Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 8(1): 3161, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29453410

ABSTRACT

The majority of colorectal cancer (CRC) arises from precursor lesions known as polyps. The molecular determinants that distinguish benign from malignant polyps remain unclear. To molecularly characterize polyps, we utilized Cancer Adjacent Polyp (CAP) and Cancer Free Polyp (CFP) patients. CAPs had tissues from the residual polyp of origin and contiguous cancer; CFPs had polyp tissues matched to CAPs based on polyp size, histology and dysplasia. To determine whether molecular features distinguish CAPs and CFPs, we conducted Whole Genome Sequencing, RNA-seq, and RRBS on over 90 tissues from 31 patients. CAPs had significantly more mutations, altered expression and hypermethylation compared to CFPs. APC was significantly mutated in both polyp groups, but mutations in TP53, FBXW7, PIK3CA, KIAA1804 and SMAD2 were exclusive to CAPs. We found significant expression changes between CAPs and CFPs in GREM1, IGF2, CTGF, and PLAU, and both expression and methylation alterations in FES and HES1. Integrative analyses revealed 124 genes with alterations in at least two platforms, and ERBB3 and E2F8 showed aberrations specific to CAPs across all platforms. These findings provide a resource of molecular distinctions between polyps with and without cancer, which have the potential to enhance the diagnosis, risk assessment and management of polyps.


Subject(s)
Adenoma/genetics , Colorectal Neoplasms/genetics , DNA Methylation , Gene Expression Profiling , Genomics , Adenoma/pathology , Colorectal Neoplasms/pathology , Humans , Sequence Analysis, RNA
2.
Transl Oncol ; 9(4): 280-6, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27567950

ABSTRACT

The majority of colorectal cancers (CRCs) arise from adenomatous polyps. In this study, we sought to present the underrecognized CRC with the residual polyp of origin (CRC RPO+) as an entity to be utilized as a model to study colorectal carcinogenesis. We identified all subjects with biopsy-proven CRC RPO+ that were evaluated over 10 years at Mayo Clinic, Rochester, MN, and compared their clinical and pathologic characteristics to CRC without remnant polyps (CRC RPO-). Overall survival and disease-free survival overlap with an equivalent hazard ratio between CRC RPO+ and RPO- cases when age, stage, and grade are adjusted. The somatic genomic profile obtained by whole genome sequencing and the gene expression profiles by RNA-seq for CRC RPO+ tumors were compared with that of age -and gender-matched CRC RPO- evaluated by The Cancer Genome Atlas. CRC RPO+ cases were more commonly found with lower-grade, earlier-stage disease than CRC RPO-. However, within the same disease stage and grade, their clinical course is very similar to that of CRC RPO-. The mutation frequencies of commonly mutated genes in CRC are similar between CRC RPO+ and RPO- cases. Likewise, gene expression patterns are indistinguishable between the RPO+ and RPO- cases. We have confirmed that CRC RPO+ is clinically and biologically similar to CRC RPO- and may be utilized as a model of the adenoma to carcinoma transition.

3.
Clin Transl Gastroenterol ; 7(9): e188, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27584834

ABSTRACT

OBJECTIVE: Whereas few adenomas become cancer, most colorectal cancers arise from adenomas. Telomere length is a recognized biomarker in multiple cancers, and telomere maintenance mechanisms (TMM) are exploited by malignant cells. We sought to determine whether telomere length and TMM distinguish cancer-associated adenomas from those that are cancer-free. METHODS: Tissues were identified as cancer-adjacent polyp (CAP)-residual adenoma contiguous with cancer-and cancer-free polyp (CFP)-adenomas without malignancy. Telomere length, TMM, and expression were measured in 102 tissues including peripheral blood leukocytes (PBLs), normal colon epithelium, adenoma, and cancer (in CAP cases) from 31 patients. Telomere length was measured in a separate cohort of 342 PBL from CAP and CFP patients. RESULTS: The mean differences in telomere length between normal and adenoma were greater in CAP than in CFP cases, P=0.001; telomere length in PBL was 91.7 bp greater in CAP than in CFP, P=0.007. Each 100 bp telomere increase was associated with a 1.14 (1.04-1.26) increased odds of being a CAP, P=0.0063. The polyp tissue from CAP patients had shorter telomeres and higher Telomerase reverse transcriptase (hTERT) expression compared with polyps from CFP patients, P=0.05. There was a greater degree of alternative lengthening of telomere (ALT) level difference in CFP polyps than in CAP polyps. The polyp telomere lengths of aggressive CAPs were significantly different from the polyps of non-aggressive CAPs, P=0.01. CONCLUSIONS: Adenomas that progress to cancer exhibit distinct telomere length and TMM profiles. We report for the first time that PBL telomeres differ in patients with polyps that become malignant, and therefore may have clinical value in adenoma risk assessment and management.

4.
Am J Cancer Res ; 5(10): 3231-40, 2015.
Article in English | MEDLINE | ID: mdl-26693073

ABSTRACT

An important determinant of the pathogenesis and prognosis of various diseases is inherited genetic variation. Single-nucleotide polymorphisms (SNPs), variations at a single base position, have been identified in both protein-coding and noncoding DNA sequences, but the vast majority of millions of those variants are far from being functionally understood. Here we show that a common variant in the gene MTHFR [rs1801133 (C>T)] not only influences response to neoadjuvant chemoradiotherapy in patients with rectal cancer, but it also influences recurrence of the disease itself. More specifically, patients with the homozygous ancestral (wild type) genotype (C/C) were 2.91 times more likely (291% increased benefit) to respond to neoadjuvant chemoradiotherapy {95% CI: [1.23, 6.89]; P=0.0150} and 3.25 times more likely (325% increased benefit) not to experience recurrence of the disease {95% CI: [1.37, 7.72]; P=0.0079} than patients with either the heterozygous (C/T) or the homozygous mutation (T/T) genotype. These results identify MTHFR as an important genetic marker and open up new, pharmacogenomic strategies in the treatment and management of rectal cancer.

SELECTION OF CITATIONS
SEARCH DETAIL