Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.573
Filter
Add more filters

Publication year range
1.
Cell ; 182(1): 162-176.e13, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32553274

ABSTRACT

Soybean is one of the most important vegetable oil and protein feed crops. To capture the entire genomic diversity, it is needed to construct a complete high-quality pan-genome from diverse soybean accessions. In this study, we performed individual de novo genome assemblies for 26 representative soybeans that were selected from 2,898 deeply sequenced accessions. Using these assembled genomes together with three previously reported genomes, we constructed a graph-based genome and performed pan-genome analysis, which identified numerous genetic variations that cannot be detected by direct mapping of short sequence reads onto a single reference genome. The structural variations from the 2,898 accessions that were genotyped based on the graph-based genome and the RNA sequencing (RNA-seq) data from the representative 26 accessions helped to link genetic variations to candidate genes that are responsible for important traits. This pan-genome resource will promote evolutionary and functional genomics studies in soybean.


Subject(s)
Genome, Plant , Glycine max/growth & development , Glycine max/genetics , Base Sequence , Chromosomes, Plant/genetics , Domestication , Ecotype , Gene Duplication , Gene Expression Regulation, Plant , Gene Fusion , Geography , Molecular Sequence Annotation , Phylogeny , Polymorphism, Single Nucleotide/genetics , Polyploidy
2.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31866069

ABSTRACT

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Subject(s)
Adult Stem Cells/metabolism , Idiopathic Pulmonary Fibrosis/etiology , Pulmonary Alveoli/metabolism , Adult Stem Cells/pathology , Aged , Alveolar Epithelial Cells/pathology , Animals , Biomechanical Phenomena/physiology , Female , Fibrosis/pathology , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Male , Mice , Middle Aged , Pulmonary Alveoli/pathology , Regeneration , Signal Transduction , Stem Cells/pathology , Stress, Mechanical , Stress, Physiological/physiology , Transforming Growth Factor beta/metabolism , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
3.
Cell ; 174(6): 1492-1506.e22, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30173914

ABSTRACT

The assembly of phase-separated structures is thought to play an important role in development and disease, but little is known about the regulation and function of phase separation under physiological conditions. We showed that during C. elegans embryogenesis, PGL granules assemble via liquid-liquid phase separation (LLPS), and their size and biophysical properties determine their susceptibility to autophagic degradation. The receptor SEPA-1 promotes LLPS of PGL-1/-3, while the scaffold protein EPG-2 controls the size of PGL-1/-3 compartments and converts them into less dynamic gel-like structures. Under heat-stress conditions, mTORC1-mediated phosphorylation of PGL-1/-3 is elevated and PGL-1/-3 undergo accelerated phase separation, forming PGL granules that are resistant to autophagic degradation. Significantly, accumulation of PGL granules is an adaptive response to maintain embryonic viability during heat stress. We revealed that mTORC1-mediated LLPS of PGL-1/-3 acts as a switch-like stress sensor, coupling phase separation to autophagic degradation and adaptation to stress during development.


Subject(s)
Autophagy , Caenorhabditis elegans Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Arginine/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Embryo, Nonmammalian/metabolism , Embryonic Development , Larva/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Methylation , Mutagenesis, Site-Directed , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Processing, Post-Translational , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Temperature
4.
Cell ; 175(6): 1665-1678.e18, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30343896

ABSTRACT

Low-grade gliomas almost invariably progress into secondary glioblastoma (sGBM) with limited therapeutic option and poorly understood mechanism. By studying the mutational landscape of 188 sGBMs, we find significant enrichment of TP53 mutations, somatic hypermutation, MET-exon-14-skipping (METex14), PTPRZ1-MET (ZM) fusions, and MET amplification. Strikingly, METex14 frequently co-occurs with ZM fusion and is present in ∼14% of cases with significantly worse prognosis. Subsequent studies show that METex14 promotes glioma progression by prolonging MET activity. Furthermore, we describe a MET kinase inhibitor, PLB-1001, that demonstrates remarkable potency in selectively inhibiting MET-altered tumor cells in preclinical models. Importantly, this compound also shows blood-brain barrier permeability and is subsequently applied in a phase I clinical trial that enrolls MET-altered chemo-resistant glioma patients. Encouragingly, PLB-1001 achieves partial response in at least two advanced sGBM patients with rarely significant side effects, underscoring the clinical potential for precisely treating gliomas using this therapy.


Subject(s)
Brain Neoplasms , Exons , Glioblastoma , Mutation , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-met , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Drug Delivery Systems , Female , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Rats, Sprague-Dawley , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
5.
Genes Dev ; 38(1-2): 46-69, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38286657

ABSTRACT

Approximately 20% of head and neck squamous cell carcinomas (HNSCCs) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The former group exhibits reduced proliferation, genome instability, and heightened sensitivity to genotoxic agents like PARP1/2 inhibitors. Conversely, H3K36M HNSCC models with constant H3K27me3 levels lack these characteristics unless H3K27me3 is elevated by DNA hypomethylating agents or inhibiting H3K27me3 demethylases KDM6A/B. Mechanistically, H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, aberrant H3K27me3 levels induced by H3K36M expression are not a bona fide epigenetic mark because they require continuous expression of H3K36M to be inherited. Moreover, increased sensitivity to PARP1/2 inhibitors in H3K36M HNSCC models depends solely on elevated H3K27me3 levels and diminishing BRCA1- and FANCD2-dependent DNA repair. Finally, a PARP1/2 inhibitor alone reduces tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a model with consistent H3K27me3, a combination of PARP1/2 inhibitors and agents that up-regulate H3K27me3 proves to be successful. These findings underscore the crucial balance between H3K36 and H3K27 methylation in maintaining genome instability, offering new therapeutic options for patients with H3K36me-deficient tumors.


Subject(s)
Head and Neck Neoplasms , Histones , Humans , Histones/metabolism , Lysine/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Methylation , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Genomic Instability/genetics
7.
Nature ; 620(7974): 634-642, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37438525

ABSTRACT

The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.


Subject(s)
Allergens , Avoidance Learning , Hypersensitivity , Mast Cells , Animals , Mice , Allergens/immunology , Avoidance Learning/physiology , Hypersensitivity/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Stomach/immunology , Vagotomy , Immunity, Innate/immunology , Immunity, Mucosal/immunology , Th2 Cells/immunology , Cytokines/immunology , Leukotrienes/biosynthesis , Leukotrienes/immunology , Intestine, Small/immunology
8.
EMBO J ; 43(6): 931-955, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360997

ABSTRACT

The Von Hippel-Lindau (VHL) protein, which is frequently mutated in clear-cell renal cell carcinoma (ccRCC), is a master regulator of hypoxia-inducible factor (HIF) that is involved in oxidative stresses. However, whether VHL possesses HIF-independent tumor-suppressing activity remains largely unclear. Here, we demonstrate that VHL suppresses nutrient stress-induced autophagy, and its deficiency in sporadic ccRCC specimens is linked to substantially elevated levels of autophagy and correlates with poorer patient prognosis. Mechanistically, VHL directly binds to the autophagy regulator Beclin1, after its PHD1-mediated hydroxylation on Pro54. This binding inhibits the association of Beclin1-VPS34 complexes with ATG14L, thereby inhibiting autophagy initiation in response to nutrient deficiency. Expression of non-hydroxylatable Beclin1 P54A abrogates VHL-mediated autophagy inhibition and significantly reduces the tumor-suppressing effect of VHL. In addition, Beclin1 P54-OH levels are inversely correlated with autophagy levels in wild-type VHL-expressing human ccRCC specimens, and with poor patient prognosis. Furthermore, combined treatment of VHL-deficient mouse tumors with autophagy inhibitors and HIF2α inhibitors suppresses tumor growth. These findings reveal an unexpected mechanism by which VHL suppresses tumor growth, and suggest a potential treatment for ccRCC through combined inhibition of both autophagy and HIF2α.


Subject(s)
Beclin-1 , Carcinoma, Renal Cell , Kidney Neoplasms , Von Hippel-Lindau Tumor Suppressor Protein , Animals , Humans , Mice , Autophagy , Beclin-1/genetics , Beclin-1/metabolism , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hydroxylation , Kidney Neoplasms/metabolism , Procollagen-Proline Dioxygenase/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
9.
Immunity ; 51(3): 491-507.e7, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31533057

ABSTRACT

Tissue-resident memory CD8+ T (Trm) cells share core residency gene programs with tumor-infiltrating lymphocytes (TILs). However, the transcriptional, metabolic, and epigenetic regulation of Trm cell and TIL development and function is largely undefined. Here, we found that the transcription factor Bhlhe40 was specifically required for Trm cell and TIL development and polyfunctionality. Local PD-1 signaling inhibited TIL Bhlhe40 expression, and Bhlhe40 was critical for TIL reinvigoration following anti-PD-L1 blockade. Mechanistically, Bhlhe40 sustained Trm cell and TIL mitochondrial fitness and a functional epigenetic state. Building on these findings, we identified an epigenetic and metabolic regimen that promoted Trm cell and TIL gene signatures associated with tissue residency and polyfunctionality. This regimen empowered the anti-tumor activity of CD8+ T cells and possessed therapeutic potential even at an advanced tumor stage in mouse models. Our results provide mechanistic insights into the local regulation of Trm cell and TIL function.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/immunology , CD8-Positive T-Lymphocytes/immunology , Homeodomain Proteins/immunology , Mitochondria/immunology , Animals , Epigenesis, Genetic/immunology , Gene Expression Regulation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology
10.
Nature ; 610(7933): 661-666, 2022 10.
Article in English | MEDLINE | ID: mdl-36198794

ABSTRACT

Networks of optical clocks find applications in precise navigation1,2, in efforts to redefine the fundamental unit of the 'second'3-6 and in gravitational tests7. As the frequency instability for state-of-the-art optical clocks has reached the 10-19 level8,9, the vision of a global-scale optical network that achieves comparable performances requires the dissemination of time and frequency over a long-distance free-space link with a similar instability of 10-19. However, previous attempts at free-space dissemination of time and frequency at high precision did not extend beyond dozens of kilometres10,11. Here we report time-frequency dissemination with an offset of 6.3 × 10-20 ± 3.4 × 10-19 and an instability of less than 4 × 10-19 at 10,000 s through a free-space link of 113 km. Key technologies essential to this achievement include the deployment of high-power frequency combs, high-stability and high-efficiency optical transceiver systems and efficient linear optical sampling. We observe that the stability we have reached is retained for channel losses up to 89 dB. The technique we report can not only be directly used in ground-based applications, but could also lay the groundwork for future satellite time-frequency dissemination.

11.
PLoS Genet ; 20(2): e1011176, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38408082

ABSTRACT

Colorectal cancer (CRC) is a major cause of cancer mortality and a serious health problem worldwide. Mononuclear phagocytes are the main immune cells in the tumor microenvironment of CRC with remarkable plasticity, and current studies show that macrophages are closely related to tumor progression, invasion and dissemination. To understand the immunological function of mononuclear phagocytes comprehensively and deeply, we use single-cell RNA sequencing and classify mononuclear phagocytes in CRC into 6 different subsets, and characterize the heterogeneity of each subset. We find that tissue inhibitor of metalloproteinases (TIMPs) involved in the differentiation of proinflammatory and anti-inflammatory mononuclear phagocytes. Trajectory of circulating monocytes differentiation into tumor-associated macrophages (TAMs) and the dynamic changes at levels of transcription factor (TF) regulons during differentiation were revealed. We also find that C5 subset, characterized by activation of lipid metabolism, is in the terminal state of differentiation, and that the abundance of C5 subset is negatively correlated with CRC patients' prognosis. Our findings advance the understanding of circulating monocytes' differentiation into macrophages, identify a new subset associated with CRC prognosis, and reveal a set of TF regulons regulating mononuclear phagocytes differentiation, which are expected to be potential therapeutic targets for reversing immunosuppressive tumor microenvironment.


Subject(s)
Colorectal Neoplasms , Monocytes , Humans , RNA/metabolism , Macrophages/metabolism , Cell Differentiation/genetics , Colorectal Neoplasms/pathology , Phagocytes/metabolism , Tumor Microenvironment/genetics
12.
Am J Hum Genet ; 110(7): 1068-1085, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37352860

ABSTRACT

ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.


Subject(s)
Exoribonucleases , Histones , Humans , Exoribonucleases/genetics , Histones/genetics , Mutation, Missense/genetics , RNA, Ribosomal, 5.8S , RNA , RNA, Messenger/genetics
13.
Nat Chem Biol ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538923

ABSTRACT

Telomere dysfunction is intricately linked to the aging process and stands out as a prominent cancer hallmark. Here we demonstrate that telomerase activity is differentially regulated in cancer and normal cells depending on the expression status of fructose-1,6-bisphosphatase 1 (FBP1). In FBP1-expressing cells, FBP1 directly interacts with and dephosphorylates telomerase reverse transcriptase (TERT) at Ser227. Dephosphorylated TERT fails to translocate into the nucleus, leading to the inhibition of telomerase activity, reduction in telomere lengths, enhanced senescence and suppressed tumor cell proliferation and growth in mice. Lipid nanoparticle-mediated delivery of FBP1 mRNA inhibits liver tumor growth. Additionally, FBP1 expression levels inversely correlate with TERT pSer227 levels in renal and hepatocellular carcinoma specimens and with poor prognosis of the patients. These findings demonstrate that FBP1 governs cell immortality through its protein phosphatase activity and uncover a unique telomerase regulation in tumor cells attributed to the downregulation or deficiency of FBP1 expression.

14.
Circ Res ; 134(7): 842-854, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38547246

ABSTRACT

BACKGROUND: Consistent evidence suggests diabetes-protective effects of dietary fiber intake. However, the underlying mechanisms, particularly the role of gut microbiota and host circulating metabolites, are not fully understood. We aimed to investigate gut microbiota and circulating metabolites associated with dietary fiber intake and their relationships with type 2 diabetes (T2D). METHODS: This study included up to 11 394 participants from the HCHS/SOL (Hispanic Community Health Study/Study of Latinos). Diet was assessed with two 24-hour dietary recalls at baseline. We examined associations of dietary fiber intake with gut microbiome measured by shotgun metagenomics (350 species/85 genera and 1958 enzymes; n=2992 at visit 2), serum metabolome measured by untargeted metabolomics (624 metabolites; n=6198 at baseline), and associations between fiber-related gut bacteria and metabolites (n=804 at visit 2). We examined prospective associations of serum microbial-associated metabolites (n=3579 at baseline) with incident T2D over 6 years. RESULTS: We identified multiple bacterial genera, species, and related enzymes associated with fiber intake. Several bacteria (eg, Butyrivibrio, Faecalibacterium) and enzymes involved in fiber degradation (eg, xylanase EC3.2.1.156) were positively associated with fiber intake, inversely associated with prevalent T2D, and favorably associated with T2D-related metabolic traits. We identified 159 metabolites associated with fiber intake, 47 of which were associated with incident T2D. We identified 18 of these 47 metabolites associated with the identified fiber-related bacteria, including several microbial metabolites (eg, indolepropionate and 3-phenylpropionate) inversely associated with the risk of T2D. Both Butyrivibrio and Faecalibacterium were associated with these favorable metabolites. The associations of fiber-related bacteria, especially Faecalibacterium and Butyrivibrio, with T2D were attenuated after further adjustment for these microbial metabolites. CONCLUSIONS: Among United States Hispanics/Latinos, dietary fiber intake was associated with favorable profiles of gut microbiota and circulating metabolites for T2D. These findings advance our understanding of the role of gut microbiota and microbial metabolites in the relationship between diet and T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/microbiology , Diet , Bacteria , Dietary Fiber
15.
Nature ; 580(7804): 530-535, 2020 04.
Article in English | MEDLINE | ID: mdl-32322062

ABSTRACT

Cancer cells increase lipogenesis for their proliferation and the activation of sterol regulatory element-binding proteins (SREBPs) has a central role in this process. SREBPs are inhibited by a complex composed of INSIG proteins, SREBP cleavage-activating protein (SCAP) and sterols in the endoplasmic reticulum. Regulation of the interaction between INSIG proteins and SCAP by sterol levels is critical for the dissociation of the SCAP-SREBP complex from the endoplasmic reticulum and the activation of SREBPs1,2. However, whether this protein interaction is regulated by a mechanism other than the abundance of sterol-and in particular, whether oncogenic signalling has a role-is unclear. Here we show that activated AKT in human hepatocellular carcinoma (HCC) cells phosphorylates cytosolic phosphoenolpyruvate carboxykinase 1 (PCK1), the rate-limiting enzyme in gluconeogenesis, at Ser90. Phosphorylated PCK1 translocates to the endoplasmic reticulum, where it uses GTP as a phosphate donor to phosphorylate INSIG1 at Ser207 and INSIG2 at Ser151. This phosphorylation reduces the binding of sterols to INSIG1 and INSIG2 and disrupts the interaction between INSIG proteins and SCAP, leading to the translocation of the SCAP-SREBP complex to the Golgi apparatus, the activation of SREBP proteins (SREBP1 or SREBP2) and the transcription of downstream lipogenesis-related genes, proliferation of tumour cells, and tumorigenesis in mice. In addition, phosphorylation of PCK1 at Ser90, INSIG1 at Ser207 and INSIG2 at Ser151 is not only positively correlated with the nuclear accumulation of SREBP1 in samples from patients with HCC, but also associated with poor HCC prognosis. Our findings highlight the importance of the protein kinase activity of PCK1 in the activation of SREBPs, lipogenesis and the development of HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Gluconeogenesis , Intracellular Signaling Peptides and Proteins/metabolism , Lipogenesis , Liver Neoplasms/metabolism , Membrane Proteins/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Animals , Carcinogenesis , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Liver Neoplasms/pathology , Male , Membrane Proteins/chemistry , Mice , Mice, Nude , Oxysterols/metabolism , Phosphorylation , Prognosis , Protein Binding , Protein Transport , Proto-Oncogene Proteins c-akt/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism
16.
Nucleic Acids Res ; 52(D1): D1478-D1489, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37956311

ABSTRACT

VarCards, an online database, combines comprehensive variant- and gene-level annotation data to streamline genetic counselling for coding variants. Recognising the increasing clinical relevance of non-coding variations, there has been an accelerated development of bioinformatics tools dedicated to interpreting non-coding variations, including single-nucleotide variants and copy number variations. Regrettably, most tools remain as either locally installed databases or command-line tools dispersed across diverse online platforms. Such a landscape poses inconveniences and challenges for genetic counsellors seeking to utilise these resources without advanced bioinformatics expertise. Consequently, we developed VarCards2, which incorporates nearly nine billion artificially generated single-nucleotide variants (including those from mitochondrial DNA) and compiles vital annotation information for genetic counselling based on ACMG-AMP variant-interpretation guidelines. These annotations include (I) functional effects; (II) minor allele frequencies; (III) comprehensive function and pathogenicity predictions covering all potential variants, such as non-synonymous substitutions, non-canonical splicing variants, and non-coding variations and (IV) gene-level information. Furthermore, VarCards2 incorporates 368 820 266 documented short insertions and deletions and 2 773 555 documented copy number variations, complemented by their corresponding annotation and prediction tools. In conclusion, VarCards2, by integrating over 150 variant- and gene-level annotation sources, significantly enhances the efficiency of genetic counselling and can be freely accessed at http://www.genemed.tech/varcards2/.


Subject(s)
Databases, Factual , Genetic Variation , Genome, Human , Software , Humans , Databases, Genetic , DNA Copy Number Variations , Nucleotides , Genome-Wide Association Study
17.
PLoS Genet ; 19(2): e1010514, 2023 02.
Article in English | MEDLINE | ID: mdl-36812239

ABSTRACT

Structural variations (SVs) are a key type of cancer genomic alterations, contributing to oncogenesis and progression of many cancers, including colorectal cancer (CRC). However, SVs in CRC remain difficult to be reliably detected due to limited SV-detection capacity of the commonly used short-read sequencing. This study investigated the somatic SVs in 21 pairs of CRC samples by Nanopore whole-genome long-read sequencing. 5200 novel somatic SVs from 21 CRC patients (494 SVs / patient) were identified. A 4.9-Mbp long inversion that silences APC expression (confirmed by RNA-seq) and an 11.2-kbp inversion that structurally alters CFTR were identified. Two novel gene fusions that might functionally impact the oncogene RNF38 and the tumor-suppressor SMAD3 were detected. RNF38 fusion possesses metastasis-promoting ability confirmed by in vitro migration and invasion assay, and in vivo metastasis experiments. This work highlighted the various applications of long-read sequencing in cancer genome analysis, and shed new light on how somatic SVs structurally alter critical genes in CRC. The investigation on somatic SVs via nanopore sequencing revealed the potential of this genomic approach in facilitating precise diagnosis and personalized treatment of CRC.


Subject(s)
Colorectal Neoplasms , Genomics , Humans , Genes, Tumor Suppressor , Genome , Whole Genome Sequencing , Colorectal Neoplasms/genetics , Genomic Structural Variation/genetics , Ubiquitin-Protein Ligases/genetics
18.
Proc Natl Acad Sci U S A ; 120(29): e2214320120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428918

ABSTRACT

Integrating antigen-encoding mRNA (Messenger RNA) and immunostimulatory adjuvant into a single formulation is a promising approach to potentiating the efficacy of mRNA vaccines. Here, we developed a scheme based on RNA engineering to integrate adjuvancy directly into antigen-encoding mRNA strands without hampering the ability to express antigen proteins. Short double-stranded RNA (dsRNA) was designed to target retinoic acid-inducible gene-I (RIG-I), an innate immune receptor, for effective cancer vaccination and then tethered onto the mRNA strand via hybridization. Tuning the dsRNA structure and microenvironment by changing its length and sequence enabled the determination of the structure of dsRNA-tethered mRNA efficiently stimulating RIG-I. Eventually, the formulation loaded with dsRNA-tethered mRNA of the optimal structure effectively activated mouse and human dendritic cells and drove them to secrete a broad spectrum of proinflammatory cytokines without increasing the secretion of anti-inflammatory cytokines. Notably, the immunostimulating intensity was tunable by modulating the number of dsRNA along the mRNA strand, which prevents excessive immunostimulation. Versatility in the applicable formulation is a practical advantage of the dsRNA-tethered mRNA. Its formulation with three existing systems, i.e., anionic lipoplex, ionizable lipid-based lipid nanoparticles, and polyplex micelles, induced appreciable cellular immunity in the mice model. Of particular interest, dsRNA-tethered mRNA encoding ovalbumin (OVA) formulated in anionic lipoplex used in clinical trials exerted a significant therapeutic effect in the mouse lymphoma (E.G7-OVA) model. In conclusion, the system developed here provides a simple and robust platform to supply the desired intensity of immunostimulation in various formulations of mRNA cancer vaccines.


Subject(s)
Neoplasms , RNA, Double-Stranded , Humans , Animals , Mice , RNA, Double-Stranded/genetics , Adjuvants, Immunologic/pharmacology , Antigens , Immunity, Cellular , Cytokines/genetics , RNA, Messenger/genetics , Mice, Inbred C57BL , Neoplasms/therapy
19.
PLoS Genet ; 19(11): e1011019, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37934795

ABSTRACT

Lineage-specific genes (LSGs) have long been postulated to play roles in the establishment of genetic barriers to intercrossing and speciation. In the genome of Neurospora crassa, most of the 670 Neurospora LSGs that are aggregated adjacent to the telomeres are clustered with 61% of the HET-domain genes, some of which regulate self-recognition and define vegetative incompatibility groups. In contrast, the LSG-encoding proteins possess few to no domains that would help to identify potential functional roles. Possible functional roles of LSGs were further assessed by performing transcriptomic profiling in genetic mutants and in response to environmental alterations, as well as examining gene knockouts for phenotypes. Among the 342 LSGs that are dynamically expressed during both asexual and sexual phases, 64% were detectable on unusual carbon sources such as furfural, a wildfire-produced chemical that is a strong inducer of sexual development, and the structurally-related furan 5-hydroxymethyl furfural (HMF). Expression of a significant portion of the LSGs was sensitive to light and temperature, factors that also regulate the switch from asexual to sexual reproduction. Furthermore, expression of the LSGs was significantly affected in the knockouts of adv-1 and pp-1 that regulate hyphal communication, and expression of more than one quarter of the LSGs was affected by perturbation of the mating locus. These observations encouraged further investigation of the roles of clustered lineage-specific and HET-domain genes in ecology and reproduction regulation in Neurospora, especially the regulation of the switch from the asexual growth to sexual reproduction, in response to dramatic environmental conditions changes.


Subject(s)
Neurospora crassa , Neurospora , Neurospora/genetics , Genes, Fungal , Neurospora crassa/genetics , Phenotype , Gene Expression Profiling , Reproduction/genetics , Fungal Proteins/genetics
20.
Brief Bioinform ; 24(5)2023 09 20.
Article in English | MEDLINE | ID: mdl-37478379

ABSTRACT

The Hi-C experiments have been extensively used for the studies of genomic structures. In the last few years, spatiotemporal Hi-C has largely contributed to the investigation of genome dynamic reorganization. However, computationally modeling and forecasting spatiotemporal Hi-C data still have not been seen in the literature. We present HiC4D for dealing with the problem of forecasting spatiotemporal Hi-C data. We designed and benchmarked a novel network and named it residual ConvLSTM (ResConvLSTM), which is a combination of residual network and convolutional long short-term memory (ConvLSTM). We evaluated our new ResConvLSTM networks and compared them with the other five methods, including a naïve network (NaiveNet) that we designed as a baseline method and four outstanding video-prediction methods from the literature: ConvLSTM, spatiotemporal LSTM (ST-LSTM), self-attention LSTM (SA-LSTM) and simple video prediction (SimVP). We used eight different spatiotemporal Hi-C datasets for the blind test, including two from mouse embryogenesis, one from somatic cell nuclear transfer (SCNT) embryos, three embryogenesis datasets from different species and two non-embryogenesis datasets. Our evaluation results indicate that our ResConvLSTM networks almost always outperform the other methods on the eight blind-test datasets in terms of accurately predicting the Hi-C contact matrices at future time-steps. Our benchmarks also indicate that all of the methods that we benchmarked can successfully recover the boundaries of topologically associating domains called on the experimental Hi-C contact matrices. Taken together, our benchmarks suggest that HiC4D is an effective tool for predicting spatiotemporal Hi-C data. HiC4D is publicly available at both http://dna.cs.miami.edu/HiC4D/ and https://github.com/zwang-bioinformatics/HiC4D/.


Subject(s)
Genome , Genomics , Animals , Mice , Forecasting
SELECTION OF CITATIONS
SEARCH DETAIL