Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 590
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 22(10): 1268-1279, 2021 10.
Article in English | MEDLINE | ID: mdl-34556885

ABSTRACT

Metabolic inflammation is closely linked to obesity, and is implicated in the pathogenesis of metabolic diseases. FTO harbors the strongest genetic association with polygenic obesity, and IRX3 mediates the effects of FTO on body weight. However, in what cells and how IRX3 carries out this control are poorly understood. Here we report that macrophage IRX3 promotes metabolic inflammation to accelerate the development of obesity and type 2 diabetes. Mice with myeloid-specific deletion of Irx3 were protected against diet-induced obesity and metabolic diseases via increasing adaptive thermogenesis. Mechanistically, macrophage IRX3 promoted proinflammatory cytokine transcription and thus repressed adipocyte adrenergic signaling, thereby inhibiting lipolysis and thermogenesis. JNK1/2 phosphorylated IRX3, leading to its dimerization and nuclear translocation for transcription. Further, lipopolysaccharide stimulation stabilized IRX3 by inhibiting its ubiquitination, which amplified the transcriptional capacity of IRX3. Together, our findings identify a new player, macrophage IRX3, in the control of body weight and metabolic inflammation, implicating IRX3 as a therapeutic target.


Subject(s)
Homeodomain Proteins/metabolism , Inflammation/metabolism , Macrophages/metabolism , Obesity/metabolism , Transcription Factors/metabolism , Adipocytes/metabolism , Adult , Animals , Body Weight/physiology , Cell Line , Diabetes Mellitus, Type 2/metabolism , Diet/methods , HEK293 Cells , Humans , Male , Metabolic Diseases/metabolism , Mice , RAW 264.7 Cells , THP-1 Cells , Thermogenesis/physiology , Transcription, Genetic/physiology , Young Adult
2.
EMBO J ; 43(12): 2337-2367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649537

ABSTRACT

Mitochondria are cellular powerhouses that generate energy through the electron transport chain (ETC). The mitochondrial genome (mtDNA) encodes essential ETC proteins in a compartmentalized manner, however, the mechanism underlying metabolic regulation of mtDNA function remains unknown. Here, we report that expression of tricarboxylic acid cycle enzyme succinate-CoA ligase SUCLG1 strongly correlates with ETC genes across various TCGA cancer transcriptomes. Mechanistically, SUCLG1 restricts succinyl-CoA levels to suppress the succinylation of mitochondrial RNA polymerase (POLRMT). Lysine 622 succinylation disrupts the interaction of POLRMT with mtDNA and mitochondrial transcription factors. SUCLG1-mediated POLRMT hyposuccinylation maintains mtDNA transcription, mitochondrial biogenesis, and leukemia cell proliferation. Specifically, leukemia-promoting FMS-like tyrosine kinase 3 (FLT3) mutations modulate nuclear transcription and upregulate SUCLG1 expression to reduce succinyl-CoA and POLRMT succinylation, resulting in enhanced mitobiogenesis. In line, genetic depletion of POLRMT or SUCLG1 significantly delays disease progression in mouse and humanized leukemia models. Importantly, succinyl-CoA level and POLRMT succinylation are downregulated in FLT3-mutated clinical leukemia samples, linking enhanced mitobiogenesis to cancer progression. Together, SUCLG1 connects succinyl-CoA with POLRMT succinylation to modulate mitochondrial function and cancer development.


Subject(s)
Organelle Biogenesis , Succinate-CoA Ligases , Animals , Humans , Mice , Acyl Coenzyme A/metabolism , Acyl Coenzyme A/genetics , Cell Line, Tumor , Cell Proliferation , Disease Progression , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Leukemia/metabolism , Leukemia/genetics , Leukemia/pathology , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Succinate-CoA Ligases/metabolism , Succinate-CoA Ligases/genetics
3.
Genome Res ; 34(1): 106-118, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38171575

ABSTRACT

Revealing how transcriptional bursting kinetics are genomically encoded is challenging because genome structures are stochastic at the organization level and are suggestively linked to gene transcription. To address this challenge, we develop a generic theoretical framework that integrates chromatin dynamics, enhancer-promoter (E-P) communication, and gene-state switching to study transcriptional bursting. The theory predicts that power law can be a general rule to quantitatively describe bursting modulations by E-P spatial communication. Specifically, burst frequency and burst size are up-regulated by E-P communication strength, following power laws with positive exponents. Analysis of the scaling exponents further reveals that burst frequency is preferentially regulated. Bursting kinetics are down-regulated by E-P genomic distance with negative power-law exponents, and this negative modulation desensitizes at large distances. The mutual information between burst frequency (or burst size) and E-P spatial distance further reveals essential characteristics of the information transfer from E-P communication to transcriptional bursting kinetics. These findings, which are in agreement with experimental observations, not only reveal fundamental principles of E-P communication in transcriptional bursting but also are essential for understanding cellular decision-making.


Subject(s)
Chromatin , Transcription, Genetic , Chromosomes , Promoter Regions, Genetic
4.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279647

ABSTRACT

MOTIVATION: The rapid development of spatial transcriptome technologies has enabled researchers to acquire single-cell-level spatial data at an affordable price. However, computational analysis tools, such as annotation tools, tailored for these data are still lacking. Recently, many computational frameworks have emerged to integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics datasets. While some frameworks can utilize well-annotated scRNA-seq data to annotate spatial expression patterns, they overlook critical aspects. First, existing tools do not explicitly consider cell type mapping when aligning the two modalities. Second, current frameworks lack the capability to detect novel cells, which remains a key interest for biologists. RESULTS: To address these problems, we propose an annotation method for spatial transcriptome data called SPANN. The main tasks of SPANN are to transfer cell-type labels from well-annotated scRNA-seq data to newly generated single-cell resolution spatial transcriptome data and discover novel cells from spatial data. The major innovations of SPANN come from two aspects: SPANN automatically detects novel cells from unseen cell types while maintaining high annotation accuracy over known cell types. SPANN finds a mapping between spatial transcriptome samples and RNA data prototypes and thus conducts cell-type-level alignment. Comprehensive experiments using datasets from various spatial platforms demonstrate SPANN's capabilities in annotating known cell types and discovering novel cell states within complex tissue contexts. AVAILABILITY: The source code of SPANN can be accessed at https://github.com/ddb-qiwang/SPANN-torch. CONTACT: dengmh@math.pku.edu.cn.


Subject(s)
Single-Cell Gene Expression Analysis , Transcriptome , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Software
5.
PLoS Pathog ; 20(1): e1011926, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190378

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs) in humans. Moreover, as one of the most common bacterial pathogens, UPEC imposes a substantial burden on healthcare systems worldwide. Epithelial cells and macrophages are two major components of the innate immune system, which play critical roles in defending the bladder against UPEC invasion. Yet, the routes of communication between these cells during UTI pathogenesis are still not fully understood. In the present study, we investigated the role of membrane-bound nanovesicles (exosomes) in the communication between bladder epithelial cells and macrophages during UPEC infection, using an array of techniques such as flow cytometry, miRNA profiling, RNA sequencing, and western blotting. Moreover, our in vitro findings were validated in a mouse model of UPEC-induced cystitis. We found that UPEC infection induced the bladder epithelial MB49 cell line to secrete large numbers of exosomes (MB49-U-Exo), which were efficiently absorbed by macrophages both in vivo and in vitro. Assimilation of MB49-U-Exo induced macrophages to produce proinflammatory cytokines, including tumor necrosis factor (TNF)α. Exposure of macrophages to MB49-U-Exo reduced their phagocytic activity (by downregulating the expression of phagocytosis-related genes) and increased their rate of apoptosis. Mechanistically, we showed that MB49-U-Exo were enriched in miR-18a-5p, which induced TNFα expression in macrophages by targeting PTEN and activating the MAPK/JNK signaling pathway. Moreover, administration of the exosome secretion inhibitor GW4869 or a TNFα-neutralizing antibody alleviated UPEC-mediated tissue damage in mice with UPEC-induced cystitis by reducing the bacterial burden of the bladder and dampening the associated inflammatory response. Collectively, these findings suggest that MB49-U-Exo regulate macrophage function in a way that exacerbates UPEC-mediated tissue impairment. Thus, targeting exosomal -release or TNFα signaling during UPEC infection may represent promising non-antibiotic strategies for treating UTIs.


Subject(s)
Cystitis , Escherichia coli Infections , Exosomes , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Animals , Mice , Urinary Bladder/microbiology , Uropathogenic Escherichia coli/metabolism , Exosomes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Urinary Tract Infections/microbiology , Macrophages/metabolism , Escherichia coli Infections/microbiology , Epithelial Cells/metabolism
6.
Proc Natl Acad Sci U S A ; 120(33): e2305928120, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37552758

ABSTRACT

The Sangdanlin section in southern Tibet represents a geologic Rosetta stone to constrain the initiation of the India-Asia collision from its sedimentary and paleomagnetic records. However, geoscientists have arrived at fundamentally divergent interpretations surrounding the age of the strata and its paleomagnetic record. Here, we report paleontologic, petrographic, and paleomagnetic data from the Sangdanlin section that recognize the sequence as a thrust complex containing interlaced Barremian-Albian (Early Cretaceous) and Paleocene strata, each separated by thrust faults. Recognizing two complexly interwoven formations of distinctly different ages contradicts a continuous stratigraphic superposition. Assigning an Early Cretaceous, instead of Paleocene, age to the units collected for paleomagnetic data revises paleogeographic models thereby supporting a large (2,000 to 3,000 km) extent of Greater India, with collision initiating at 55 ± 5 Ma in the western Himalayas. A contiguous plate in the Neotethys Ocean precludes that Asia's southern margin was built through a succession of accreted terrains.

7.
Chem Rev ; 123(21): 12170-12253, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37879045

ABSTRACT

Ionic liquids (ILs) consisting entirely of ions exhibit many fascinating and tunable properties, making them promising functional materials for a large number of energy-related applications. For example, ILs have been employed as electrolytes for electrochemical energy storage and conversion, as heat transfer fluids and phase-change materials for thermal energy transfer and storage, as solvents and/or catalysts for CO2 capture, CO2 conversion, biomass treatment and biofuel extraction, and as high-energy propellants for aerospace applications. This paper provides an extensive overview on the various energy applications of ILs and offers some thinking and viewpoints on the current challenges and emerging opportunities in each area. The basic fundamentals (structures and properties) of ILs are first introduced. Then, motivations and successful applications of ILs in the energy field are concisely outlined. Later, a detailed review of recent representative works in each area is provided. For each application, the role of ILs and their associated benefits are elaborated. Research trends and insights into the selection of ILs to achieve improved performance are analyzed as well. Challenges and future opportunities are pointed out before the paper is concluded.

8.
Cell Mol Life Sci ; 81(1): 49, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252317

ABSTRACT

Intervertebral disc degeneration (IVDD) is one of the most prevalent spinal degenerative disorders and imposes places heavy medical and economic burdens on individuals and society. Mechanical overloading applied to the intervertebral disc (IVD) has been widely recognized as an important cause of IVDD. Mechanical overloading-induced chondrocyte ferroptosis was reported, but the potential association between ferroptosis and mechanical overloading remains to be illustrated in nucleus pulposus (NP) cells. In this study, we discovered that excessive mechanical loading induced ferroptosis and endoplasmic reticulum (ER) stress, which were detected by mitochondria and associated markers, by increasing the intracellular free Ca2+ level through the Piezo1 ion channel localized on the plasma membrane and ER membrane in NP cells. Besides, we proposed that intracellular free Ca2+ level elevation and the activation of ER stress are positive feedback processes that promote each other, consistent with the results that the level of ER stress in coccygeal discs of aged Piezo1-CKO mice were significantly lower than that of aged WT mice. Then, we confirmed that selenium supplementation decreased intracellular free Ca2+ level by mitigating ER stress through upregulating Selenoprotein K (SelK) expression. Besides, ferroptosis caused by the impaired production and function of Glutathione peroxidase 4 (GPX4) due to mechanical overloading-induced calcium overload could be improved by selenium supplementation through Se-GPX4 axis and Se-SelK axis in vivo and in vitro, eventually presenting the stabilization of the extracellular matrix (ECM). Our findings reveal the important role of ferroptosis in mechanical overloading-induced IVDD, and selenium supplementation promotes significance to attenuate ferroptosis and thus alleviates IVDD, which might provide insights into potential therapeutic interventions for IVDD.


Subject(s)
Ferroptosis , Intervertebral Disc Degeneration , Nucleus Pulposus , Phospholipid Hydroperoxide Glutathione Peroxidase , Selenium , Selenoproteins , Animals , Humans , Mice , Cell Membrane , Ion Channels , Selenoproteins/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
9.
Nucleic Acids Res ; 51(1): 68-83, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36583343

ABSTRACT

Gene expression in mammalian cells is highly variable and episodic, resulting in a series of discontinuous bursts of mRNAs. A challenge is to understand how static promoter architecture and dynamic feedback regulations dictate bursting on a genome-wide scale. Although single-cell RNA sequencing (scRNA-seq) provides an opportunity to address this challenge, effective analytical methods are scarce. We developed an interpretable and scalable inference framework, which combined experimental data with a mechanistic model to infer transcriptional burst kinetics (sizes and frequencies) and feedback regulations. Applying this framework to scRNA-seq data generated from embryonic mouse fibroblast cells, we found Simpson's paradoxes, i.e. genome-wide burst kinetics exhibit different characteristics in two cases without and with distinguishing feedback regulations. We also showed that feedbacks differently modulate burst frequencies and sizes and conceal the effects of transcription start site distributions on burst kinetics. Notably, only in the presence of positive feedback, TATA genes are expressed with high burst frequencies and enhancer-promoter interactions mainly modulate burst frequencies. The developed inference method provided a flexible and efficient way to investigate transcriptional burst kinetics and the obtained results would be helpful for understanding cell development and fate decision.


Subject(s)
Mammals , Transcription, Genetic , Animals , Mice , Feedback , Kinetics , Promoter Regions, Genetic , RNA, Messenger/genetics , Mammals/genetics
10.
Nano Lett ; 24(7): 2264-2272, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38324803

ABSTRACT

Developing general methods to fabricate water-dispersible and biocompatible fluorescent probes will promote different biological visualization applications. Herein, we report a metal-facilitated method to fabricate ultrabright green-emissive nanodots via the one-step solvothermal treatment of rose bengal, ethanol, and various metal ions. These metal-doped nanodots show good water dispersity, ultrahigh photoluminescence quantum yields (PLQYs) (e.g., the PLQY of Fe-doped nanodots (FeNDs) was ∼97%), and low phototoxicity. Owing to the coordination effect of metal ions, the FeNDs realize glutathione detection with outstanding properties. Benefiting from the high endoplasmic reticulum (ER) affinity of the chloride group, the FeNDs can act as an ER tracker with long ER imaging capacity (FeNDs: >24 h; commercial ER tracker: ∼1 h) and superb photostability and can achieve tissue visualization in living Caenorhabditis elegans. The metal-doped nanodots represent a general nanodot preparation method and may shed new light on diverse biological visualization uses.


Subject(s)
Quantum Dots , Carbon , Fluorescent Dyes , Ions , Water
11.
Nano Lett ; 24(26): 7962-7971, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885199

ABSTRACT

The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBi2Te4 and an antiferromagnetic iron chalcogenide FeTe. Our electrical transport measurements reveal interface-induced superconductivity in these heterostructures. By performing scanning tunneling microscopy and spectroscopy measurements, we observe a proximity-induced superconducting gap on the top surface of the MnBi2Te4 layer, confirming the coexistence of superconductivity and antiferromagnetism in the MnBi2Te4 layer. Our findings will advance the fundamental inquiries into the topological superconducting phase in hybrid devices and provide a promising platform for the exploration of chiral Majorana physics in MnBi2Te4-based heterostructures.

12.
J Gen Virol ; 105(2)2024 02.
Article in English | MEDLINE | ID: mdl-38376497

ABSTRACT

Baculoviruses are insect-specific pathogens. Novel baculovirus isolates provide new options for the biological control of pests. Therefore, research into the biological characteristics of newly isolated baculoviruses, including accurate classification and nomenclature, is important. In this study, a baculovirus was isolated from Mythimna separata and its complete genome sequence was determined by next-generation sequencing. The double-stranded DNA genome was 153 882 bp in length, encoding 163 open reading frames. The virus was identified as a variant of Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) and designated Mamestra brassicae multiple nucleopolyhedrovirus CHN1 (MbMNPV-CHN1) according to ultrastructural analysis, genome comparison and phylogenetic analysis. Phylogenetic inference placed MbMNPV-CHN1 in a clade containing isolates of MacoNPV-A, MacoNPV-B and MbMNPV, which we have designated the Mb-McNPV group. The genomes of isolates in the Mb-McNPV group exhibited a high degree of collinearity with relatively minor differences in the content of annotated open reading frames. The development of codon usage bias in the Mb-McNPV group was affected mainly by natural selection. MbMNPV-CHN1 shows high infectivity against seven species of Lepidoptera. The yield of MbMNPV-CHN1 in the fourth- and fifth-instar M. separata larvae was 6.25×109-1.23×1010 OBs/cadaver. Our data provide insights into the classification, host range and virulence differences among baculoviruses of the Mb-McNPV group, as well as a promising potential new baculoviral insecticide.


Subject(s)
Charcot-Marie-Tooth Disease , Lepidoptera , Nucleopolyhedroviruses , Animals , Nucleopolyhedroviruses/genetics , Phylogeny , Baculoviridae/genetics , Biological Evolution
13.
Mol Med ; 30(1): 16, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297190

ABSTRACT

BACKGROUND: It is well-established that CD8+ T-cells play a critical role in graft rejection. The basic leucine zipper ATF-like transcription factor (BATF) and BATF3 are transcriptional factors expressed in T lymphocytes. Herein, we investigated the functions of BATF and BATF3 in the differentiation and exhaustion of CD8+ T cells following alloantigen activation. METHODS: Wild-type CD8+ T cells, BATF-deficient (Batf-/-) CD8+ T cells, and CD8+ T cells deficient in both BATF and BATF3 (Batf-/-Batf3-/-) were transferred to B6.Rag1-/- mice, which received skin allografts from BALB/c mice. Flow cytometry was conducted to investigate the number of CD8+ T cells and the percentage of effector subsets. RESULTS: BATF expression positively correlated with effector CD8+ T cell differentiation. BATF and BATF3 deficiency promoted skin allograft long-term survival and attenuated the CD8+ T cell allo-response and cytokine secretion. Finally, BATF and BATF3 deficiency prompted the generation of exhausted CD8+ T cells. CONCLUSIONS: Overall, our findings provide preliminary evidence that both BATF and BATF3 deficiency influences the differentiation of effector CD8+ T cells and mediates the exhaustion of CD8+ T cells, prolonging transplant survival. Targeting BATF and BATF3 to inhibit CD8+ T cell function has huge prospects for application as a therapeutic approach to prevent transplant rejection.


Subject(s)
CD8-Positive T-Lymphocytes , Skin Transplantation , Mice , Animals , CD8-Positive T-Lymphocytes/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , Mice, Inbred C57BL
14.
Small ; 20(14): e2308279, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37990369

ABSTRACT

The development and application of lithium (Li) anode is hindered by volumetric variation, dendritic Li growth, and parasitic reactions. Herein, a dual-phase Li-barium (Ba) alloy with self-assembled microchannels array is synthesized through a one-step thermal fusion method to investigate the inhibition effect of lithiophilic composite porous array on Li dendrites. The Li-rich Li-Ba alloy (BaLi24) as composite Li electrode exhibits an ordered porous structure of BaLi4 intermetallic compound after delithiation, which acts as a built-in 3D current collector during Li plating/striping process. Furthermore, the lithiophilic BaLi4 alloy scaffold is a mixed conductor, featuring with Li+ ions diffusion capability, which can efficiently transport the reduced Li to the interior of the electrode structure. This unique top-down growth mode can effectively prohibit Li dendrites growth and improve the space utilization of 3D electrode structure. The spin-polarized density functional theory (DFT) calculations suggest that the absorption capability of BaLi4 benefits the deposition of Li metal. As a result, the cell performance with the dual-phase Li-Ba alloy anode is significantly improved.

15.
Small ; : e2311552, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501866

ABSTRACT

The activation of persulfates to degrade refractory organic pollutants is a hot issue in advanced oxidation right now. Here, it is reported that single-atom Fe-incorporated carbon nitride (Fe-CN-650) can effectively activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. Through some characterization techniques and DFT calculation, it is proved that Fe single atoms in Fe-CN-650 exist mainly in the form of Fe-N3 O1 coordination, and Fe-N3 O1 exhibited better affinity for PMS than the traditional Fe-N4 structure. The degradation rate constant of SMX in the Fe-CN-650/PMS system reached 0.472 min-1 , and 90.80% of SMX can still be effectively degraded within 10 min after five consecutive recovery cycles. The radical quenching experiment and electrochemical analysis confirm that the pollutants are mainly degraded by two non-radical pathways through 1 O2 and Fe(IV)═O induced at the Fe-N3 O1 sites. In addition, the intermediate products of SMX degradation in the Fe-CN-650/PMS system show toxicity attenuation or non-toxicity. This study offers valuable insights into the design of carbon-based single-atom catalysts and provides a potential remediation technology for the optimum activation of PMS to disintegrate organic pollutants.

16.
Small ; 20(22): e2309900, 2024 May.
Article in English | MEDLINE | ID: mdl-38312091

ABSTRACT

All-hydrogel supercapacitors are emerging as promising power sources for next-generation wearable electronics due to their intrinsic mechanical flexibility, eco-friendliness, and enhanced safety. However, the insufficient interfacial adhesion between the electrode and electrolyte and the frozen hydrogel matrices at subzero temperatures largely limit the practical applications of all-hydrogel supercapacitors. Here, an all-hydrogel supercapacitor is reported with robust interfacial contact and anti-freezing property, fabricated by in situ polymerizing hydrogel electrolyte onto hydrogel electrodes. The robust interfacial adhesion is developed by the synergistic effect of a tough hydrogel matrix and topological entanglements. Meanwhile, the incorporation of zinc chloride (ZnCl2) in the hydrogel electrolyte prevents the freezing of water solvents and endows the all-hydrogel supercapacitor with mechanical flexibility and fatigue resistance across a wide temperature range of 20 °C to -60 °C. Such all-hydrogel supercapacitor demonstrates satisfactory low-temperature electrochemical performance, delivering a high energy density of 11 mWh cm-2 and excellent cycling stability with a capacitance retention of 90% over 10000 cycles at -40 °C. Notably, the fabricated all-hydrogel supercapacitor can endure dynamic deformations and operate well under 2000 tension cycles even at -40 °C, without experiencing delamination and electrochemical failure. This work offers a promising strategy for flexible energy storage devices with low-temperature adaptability.

17.
Small ; 20(8): e2305374, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37724002

ABSTRACT

Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-ß2 to suppress the TGF-ß2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-ß2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.


Subject(s)
Cicatrix, Hypertrophic , Exosomes , MicroRNAs , Humans , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/metabolism , Transforming Growth Factor beta2/metabolism , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Fibroblasts/metabolism , Cell Proliferation/genetics
18.
New Phytol ; 242(2): 507-523, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38362849

ABSTRACT

Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.


Subject(s)
DNA Methylation , Tetraploidy , DNA Methylation/genetics , Triticum/genetics , Epigenesis, Genetic , Transcriptome , Gene Expression Regulation, Plant
19.
Plant Physiol ; 193(1): 578-594, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37249052

ABSTRACT

Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.


Subject(s)
Oryza , Poaceae , Poaceae/genetics , Triticum/genetics , Genome, Plant/genetics , Oryza/genetics , Zea mays/genetics , Evolution, Molecular
20.
Opt Express ; 32(6): 9095-9104, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571150

ABSTRACT

For optical interconnect applications, multi-wavelength comb sources require uniform comb spacings and high reliability at high operating temperature. Here, the high-temperature reliability measurements of a InAs quantum dot colliding pulse mode-locked (QD-CPML) laser with 100 GHz comb spacing are systematically investigated. Laser lifetime measurements are performed for over 1600 hours at 80 °C under constant stress current of 150 mA. The mean time to failure (MTTF) of the laser is approximately 38 years (336,203 hours), extracted from the threshold currents extrapolation method. The optical spectral revolutions are also monitored during the aging process, while the grids of comb laser are remarkably stable. The outstanding reliability and spectrum stability make this 100 GHz QD-CPML a promising candidate as a multi-wavelength laser source for datacom and optical I/O applications.

SELECTION OF CITATIONS
SEARCH DETAIL