Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nano Lett ; 24(23): 6872-6880, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38683656

ABSTRACT

The efficient cytosolic delivery of the CRISPR-Cas9 machinery remains a challenge for genome editing. Herein, we performed ligand screening and identified a guanidinobenzol-rich polymer to overcome the cascade delivery barriers of CRISPR-Cas9 ribonucleoproteins (RNPs) for genome editing. RNPs were stably loaded into the polymeric nanoparticles (PGBA NPs) by their inherent affinity. The polymer facilitated rapid endosomal escape of RNPs via a dynamic multiple-step cascade process. Importantly, the incorporation of fluorescence in the polymer helps to identify the correlation between cellular uptake and editing efficiency, increasing the efficiency up to 70% from the initial 30% for the enrichment of edited cells. The PGBA NPs efficiently deliver RNPs for in vivo gene editing via both local and systemic injections and dramatically reduce PCSK9 level. These results indicate that PGBA NPs enable the cascade delivery of RNPs for genome editing, showing great promise in broadening the therapeutic potential of the CRISPR-Cas9 technique.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Nanoparticles , Polymers , Gene Editing/methods , CRISPR-Cas Systems/genetics , Humans , Polymers/chemistry , Nanoparticles/chemistry , Animals , Ribonucleoproteins/genetics , Ribonucleoproteins/chemistry , HEK293 Cells , Mice , Guanidines/chemistry
2.
J Am Chem Soc ; 146(8): 5295-5304, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38363710

ABSTRACT

Unveiling the mechanism behind chirality propagation and dissymmetry amplification at the molecular level is of significance for the development of chiral systems with comprehensively outstanding chiroptical performances. Herein, we have presented a straightforward Cu-mediated Ullmann homocoupling approach to synthesize perylene diimide-entwined double π-helical nanoribbons encompassing dimer, trimer, and tetramer while producing homochiral or heterochiral linking of chiral centers. A significant dissymmetry amplification was achieved, with absorption dissymmetry factors (|gabs|) increasing from 0.009 to 0.017 and further to 0.019, and luminescence dissymmetry factors (|glum|) rising from 0.007 to 0.013 and eventually to 0.015 for homochiral double π-helical oligomers. The disparity of magnetic transition dipole moment (m) densities in homochiral and heterochiral tetramers by time-dependent density functional theory calculations confirmed that homochiral oligomerization can maximize the total m, which is favorable for achieving ever-increasing g factors. Notably, these double π-helices exhibited exceptional photoluminescence quantum yields (ΦPL) ranging from 83 to 95%. The circularly polarized luminescence brightness (BCPL) eventually reached a remarkable 575 M-1 cm-1 for the homochiral tetramer, which is among the highest values reported for chiral small molecules. This kind of linearly extended double π-helices offers a platform for a comprehensive understanding of the mechanism behind chirality propagation and dissymmetry amplification.

3.
J Am Chem Soc ; 146(19): 13499-13508, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38696816

ABSTRACT

Near-infrared (NIR) circularly polarized light absorbing or emitting holds great promise for highly sensitive and precise bioimaging, biosensing, and photodetectors. Aiming at designing NIR chiral molecular systems with amplified dissymmetry and robust chiroptical response, herein, we present a series of double π-helical dimers with longitudinally extended π-entwined substructures via Ullmann or Yamamoto homocoupling reactions. Circular dichroism (CD) spectra revealed an approximate linear bathochromic shift with the rising number of naphthalene subunits, indicating a red to NIR chiroptical response. Particularly, the terrylene diimide-entwined dimers exhibited the strongest CD intensities, with the maximal |Δε| reaching up to 393 M-1 cm-1 at 666 nm for th-TDI[2]; and a record-high chiroptical response (|ΔΔε|) between the neutral and dianionic species of 520 M-1 cm-1 at 833 nm for th-TDI[2]Cl was achieved upon further reduction to its dianionic state. Time-dependent density functional theory (TDDFT) calculations suggested that the pronounced intensification of the CD spectra originated from a simultaneous enhancement of both electric (µ) and magnetic (m) transition dipole moments, ultimately leading to an overall increase in the rotatory strength (R). Notably, the circularly polarized luminescence (CPL) brightness (BCPL) reached 77 M-1 cm-1 for th-TDI[2]Cl, among the highest values reported for NIR-CPL emitters. Furthermore, all chiral dianions exhibited excellent air stability under ambient conditions with half-life times of up to 10 days in N-methylpyrrolidone (NMP), which is significant for future biological applications and chiroptic switches.

4.
Small ; 20(28): e2310824, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38282374

ABSTRACT

Structured passivation layers and hydrated Zn2+ solvation structure strongly influence Zn depositions on Zn electrodes and then the cycle life and electrochemical performance of aqueous zinc ion batteries. To achieve these, the electrolyte additive of sodium L-ascorbate (Ass) is introduced into aqueous zinc sulfate (ZnSO4, ZS) electrolyte solutions. Combined experimental characterizations with theoretical calculations, the unique passivation layers with vertical arrayed micro-nano structure are clearly observed, as well as the hydrated Zn2+ solvation structure is changed by replacing two ligand water molecules with As-, thus regulating the wettability and interfacial electric field intensity of Zn surfaces, facilitating rapid ionic diffusions within electrolytes and electrodes together with the inhibited side reactions and uniform depositions of Zn2+. When tested in Zn||Zn symmetric cell, the electrolyte containing Ass is extraordinarily stably operated for the long time ≈3700 h at both 1 mA cm-2 and 1 mAh cm-2. In Zn||MnO2 full coin cells, the energy density can still maintain as high as ≈184 Wh kg-1 at the power density high up to 2 kW kg-1, as well as the capacity retention can reach up to 80.5% even after 1000 cycles at 2 A g-1, which are substantially superior to the control cells.

5.
Virol J ; 21(1): 72, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38515187

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV) infection is a public health problem that seriously threatens human health. This study aimed to investigate the clinical significance of glutathione peroxidase 4(GPX4) in the occurrence and development of chronic hepatitis B (CHB). METHODS: A total of 169 participants including 137 patients with CHB and 32 healthy controls (HCs) were recruited. We detected the expression of GPX4 and stimulator of interferon genes (STING) in peripheral blood mononuclear cells (PBMCs) by real-time quantitative polymerase chain reaction (RT-qPCR). The methylation level of GPX4 gene promoter in PBMCs was detected by TaqMan probe-based quantitative methylation-specific PCR (MethyLight). Enzyme-linked immunosorbent assay (ELISA) was performed to detect the serum levels of GPX4, IFN-ß, oxidative stress (OS) related molecules, and pro-inflammatory cytokines. RESULTS: The expression levels of GPX4 in PBMCs and serum of CHB patients were lower than those of HCs, but the methylation levels of GPX4 promoter were higher than those of HCs, especially in patients at the immune tolerance phase. STING mRNA expression levels in PBMCs and serum IFN-ß levels of patients at the immune activation phase and reactivation phase of CHB were higher than those at other clinical phases of CHB and HCs. GPX4 mRNA expression level and methylation level in PBMCs from patients with CHB had a certain correlation with STING and IFN-ß expression levels. In addition, the methylation level of the GPX4 promoter in PBMCs from patients with CHB was correlated with molecules associated with OS and inflammation. CONCLUSIONS: GPX4 may play an important role in the pathogenesis and immune tolerance of CHB, which may provide new ideas for the functional cure of CHB.


Subject(s)
Hepatitis B, Chronic , Humans , DNA Methylation , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Leukocytes, Mononuclear/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , RNA, Messenger/genetics
6.
Environ Sci Technol ; 58(28): 12477-12487, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38943037

ABSTRACT

Although the impacts of exotic wetland plant invasions on native biodiversity, landscape features, and carbon-nitrogen cycles are well appreciated, biogeochemical consequences posed by ecological competition, such as the heterogeneity of dissolved organic matter (DOM) from plant detritus and its impact on the formation of reactive oxygen species, are poorly understood. Thus, this study delves into O2•- photogeneration potential of DOM derived from three different parts (stem, leaf, and panicle) of invasive Spartina alterniflora (SA) and native Phragmites australis (PA). It is found that DOM from the leaves of SA and the panicles of PA has a superior ability to produce O2•-. With more stable aromatic structures and a higher proportion of sulfur-containing organic compounds, SA-derived DOM generally yields more O2•- than that derived from PA. UVA exposure enhances the leaching of diverse DOM molecules from plant detritus. Based on the reported monitoring data and our findings, the invasion of SA is estimated to approximately double the concentration of O2•- in the surrounding water bodies. This study can help to predict the underlying biogeochemical impacts from the perspective of aquatic photochemistry in future scenarios of plant invasion, seawater intrusion, wetland degradation, and elevated solar UV radiation.


Subject(s)
Wetlands , Superoxides/metabolism , Introduced Species , Plants/metabolism
7.
BMC Surg ; 24(1): 103, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600472

ABSTRACT

BACKGROUND: There is no effective consensus on the choice of internal fixation method for the Masquelet technique in the treatment of large segmental bone defects of the distal tibia. Thus, the study aimed to investigate the outcomes of the Masquelet technique combined with double plate fixation in the treatment of large segmental bone defects. METHODS: This was a retrospective study involving 21 patients with large segmental bone defects of the distal tibia who were treated between June 2017 and June 2020. The length of bone defect ranged from 6.0 cm to 11 cm (mean, 8.19 cm). In the first stage of treatment, following complete debridement, a cement spacer was placed to induce membrane formation. In the second stage, double plate fixation and autologous cancellous bone grafting were employed for bone reconstruction. Each patient's full weight-bearing time, bone healing time, and Iowa ankle score were recorded, and the occurrence of any complications was noted. RESULTS: All patients were followed up for 16 to 26 months (mean, 19.48 months). The group mean full weight-bearing time and bone healing time after bone grafting were 2.41 (± 0.37) months and 6.29 (± 0.66) months, respectively. During the treatment, one patient had a wound infection on the medial side of the leg, so the medial plate was removed. The wound completely healed after debridement without any recurrence. After extraction of iliac bone for grafting, one patient had a severe iliac bone defect, which was managed by filling the gap with a cement spacer. Most patients reported mild pain in the left bone extraction area after surgery. The postoperative Iowa ankle score range was 84-94 (P < 0.05). In this cohort, 15 cases were rated as "excellent", and 6 cases as "good" on the Iowa ankle scoring system. CONCLUSION: The Masquelet technique combined with double plate fixation is a safe and effective method for the treatment of large segmental bone defects of the distal tibia.


Subject(s)
Plastic Surgery Procedures , Tibial Fractures , Humans , Tibia/surgery , Retrospective Studies , Lower Extremity/surgery , Fracture Fixation, Internal , Bone Transplantation/methods , Treatment Outcome , Tibial Fractures/surgery
8.
Sensors (Basel) ; 24(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793842

ABSTRACT

Hyperspectral images (HSIs) contain subtle spectral details and rich spatial contextures of land cover that benefit from developments in spectral imaging and space technology. The classification of HSIs, which aims to allocate an optimal label for each pixel, has broad prospects in the field of remote sensing. However, due to the redundancy between bands and complex spatial structures, the effectiveness of the shallow spectral-spatial features extracted by traditional machine-learning-based methods tends to be unsatisfying. Over recent decades, various methods based on deep learning in the field of computer vision have been proposed to allow for the discrimination of spectral-spatial representations for classification. In this article, the crucial factors to discriminate spectral-spatial features are systematically summarized from the perspectives of feature extraction and feature optimization. For feature extraction, techniques to ensure the discrimination of spectral features, spatial features, and spectral-spatial features are illustrated based on the characteristics of hyperspectral data and the architecture of models. For feature optimization, techniques to adjust the feature distances between classes in the classification space are introduced in detail. Finally, the characteristics and limitations of these techniques and future challenges in facilitating the discrimination of features for HSI classification are also discussed further.

9.
J Reconstr Microsurg ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106899

ABSTRACT

BACKGROUND: Vascularized composite allotransplantation (VCA) involves transplanting a functional and anatomically complete tissue graft, such as a hand or face, from a deceased donor to a recipient. Although clinical VCA has resulted in successful outcomes, high rates of acute rejection and increased requirements for immunosuppression have led to significant long-term complications. Of note, immunosuppressed graft recipients are predisposed to infections, organ dysfunction, and malignancies. The long-term success of VCA grafts requires the discovery and implementation of unique approaches that avoid these complications altogether. Here, we describe our surgical technique and initial experience with a reproducible heterotopic porcine VCA model for the preclinical assessment of approaches to improve graft outcomes. METHODS: Six heterotopic porcine allogeneic vertical rectus abdominis myocutaneous flap transplants were performed using Sinclair donors and Yucatan recipients. Immunosuppressive therapy was not used. Each flap was based on the left external iliac vessel system. Animals were followed postoperatively for surgery-related complications. RESULTS: The six pigs underwent successful VCA and were euthanized at the end of the study. Each flap demonstrated complete survival following vessel anastomosis. For the allogeneic recipients, on average, minimal erythema and healthy flap color were observed from postoperative days 1 to 4. There were no surgery-related animal deaths or complications. CONCLUSION: We have developed a reproducible, technically feasible heterotopic porcine VCA model based on the left external iliac vessel system. Our results demonstrate this model's potential to improve VCA graft outcomes by exploring tolerance induction and rejection biomarker discovery in preclinical studies.

10.
Angew Chem Int Ed Engl ; 63(19): e202319997, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38499464

ABSTRACT

High ambipolar mobility emissive conjugated polymers (HAME-CPs) are perfect candidates for organic optoelectronic devices, such as polymer light emitting transistors. However, due to intrinsic trade-off relationship between high ambipolar mobility and strong solid-state luminescence, the development of HAME-CPs suffers from high structural and synthetic complexity. Herein, a universal design principle and simple synthetic approach for HAME-CPs are developed. A series of simple non-fused polymers composed of charge transfer units, π bridges and emissive units are synthesized via a two-step microwave assisted C-H arylation and direct arylation polymerization protocol with high total yields up to 61 %. The synthetic protocol is verified valid among 7 monomers and 8 polymers. Most importantly, all 8 conjugated polymers have strong solid-state emission with high photoluminescence quantum yields up to 24 %. Furthermore, 4 polymers exhibit high ambipolar field effect mobility up to 10-2 cm2 V-1 s-1, and can be used in multifunctional optoelectronic devices. This work opens a new avenue for developing HAME-CPs by efficient synthesis and rational design.

11.
Angew Chem Int Ed Engl ; 63(22): e202402255, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38551062

ABSTRACT

With the prosperity of the development of carbon nanorings, certain topologically or functionally unique units-embedded carbon nanorings have sprung up in the past decade. Herein, we report the facile and efficient synthesis of three cyclooctatetraene-embedded carbon nanorings (COTCNRs) that contain three (COTCNR1 and COTCNR2) and four (COTCNR3) COT units in a one-pot Yamamoto coupling. These nanorings feature hoop-shaped segments of Gyroid (G-), Diamond (D-), and Primitive (P-) type carbon schwarzites. The conformations of the trimeric nanorings COTCNR1 and COTCNR2 are shape-persistent, whereas the tetrameric COTCNR3 possesses a flexible carbon skeleton which undergoes conformational changes upon forming host-guest complexes with fullerenes (C60 and C70), whose co-crystals may potentially serve as fullerene-based semiconducting supramolecular wires with electrical conductivities on the order of 10-7 S cm-1 (for C60⊂COTCNR3) and 10-8 S cm-1 (for C70⊂COTCNR3) under ambient conditions. This research not only describes highly efficient one-step syntheses of three cyclooctatetraene-embedded carbon nanorings which feature hoop-shaped segments of distinctive topological carbon schwarzites, but also demonstrates the potential application in electronics of the one-dimensional fullerene arrays secured by COTCNR3.

12.
iScience ; 27(1): 108710, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38205252

ABSTRACT

The establishment, proliferation, and differentiation of stem cells are coordinated with organ development and regulated by the signals in the microenvironment. Prior to gonad formation, how primordial germ cells (PGC) differentiate spatiotemporally to coordinate with gonadogenesis is unclear. In adult ovary, drosophila extracellular glypican Dally in germline stem cell (GSC) niche promotes BMP signaling to inhibit germline differentiation. Here we investigated the relation between the fate of PGC and the spatiotemporal pattern of glypican during ovary development. We found that Dally in ovarian soma assisted BMP signaling to prevent PGC from precocious differentiation. Dally's presence raises the "hurdle" for ecdysone peaks to eventually remove the transcription factor Kr and de-repress pro-differentiation factor, temporally postponing PGC differentiation until GSC niche establishment. The spatiotemporal glypican in somatic matrix assists PGC to integrate the ovarian local BMP and organismal steroid signals that coordinate PGC's program with organ/body development to maximize reproductive potential.

13.
Front Cardiovasc Med ; 11: 1378655, 2024.
Article in English | MEDLINE | ID: mdl-38826818

ABSTRACT

Primary myxofibrosarcoma of the heart, a rare cardiac malignancy, was diagnosed in a middle-aged female patient exhibiting progressive dyspnea following transthoracic echocardiography and pathological analysis. Postoperatively, the patient underwent chemotherapy and Lenvatinib mesylate therapy, with regular check-ups confirming her survival. After 10 months the patient is still alive and well.

14.
ChemSusChem ; 17(11): e202301471, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38300463

ABSTRACT

A wide array of carbon materials finds extensive utility across various industrial applications today. Nonetheless, the production processes for these materials continue to entail elevated temperatures, necessitate the use of inert atmospheres, and often involve the handling of aggressive and toxic chemicals. The prevalent method for large-scale carbon material production, namely the pyrolysis of waste biomass and polymers, typically unfolds within the temperature range of 500-700 °C under a nitrogen (N2) atmosphere. Unfortunately, this approach suffers from significant energy inefficiency due to substantial heat loss over extended processing durations. In this work, we propose an interesting alternative: the carbonization of photothermal nanocellulose/polypyrrole composite films through CO2 laser irradiation in the presence of air. This innovative technique offers a swift and energy-efficient means of preparing carbon materials. The unique interaction between nanocellulose and polypyrrole imparts the film with sufficient stability to retain its structural integrity post-carbonization. This breakthrough opens up new avenues for producing binder-free electrodes using a rapid and straightforward approach. Furthermore, the irradiated film demonstrates specific and areal capacitances of 159 F g-1 and 62 µF cm-2, respectively, when immersed in a 2 M NaOH electrolyte. These values significantly surpass those achieved by current commercial activated carbons. Together, these attributes render CO2-laser carbonization an environmentally sustainable and ecologically friendly method for carbon material production.

15.
Front Microbiol ; 15: 1403964, 2024.
Article in English | MEDLINE | ID: mdl-38903786

ABSTRACT

Beibu Gulf is an important semi-enclosed bay located in the northwestern South China Sea, and is famous for its high bio-productivity and rich bio-diversity. The fast development along the Beibu Gulf Economical Rim has brought pressure to the environment, and algal blooms occurred frequently in the gulf. In this study, surface water samples and micro-plankton samples (20-200 µm) were collected in the northern Beibu Gulf coast. Diversity and distribution of eukaryotic planktonic microalgae were analyzed by both metabarcoding and microscopic analyses. Metabarcoding revealed much higher diversity and species richness of microalgae than morphological observation, especially for dinoflagellates. Metabarcoding detected 144 microalgal genera in 8 phyla, while microscopy only detected 40 genera in 2 phyla. The two methods revealed different microalgal community structures. Dinoflagellates dominated in microalgal community based on metabarcoding due to their high copies of 18 s rRNA gene, and diatoms dominated under microscopy. Altogether 48 algal bloom and/or toxic species were detected in this study, 34 species by metabarcoding and 19 species by microscopy. Our result suggested a high potential risk of HABs in the Beibu Gulf. Microalgal community in the surface water samples demonstrated significantly higher OTU/species richness, alpha diversity, and abundance than those in the micro-plankton samples, although more HAB taxa were detected by microscopic observations in the micro-plankton samples. Furthermore, nano-sized taxa, such as those in chlorophytes, haptophytes, and chrysophyceans, occurred more abundantly in the surface water samples. This study provided a comprehensive morphological and molecular description of microalgal community in the northern Beibu Gulf.

16.
Membranes (Basel) ; 14(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38392669

ABSTRACT

Ethylene-chlorotrifluoroethylene (ECTFE) was first commercialized by DuPont in 1974. Its unique chemical structure gives it high heat resistance, mechanical strength, and corrosion resistance. But also due to these properties, it is difficult to prepare a membrane from it by the nonsolvent-induced phase separation (NIPS) method. However, it can be prepared as a microfiltration membrane using the thermally induced phase separation (TIPS) method at certain temperatures and with the selection of suitable solvents, and the use of green solvents is receiving increasing attention from researchers. The surface wettability of ECTFE membranes usually needs to be modified before use to strengthen its performance to meet the application requirements, usually by graft modification and surface oxidation techniques. This paper provides an overview of the structure of ECTFE and its preparation and modification methods, as well as recent advances in its application areas and prospects for the future methods of preparing high-performance ECTFE membranes.

17.
Membranes (Basel) ; 14(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921508

ABSTRACT

A membrane condenser (MC) is a novel membrane separation technology that utilizes the hydrophobic nature of porous membranes to capture water vapor from humid gas. Factors such as temperature, pressure, flow rate, and gas composition entering the membrane condenser play a crucial role in water recovery efficiency. This study utilized hydrophobic polytetrafluoroethylene (PTFE) hollow fiber membranes to create multiple identical membrane modules. This research investigated the impact of temperature, flow rate, pressure on the intake side, gas flow on the cooling side, membrane area, and other variables on the performance of the membrane condenser process. This study compared water extraction efficiency under different conditions, focusing on feed flow temperature and sweeping flow. Results showed that at a temperature of 60 °C, the water recovery rate was 24.7%, while a sweep gas flow rate of 4 L/min resulted in a recovery rate of 22.7%. The efficiency of the membrane condenser decreased with higher feed flow rates but increased with larger membrane areas. A proportional relationship between inlet flow and membrane area was observed, suggesting an optimal range of 0.51-0.67 cm/s for both parameters. These findings offer valuable insights for the practical implementation of hydrophobic membrane-based membrane condenser technology.

18.
Syst Rev ; 13(1): 202, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080805

ABSTRACT

BACKGROUND: External cephalic version (ECV) is a medical procedure in which an extracorporeal manipulation is performed to render the breech presentation (BP) fetus in the cephalic position. The use of anesthesia to facilitate repositioning has been evaluated in various randomized clinical trials (RCTs), but its potential effectiveness remains controversial. METHODS: A systematic literature search was carried out in 8 electronic databases. In the meta-analysis, a random effects model was used to calculate the pooled relative risk (RR) and its 95% confidence interval (CI), and the pooled standardized mean difference (SMD) and its 95% CI, in order to systematically assess the effect of anesthesia on the success rates of ECV, vaginal delivery, cesarean delivery as well as other outcomes. Relevant subgroup analyses, publication bias test and sensitivity analyses were also conducted. RESULTS: This review included 17 RCTs. Women who received anesthesia had a significantly higher incidence of successful ECV (RR: 1.37, 95% CIs: 1.19-1.58) and vaginal delivery (RR: 1.23, 95% CIs: 1.03-1.47), and a significantly lower incidence of cesarean delivery (RR: 0.69, 95% CIs: 0.53-0.91), compared with those who did not. CONCLUSION: The administration of anesthesia not only significantly reduces maternal pain but also significantly increases the success rate of ECV in women with malpresentation at term, leading to a significant rise in the incidence of vaginal delivery. However, it may increase the incidence of maternal hypotension. SYSTEMATIC REVIEW REGISTRATION: The protocol was prospectively registered with PROSPERO, registration CRD42022381552.


Subject(s)
Breech Presentation , Cesarean Section , Version, Fetal , Female , Humans , Pregnancy , Anesthesia, Obstetrical/methods , Breech Presentation/therapy , Delivery, Obstetric/methods , Randomized Controlled Trials as Topic , Version, Fetal/methods
19.
ACS ES T Water ; 4(4): 1775-1785, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633365

ABSTRACT

This study describes the development of the CHANnelized Optical System II (CHANOS II), an autonomous, in situ sensor capable of measuring seawater dissolved inorganic carbon (DIC) at high frequency (up to ∼1 Hz). In this sensor, CO2 from acidified seawater is dynamically equilibrated with a pH-sensitive indicator dye encapsulated in gas-permeable Teflon AF 2400 tubing. The pH in the CO2 equilibrated indicator is measured spectrophotometrically and can be quantitatively correlated to the sample DIC. Ground-truthed field data demonstrate the sensor's capabilities in both time-series measurements and surface mapping in two coastal sites across tidal cycles. CHANOS II achieved an accuracy and precision of ±5.9 and ±5.5 µmol kg-1. The mean difference between traditional bottle and sensor measurements was -3.7 ± 10.0 (1σ) µmol kg-1. The sensor can perform calibration in situ using Certified Reference Materials (CRMs) to ensure measurement quality. The coastal time-series measurements highlight high-frequency variability and episodic biogeochemical shifts that are difficult to capture by traditional methods. Surface DIC mapping shows multiple endmembers in an estuary and highlights fine-scale spatial variabilities of DIC. The development of CHANOS II demonstrates a significant technological advance in seawater CO2 system sensing, which enables high-resolution, subsurface time-series, and profiling deployments.

20.
Materials (Basel) ; 17(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673105

ABSTRACT

Electrosynthesis of H2O2 via both pathways of anodic two-electron water oxidation reaction (2e-WOR) and cathodic two-electron oxygen reduction reaction (2e-ORR) in a diaphragm-free bath can not only improve the generation rate and Faraday efficiency (FE), but also simplify the structure of the electrolysis bath and reduce the energy consumption. The factors that may affect the efficiency of H2O2 generation in coupled electrolytic systems have been systematically investigated. A piece of fluorine-doped tin oxide (FTO) electrode was used as the anode, and in this study, its catalytic performance for 2e-WOR in Na2CO3/NaHCO3 and NaOH solutions was compared. Based on kinetic views, the generation rate of H2O2 via 2e-WOR, the self-decomposition, and the oxidative decomposition rate of the generated H2O2 during electrolysis in carbonate electrolytes were investigated. Furthermore, by choosing polyethylene oxide-modified carbon nanotubes (PEO-CNTs) as the catalyst for 2e-ORR and using its loaded electrode as the cathode, the coupled electrolytic systems for H2O2 generation were set up in a diaphragm bath and in a diaphragm-free bath. It was found that the generated H2O2 in the electrolyte diffuses and causes oxidative decomposition on the anode, which is the main influent factor on the accumulated concentration in H2O2 in a diaphragm-free bath.

SELECTION OF CITATIONS
SEARCH DETAIL