ABSTRACT

Selenium (Se), a highly beneficial animal feed additive, exhibits remarkable antioxidant and anti-inflammatory properties. Nano­selenium (Nano-Se) is an advanced formulation of Se featuring a specialized drug delivery vehicle, with good bioavailability, higher efficacy, and lower toxicity compared to the traditional form of Se. With the advancement of industry, cadmium (Cd) contamination occurs in different countries and regions and thereby contaminating different food crops, and the degree of pollution is degree increasing year by year. The present investigation entailed the oral administration of CdCl2 and/or Nano-Se to male chickens of the Hy-Line Variety White breed, which are one day old, subsequent to a 7-day adaptive feeding period, for a duration of 90 days. The study aimed to elucidate the potential protective impact of Nano-Se on Cd exposure. The study found that Nano-Se demonstrates potential in mitigating the blood-brain barrier (BBB) dysfunction characterized by impairment of adherens junctions (AJS) and tight junctions (TJS) by inhibiting reactive oxygen species (ROS) overproduction. In addition, the data uncovered that Nano-Se demonstrates a proficient ability in alleviating BBB impairment and inflammatory reactions caused by Cd through the modulation of the Wnt7A/ß-catenin pathway, highlights its potential to maintain brain homeostasis. Hence, this research anticipates that the utilization of Nano-Se effectively mitigate the detrimental impacts associated with Cd exposure on the BBB.


Subject(s)
Blood-Brain Barrier , Cadmium , Chickens , Selenium , Animals , Cadmium/toxicity , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Male , beta Catenin/metabolism , Wnt Signaling Pathway/drug effects
7.
J Thorac Dis ; 15(1): 168-185, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36794132

ABSTRACT

Background: Lung cancer (LC) is a malignancy with one of the highest mortality rates. Respiratory microbiota is considered to play a key role in the development of LC, but the molecular mechanisms are rarely studied. Methods: We used lipopolysaccharide (LPS) and lipoteichoic acid (LTA) to study human lung cancer cell lines PC9 and H1299. The gene expression of CXC chemokine ligand (CXCL)1/6, interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The Cell-Counting Kit 8 (CCK-8) was used to analyze cell proliferation. Transwell assays were performed to analyze cell migration ability. Flow cytometry was used to observe cell apoptosis. Western blot and qRT-PCR were used to analyze the expression of secreted phosphoprotein 1 (SPP1), toll-like receptor (TLR)-2/4, and NLR family pyrin domain containing 3 (NLRP3) to determine the mechanism of LPS + LTA. We evaluated the effect of LPS + LTA on cisplatin sensibility by analyzing cell proliferation, apoptosis, and caspase-3/9 expression levels. We observed the proliferation activity, apoptosis, and migration ability of cells in which SPP1 had been transfected small interfering (si) negative control (NC) and integrin ß3 siRNA. Then the mRNA expression level and protein expression of PI3K, AKT, and ERK were analyzed. Finally, the nude mouse tumor transplantation model was conducted to verify. Results: We studied that in two cell lines, the expression level of inflammatory factors in LPS+LTA group was significantly higher than that in single treatment group (P<0.001). We explored LPS + LTA combined treatment group significantly increased the expression of NLRP3 and genes and proteins. LPS + LTA + Cisplatin group could significantly reduce the inhibitory effect of LPS on cell proliferation (P<0.001), reduce the apoptosis rate (P<0.001) and significantly reduce the expression levels of caspase-3/9 (P<0.001) compared with Cisplatin group. Finally, we verified that LPS and LTA could increase osteopontin (OPN)/integrin ß3 expression and activate the PI3K/AKT pathway to promote malignant progression of LC in vitro studies. Conclusions: This study provides a theoretical basis for further exploration of the influence of lung microbiota on NSCLC and the optimization of LC treatment in the future.

8.
J Adv Res ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37499939

ABSTRACT

INTRODUCTION: Vascular neointimal hyperplasia, a pathological process observed in cardiovascular diseases such as atherosclerosis and pulmonary hypertension, involves the abundant presence of vascular smooth muscle cells (VSMCs). The proliferation, migration, and autophagy of VSMCs are associated with the development of neointimal lesions. Circular RNAs (circRNAs) play critical roles in regulating VSMC proliferation and migration, thereby participating in neointimal hyperplasia. However, the regulatory roles of circRNAs in VSMC autophagy remain unclear. OBJECTIVES: We aimed to identify circRNAs that are involved in VSMC autophagy-mediated neointimal hyperplasia, as well as elucidate the underlying mechanisms. METHODS: Dual-luciferase reporter gene assay was performed to validate two competing endogenous RNA axes, hsa_circ_0001402/miR-183-5p/FKBP prolyl isomerase like (FKBPL) and hsa_circ_0001402/miR-183-5p/beclin 1 (BECN1). Cell proliferation and migration analyses were employed to investigate the effects of hsa_circ_0001402, miR-183-5p, or FKBPL on VSMC proliferation and migration. Cell autophagy analysis was conducted to reveal the role of hsa_circ_0001402 or miR-183-5p on VSMC autophagy. The role of hsa_circ_0001402 or miR-183-5p on neointimal hyperplasia was evaluated using a mouse model of common carotid artery ligation. RESULTS: Hsa_circ_0001402 acted as a sponge for miR-183-5p, leading to the suppression of miR-183-5p expression. Through direct interaction with the coding sequence (CDS) of FKBPL, miR-183-5p promoted VSMC proliferation and migration by decreasing FKBPL levels. Besides, miR-183-5p reduced BECN1 levels by targeting the 3'-untranslated region (UTR) of BECN1, thus inhibiting VSMC autophagy. By acting as a miR-183-5p sponge, overexpression of hsa_circ_0001402 increased FKBPL levels to inhibit VSMC proliferation and migration, while simultaneously elevating BECN1 levels to activate VSMC autophagy, thereby alleviating neointimal hyperplasia. CONCLUSION: Hsa_circ_0001402, acting as a miR-183-5p sponge, increases FKBPL levels to inhibit VSMC proliferation and migration, while enhancing BECN1 levels to activate VSMC autophagy, thus alleviating neointimal hyperplasia. The hsa_circ_0001402/miR-183-5p/FKBPL axis and hsa_circ_0001402/miR-183-5p/BECN1 axis may offer potential therapeutic targets for neointimal hyperplasia.

9.
BMC Cancer ; 12: 492, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23095762

ABSTRACT

BACKGROUND: Androgen receptor (AR) signalling is critical to the initiation and progression of prostate cancer (PCa). Transcriptional activity of AR involves chromatin recruitment of co-activators, including the p300/CBP-associated factor (PCAF). Distinct miRNA expression profiles have been identified in PCa cells during the development and progression of the disease. Whether miRNAs regulate PCAF expression in PCa cells to regulate AR transcriptional activity is still unclear. METHODS: Expression of PCAF was investigated in several PCa cell lines by qRT-PCR, Western blot, and immunocytochemistry. The effects of PCAF expression on AR-regulated transcriptional activity and cell growth in PCa cells were determined by chromatin immunoprecipitation, reporter gene construct analysis, and MTS assay. Targeting of PCAF by miR-17-5p was evaluated using the luciferase reporter assay. RESULTS: PCAF was upregulated in several PCa cell lines. Upregulation of PCAF promoted AR transcriptional activation and cell growth in cultured PCa cells. Expression of PCAF in PCa cells was associated with the downregulation of miR-17-5p. Targeting of the 3'-untranslated region of PCAF mRNA by miR-17-5p caused translational suppression and RNA degradation, and, consequently, modulation of AR transcriptional activity in PCa cells. CONCLUSIONS: PCAF is upregulated in cultured PCa cells, and upregulation of PCAF is associated with the downregulation of miR-17-5p. Targeting of PCAF by miR-17-5p modulates AR transcriptional activity and cell growth in cultured PCa cells.


Subject(s)
MicroRNAs/genetics , Receptors, Androgen/genetics , Transcription, Genetic/genetics , p300-CBP Transcription Factors/genetics , Blotting, Western , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Dihydrotestosterone/pharmacology , Humans , Immunohistochemistry , Male , MicroRNAs/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic/drug effects , Up-Regulation/drug effects , p300-CBP Transcription Factors/metabolism
10.
Sheng Li Xue Bao ; 64(3): 282-8, 2012 Jun 25.
Article in Zh | MEDLINE | ID: mdl-22717631

ABSTRACT

ERα36 is a novel subtype of estrogen receptor alpha (ERα) known to play an important role in breast cancer development and widely expressed in normal tissues and cells including nerve cells. However, the expression and function of ERα36 in nerve cells have not been well elucidated. To examine whether ERα36 is involved in differentiation of nerve cells, the differentiated and undifferentiated PC12 (PC12D and PC12unD) cells were used. Transfection of ERα36-shRNA plasmid into PC12 cells was performed to establish the ERα36 gene knock-down cells model. Immunocytofluorescence and Western blot were used to analyze the expression of Nestin, ß-tubulinIII and Neu-N in the PC12 cells. The results showed that ERα36 was expressed in both cell types. Compared with PC12D cells, PC12unD cells showed higher expression of Nestin and lower expression of ß-tubulinIII. ERα36-shRNA-mediated knock-down of ERα36 expression enhanced the expression of ß-tubulinIII and Neu-N, but attenuated Nestin expressions in PC12unD cells; ERα36 knock-down in PC12D cells mediated Nestin, ß-tubulinIII and Neu-N in a contrary manner. These results indicate that ERα36 knock-down appear to be associated with inhibiting differentiation in differentiated cells and promoting differentiation in undifferentiated cells, suggesting that ERα36 is a dual regulator in nerve differentiation.


Subject(s)
Cell Differentiation , Estrogen Receptor alpha/metabolism , Neurons/cytology , Animals , Antigens, Nuclear/metabolism , Estrogen Receptor alpha/genetics , Gene Knockdown Techniques , Nerve Tissue Proteins/metabolism , Nestin/metabolism , Neurons/metabolism , PC12 Cells , Rats , Transfection , Tubulin/metabolism
11.
Food Funct ; 13(17): 8871-8879, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35920725

ABSTRACT

The intensive adoption of atrazine (ATZ) is a source of a persistently widespread pollutant in daily life. However, ATZ is still used as an essential herbicide in numerous countries because its toxic effect is not addressed as a public health concern. This study found that ATZ exposure caused mitophagy and pyroptosis crosstalk in the thymus. And it could destroy the thymus architecture, inducing immunodeficiency. Lycopene (LYC), a natural bioactive component, is applied to reduce the risk of chronic diseases caused by environmental factors. This work also investigated the health benefits of LYC in the ATZ-induced toxic effect on the thymus. LYC could ameliorate the ATZ-induced mitophagy and pyroptosis. LYC modulated the IL-6/STAT3/Foxo1 axis, improving the level of CD45 in the thymus. This work sheds light on the toxic effect of ATZ on the thymus, and it will provide evidence for ATZ health risks. Additionally, the finding also underscores a novel target of LYC in maintaining thymic homeostasis in ATZ exposure.


Subject(s)
Atrazine , Atrazine/toxicity , Interleukin-6/genetics , Lycopene/pharmacology , Mitophagy , Pyroptosis
12.
Am J Obstet Gynecol ; 205(3): 227.e1-6, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21684519

ABSTRACT

OBJECTIVE: To explore the role of estrogen receptor-α36 (ER-α36) in epidermal growth factor receptor (EGFR)-related carcinogenesis in endometrial cancer. STUDY DESIGN: The expression of ER-α36, EGFR, and phospho-extracellular signal-regulated kinase was analyzed using immunohistochemistry in endometrial cancer samples. The cellular localization of ER-α36 and EGFR was determined using immunofluorescence in the endometrial cancer Hec1A cells. The level of phospho-extracellular signal-regulated kinase of Hec1A cells was determined using Western blotting after treatment with epidermal growth factor. RESULTS: Positive rate of ER-α36 was increased in high-stage (P = .03) and high-grade (P = .224) endometrial cancer; expression of ER-α36 and EGFR exhibited a significant positive correlation (r = 0.334, P = .025) and they showed substantial colocalization on the plasma membrane of glandular cells; phospho-extracellular signal-regulated kinase positive rate in ER-α36 positive group and EGFR positive group was higher than that of ER-α36 negative group (P = .014) and EGFR negative group (P = .016); finally, ER-α36 mediated epidermal growth factor-stimulated extracellular signal-regulated kinase activation in Hec1A cells. CONCLUSION: ER-α36 mediates EGFR-related extracellular signal-regulated kinase activation in endometrial cancer.


Subject(s)
Endometrial Neoplasms/metabolism , ErbB Receptors/metabolism , Estrogen Receptor alpha/metabolism , Cell Line, Tumor , Endometrial Neoplasms/pathology , Epidermal Growth Factor/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Phosphorylation/drug effects , Protein Isoforms/metabolism , Signal Transduction/drug effects
13.
Int J Ophthalmol ; 14(2): 245-249, 2021.
Article in English | MEDLINE | ID: mdl-33614453

ABSTRACT

AIM: To compare the objective visual quality after implantation of a toric intraocular lens (IOL) in order to correct moderate or high corneal astigmatism at the one year postoperative follow-up. METHODS: From December 2017 to June 2018, 66 patients (90 eyes) with simple age-related cataract with regular corneal astigmatism greater than 1.5 D were enrolled in this prospective self-control study. The patients were implanted with Proming® toric IOL (model: AT3BH-AT6BH). The subjects were divided into moderate astigmatism group (46 eyes, 1.5-2.5 D) and high astigmatism group (44 eyes, >2.5 D). The uncorrected distance visual acuity, residual astigmatism and axial position of IOL were observed before operation, 3, 6mo and 1y after operation. Modulation transfer function cutoff (MTF cutoff), Strehl ratio (SR), object scatter index (OSI) were observed by OQAS II to evaluate the objective visual quality of patients. RESULTS: There was no significant difference in UCVA, residual astigmatism, axial deviation, MTF cutoff, SR and OSI between moderate and high astigmatism group (all P>0.05). After 3mo, UCVA, MTF cutoff and SR were significantly increased (all P<0.05), residual astigmatism and OSI were significantly decreased (all P<0.05). After 3mo, all the indexes remained stable. CONCLUSION: Proming toric IOL can effectively treat age-related cataract patients with moderate-to-high regular corneal astigmatism, correcting corneal astigmatism, improving UCVA, ensuring long-term stability in the capsule, and providing patients with better visual quality.

14.
ACS Appl Mater Interfaces ; 13(12): 14433-14439, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33730482

ABSTRACT

Highly soluble d8-d10 heteronuclear phosphors afford an alternative approach to achieve high-efficiency organic light-emitting diodes (OLEDs) through a solution process. In this work, four highly phosphorescent d8-d10 heteronuclear complexes with significant Pt-Au interactions were prepared. By judicious selection of sterically hindered and π-conjugated substituents in triphosphine ligands, the phosphorescence is dramatically promoted through effectively prohibiting nonradiative thermal relaxation with an efficiency of 0.94-0.99 in doping films. Exploiting highly emissive Pt-Au complexes as phosphorescent dopants, ultrahigh-efficiency solution-processed OLEDs were attained. The peak current efficiency, power efficiency, and external quantum efficiency are 96.2 cd A-1, 65.0 lm W-1, and 26.4% for the green-emitting PtAu2 phosphor and 68.6 cd A-1, 42.5 lm W-1, and 25.1% for the orange-emitting Pt2Au phosphor, which represent the state-of-art for solution-processed OLEDs based on non-iridium phosphors.

15.
Front Pharmacol ; 12: 775745, 2021.
Article in English | MEDLINE | ID: mdl-35295738

ABSTRACT

Background: Yiqi Huoxue Decoction (YQHXD) is a traditional Chinese medicine that promotes blood circulation, removes blood stasis, facilitates diuresis, and alleviates edema. It is composed of 10 herbal medicines and has extensive application in treating nephrotic syndrome (NS). However, the active components and the potential mechanism of YQHXD for treating NS remain unclear. Methods: We set up a sensitive and rapid method based on Ultra-High Performance Liquid Chromatograph-Mass (UPLC-MS) to identify the compounds in YQHXD and constituents absorbed into the blood. Disease genes were collected through GeneCards, DisGeNET, and OMIM database. Genes of compounds absorbed into blood were predicted by the TCMSP database. We constructed Disease-Drug-Ingredient-Gene (DDIG) network using Cytoscape, established a Protein-protein interaction (PPI) network using String, Gene biological process (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using DAVID. Cellular experiments were performed to validate the results of network pharmacology. Result: A total of 233 compounds in YQHXD and 50 constituents absorbed into the blood of rats were identified. The 36 core targets in the PPI network were clustered in the phosphatidylinositol 3 kinase-RAC serine/threonine-protein kinase (PI3K-AKT) and nuclear factor kappa-B (NF-κB) signaling pathways. Luteolin, Wogonin, Formononetin, and Calycosin were top-ranking components as potentially active compounds. Conclusion: The results of our studies show that YQHXD is able to enhance renal function, alleviate podocyte injury, and improve adriamycin nephrotic syndrome.

16.
J Ethnopharmacol ; 271: 113818, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33465444

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ranunculus japonicus Thunb. (short for R. japonicus) is a topically applied herb with the activities of removing jaundice, nebula and edema, preventing malaria, stopping asthma, promoting diuresis and relieving pain. It was firstly recorded in Zhouhou Beiji Fang and has been used for the treatment of malaria, ulcers, carbuncle, jaundice, migraine, stomachache, toothache and arthritis for over 1800 years. AIM OF THE STUDY: This study aimed to uncover the potentially effective components of R. japonicus and the pharmacological mechanisms against rheumatoid arthritis (RA) by combing LC-MS and network pharmacology. MATERIALS AND METHODS: Firstly, the chemical constituents of R. japonicus were qualitatively identified by UPLC-ESI-LTQ-Orbitrap MS. Then we performed target prediction by PharmMapper, protein-protein interaction (PPI) analysis via String, GO and KEGG pathway enrichment analysis by DAVID and constructed the compound-target-pathway network using Cytoscape. Thirdly, crucial compounds in the network were quantitatively analyzed to achieve quality control of R. japonicus. Finally, the pharmacological activities of R. japonicus and two potentially bioactive ingredients were validated in RA-FLSs (Rheumatoid Arthritis Fibroblast-like Synoviocytes) in vitro. RESULTS: Overall fifty-four ingredients of R. japonicus were identified and forty-five components were firstly discovered in R. japonicus. Among them, twenty-seven validated compounds were predicted to act on twenty-five RA-related targets and they might exhibit therapeutic effects against RA via positive regulation of cell migration, etc. Nine potentially bioactive components of R. japonicus which played important roles in the compound-target-pathway network were simultaneously quantified by an optimized UPLC-ESI-Triple Quad method. In vitro, compared to control group, R. japonicus extract, berberine and yangonin significantly inhibited the migration capacity of RA-FLSs after 24 h treatment. CONCLUSION: This study clarified that R. japonicus and the bioactive ingredients berberine and yangonin might exert therapeutic actions for RA via suppressing the aggressive phenotypes of RA-FLSs through combined LC-MS technology and network pharmacology tools for the first time. The present research provided deeper understanding into the chemical profiling, pharmacological activities and quality control of R. japonicus and offered reference for further scientific research and clinical use of R. japonicus in treating RA.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Pharmacology/methods , Ranunculus/chemistry , Cell Movement/drug effects , Cells, Cultured , Chromatography, Liquid , Fibroblasts/drug effects , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology , Protein Interaction Maps/drug effects , Signal Transduction/drug effects , Synoviocytes/drug effects , Tandem Mass Spectrometry , Wound Healing/drug effects
17.
J Cell Mol Med ; 14(6B): 1485-93, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19840189

ABSTRACT

The dietary isothiocyanates (ITCs) exhibit strong chemopreventive activities for a variety of neoplasms including breast cancer. However, the molecular mechanisms underlying ITC function in breast cancer cells have not been well established. Here, we found that phenethyl isothiocyanate (PEITC) acted more potently than the 'pure' anti-oestrogen ICI 182,780 to inhibit the growth of oestrogen receptor (ER)(+) breast cancer MCF7 and H3396 cells and ER(-) MDA-MB-231 and SK-BR-3 cells. PEITC reduced the steady state levels of ER-alpha and its novel variant, ER-alpha36 in a dose-and time-dependent manner and inhibited oestrogen-induced activation of the mitogen activated protein kinase/ERK 1/2 signaling pathway. However, ICI 182,780 that is potent in destabilization of ER-alpha protein, failed to down-regulate ER-alpha36. Our results thus demonstrated that PEITC functions as a more potent ER-alpha'disruptor' than the well-known ICI 182,780 to abrogate ER-mediated mitogenic oestrogen signaling in breast cancer cells, which provides a molecular explanation for the strong growth inhibitory activity of ITCs in breast cancer cells, and a rational for further exploration of ITCs as chemopreventive agents for human mammary carcinogenesis.


Subject(s)
Breast Neoplasms/pathology , Down-Regulation/drug effects , Estradiol/analogs & derivatives , Estrogen Receptor alpha/metabolism , Isothiocyanates/pharmacology , Breast Neoplasms/enzymology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Estradiol/chemistry , Estradiol/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Fulvestrant , Genome, Human/genetics , Humans , Isothiocyanates/chemistry , Leupeptins/pharmacology , Phosphorylation/drug effects , Signal Transduction/drug effects
18.
Chem Commun (Camb) ; 56(73): 10607-10620, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32930247

ABSTRACT

Numerous mononuclear platinum(ii) complexes are non-emissive or weakly emissive under ambient conditions, but the corresponding Pt-M (M = Cu(i), Ag(i), Au(i), etc.) heteronuclear assemblies could become intensely luminescent because of the inhibition of non-radiative relaxation and the promotion of intersystem crossing from singlet to triplet state through Pt-M intermetallic interactions. To this end, the fabrication of specifically structured Pt-M complexes by the use of slightly luminescent homonuclear Pt(ii) precursors provides a promising approach to switching on phosphorescence as well as modulating emission energy and colour. This feature article is aimed at providing some typical examples for attaining highly phosphorescent Pt-M heteronuclear complexes using homonuclear Pt(ii) precursors, focusing on the assembly strategy, the correlation of emissive properties to the structures, and the application of phosphorescence in sensing and light-emitting devices.

19.
Reprod Biol Endocrinol ; 7: 102, 2009 Sep 24.
Article in English | MEDLINE | ID: mdl-19775474

ABSTRACT

BACKGROUND: Endometrial cancer is one of the most common gynecologic malignancies and its incidence has recently increased. Experimental and epidemiological data support that testosterone plays an important role in the pathogenesis of endometrial cancer, but the underlying mechanism has not been fully understood. Recently, we identified and cloned a variant of estrogen receptor (ER) alpha, ER-alpha36. The aim of the present study was to investigate the role of ER-alpha36 in testosterone carcinogenesis. METHODS: The cellular localization of ER-alpha36 was determined by immunofluorescence. Hec1A endometrial cancer cells (Hec1A/V) and Hec1A cells with siRNA knockdown of ER-alpha36 (Hec1A/RNAi) were treated with testosterone, ERK and Akt phosphorylation was assessed by Western blot analysis. Furthermore, the kinase inhibitors U0126 and LY294002 and the aromatase inhibitor letrozole were used to elucidate the pathway underlying testosterone-induced activities. RESULTS: Immunofluorescence shows that ER-alpha36 was localized on the plasma membrane of the both ER-alpha- and androgen receptor-negative endometrial cancer Hec1A cells. Testosterone induced ERK and Akt phosphorylation, which could be abrogated by ER-alpha 36 shRNA knockdown or the kinase inhibitors, U0126 and LY294002, and the aromatase inhibitor letrozole. CONCLUSION: Testosterone induces ERK and Akt phosphorylation via the membrane-initiated signaling pathways mediated by ER-alpha36, suggesting a possible involvement of ER-alpha 36 in testosterone carcinogenesis.


Subject(s)
Carcinoma/metabolism , Endometrial Neoplasms/metabolism , Estrogen Receptor alpha/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Testosterone/pharmacology , Aromatase Inhibitors/pharmacology , Carcinoma/pathology , Cell Membrane/metabolism , Endometrial Neoplasms/pathology , Enzyme Activation/drug effects , Estrogen Receptor alpha/metabolism , Female , Humans , Letrozole , Nitriles/pharmacology , Phosphorylation/drug effects , Protein Isoforms/metabolism , Protein Isoforms/physiology , Signal Transduction/drug effects , Testosterone/metabolism , Triazoles/pharmacology , Tumor Cells, Cultured
20.
Oncol Rep ; 21(1): 185-92, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19082460

ABSTRACT

The isothiocyanates (ITCs) have long been known to possess chemopreventive activities for a variety of neoplasms including breast cancer, but the molecular mechanism by which ITCs prevent breast cancer development has not been established. In this study, we investigated the effects of benzyl and phenethyl isothiocyanate (BITC and PEITC) on the estrogen-stimulated growth of estrogen receptor alpha (ERalpha)-positive breast cancer MCF7 and T-47D cells. BITC and PEITC inhibited estrogen-stimulated cell growth and reduced the expression levels of ERalpha in MCF7 and T-47D cells in a dose- and time-dependent and reversible manner. In addition, BITC and PEITC also abrogated the transcriptional activity of ERalpha and hence inhibited estrogen-stimulated expression of the estrogen responsive gene, pS2. These results demonstrated that BITC and PEITC function as potent ERalpha disruptors to abrogate mitogenic estrogen signaling in ER-positive breast cancer cells, which provides a molecular explanation for the growth inhibitory function of ITCs in breast cancer development, and a rational for further exploration of ITCs as chemopreventive agents for human mammary carcinogenesis.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Estrogen Receptor alpha/drug effects , Isothiocyanates/pharmacology , Blotting, Western , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Estrogen Receptor alpha/metabolism , Female , Humans , Reverse Transcriptase Polymerase Chain Reaction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL