Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 606(7916): 1027-1031, 2022 06.
Article in English | MEDLINE | ID: mdl-35580630

ABSTRACT

Around 250 million people are infected with hepatitis B virus (HBV) worldwide1, and 15 million may also carry the satellite virus hepatitis D virus (HDV), which confers even greater risk of severe liver disease2. The HBV receptor has been identified as sodium taurocholate co-transporting polypeptide (NTCP), which interacts directly with the first 48 amino acid residues of the N-myristoylated N-terminal preS1 domain of the viral large protein3. Despite the pressing need for therapeutic agents to counter HBV, the structure of NTCP remains unsolved. This 349-residue protein is closely related to human apical sodium-dependent bile acid transporter (ASBT), another member of the solute carrier family SLC10. Crystal structures have been reported of similar bile acid transporters from bacteria4,5, and these models are believed to resemble closely both NTCP and ASBT. Here we have used cryo-electron microscopy to solve the structure of NTCP bound to an antibody, clearly showing that the transporter has no equivalent of the first transmembrane helix found in other SLC10 proteins, and that the N terminus is exposed on the extracellular face. Comparison of our structure with those of related proteins indicates a common mechanism of bile acid transport, but the NTCP structure displays an additional pocket formed by residues that are known to interact with preS1, presenting new opportunities for structure-based drug design.


Subject(s)
Bile Acids and Salts , Cryoelectron Microscopy , Hepatitis B virus , Organic Anion Transporters, Sodium-Dependent , Receptors, Virus , Symporters , Antibodies , Bile Acids and Salts/metabolism , Hepatitis B virus/metabolism , Hepatocytes/metabolism , Humans , Organic Anion Transporters, Sodium-Dependent/chemistry , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/ultrastructure , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Receptors, Virus/ultrastructure , Symporters/chemistry , Symporters/metabolism , Symporters/ultrastructure
2.
PLoS Pathog ; 19(5): e1011323, 2023 05.
Article in English | MEDLINE | ID: mdl-37134108

ABSTRACT

The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Acyltransferases/antagonists & inhibitors , Antiviral Agents/pharmacology , SARS-CoV-2 , T-Lymphocytes
3.
PLoS Comput Biol ; 20(3): e1011238, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466770

ABSTRACT

Chronic infection with hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. Thus, quantifying and understanding the dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, such study requires repeated liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because liver biopsy is potentially morbid and not common during hepatitis B treatment. We here aimed to develop a noninvasive method for quantifying cccDNA in the liver using surrogate markers in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations, integrates experimental data from in vitro and in vivo investigations. By applying this model, we roughly predicted the amount and dynamics of intrahepatic cccDNA within a certain range using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The noninvasive quantification of cccDNA using our proposed method holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens/genetics , DNA, Viral/genetics , Hepatitis B/drug therapy , Hepatitis B/pathology , Liver/pathology , DNA, Circular , Biomarkers , Antiviral Agents/therapeutic use
4.
J Gen Virol ; 105(5)2024 05.
Article in English | MEDLINE | ID: mdl-38757942

ABSTRACT

Since its discovery in 1965, our understanding of the hepatitis B virus (HBV) replication cycle and host immune responses has increased markedly. In contrast, our knowledge of the molecular biology of hepatitis delta virus (HDV), which is associated with more severe liver disease, is less well understood. Despite the progress made, critical gaps remain in our knowledge of HBV and HDV replication and the mechanisms underlying viral persistence and evasion of host immunity. The International HBV Meeting is the leading annual scientific meeting for presenting the latest advances in HBV and HDV molecular virology, immunology, and epidemiology. In 2023, the annual scientific meeting was held in Kobe, Japan and this review summarises some of the advances presented at the Meeting and lists gaps in our knowledge that may facilitate the development of new therapies.


Subject(s)
Hepatitis B virus , Hepatitis B , Hepatitis Delta Virus , Virus Replication , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Hepatitis B virus/immunology , Humans , Hepatitis Delta Virus/genetics , Hepatitis Delta Virus/physiology , Hepatitis B/virology , Hepatitis B/immunology , Molecular Biology , Japan , Hepatitis D/virology , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics
5.
J Virol ; 97(10): e0128723, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37800948

ABSTRACT

IMPORTANCE: The Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is one of the most important defense mechanisms against oxidative stress. We previously reported that a cellular hydrogen peroxide scavenger protein, peroxiredoxin 1, a target gene of transcription factor Nrf2, acts as a novel HBV X protein (HBx)-interacting protein and negatively regulates hepatitis B virus (HBV) propagation through degradation of HBV RNA. This study further demonstrates that the Nrf2/ARE signaling pathway is activated during HBV infection, eventually leading to the suppression of HBV replication. We provide evidence suggesting that Keap1 interacts with HBx, leading to Nrf2 activation and inhibition of HBV replication via suppression of HBV core promoter activity. This study raises the possibility that activation of the Nrf2/ARE signaling pathway is a potential therapeutic strategy against HBV. Our findings may contribute to an improved understanding of the negative regulation of HBV replication by the antioxidant response.


Subject(s)
Hepatitis B virus , Hepatitis B , Kelch-Like ECH-Associated Protein 1 , Signal Transduction , Virus Replication , Humans , Antioxidant Response Elements , Hepatitis B/genetics , Hepatitis B virus/physiology , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress
6.
PLoS Pathog ; 18(6): e1010590, 2022 06.
Article in English | MEDLINE | ID: mdl-35700214

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been transmitted across all over the world, in contrast to the limited epidemic of genetically- and virologically-related SARS-CoV. However, the molecular basis explaining the difference in the virological characteristics among SARS-CoV-2 and SARS-CoV has been poorly defined. Here we identified that host sialoglycans play a significant role in the efficient spread of SARS-CoV-2 infection, while this was not the case with SARS-CoV. SARS-CoV-2 infection was significantly inhibited by α2-6-linked sialic acid-containing compounds, but not by α2-3 analog, in VeroE6/TMPRSS2 cells. The α2-6-linked compound bound to SARS-CoV-2 spike S1 subunit to competitively inhibit SARS-CoV-2 attachment to cells. Enzymatic removal of cell surface sialic acids impaired the interaction between SARS-CoV-2 spike and angiotensin-converting enzyme 2 (ACE2), and suppressed the efficient spread of SARS-CoV-2 infection over time, in contrast to its least effect on SARS-CoV spread. Our study provides a novel molecular basis of SARS-CoV-2 infection which illustrates the distinctive characteristics from SARS-CoV.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptidyl-Dipeptidase A/metabolism , Polysaccharides/metabolism , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism
7.
Immunity ; 42(1): 123-32, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25557055

ABSTRACT

Host innate recognition triggers key immune responses for viral elimination. The sensing mechanism of hepatitis B virus (HBV), a DNA virus, and the subsequent downstream signaling events remain to be fully clarified. Here we found that type III but not type I interferons are predominantly induced in human primary hepatocytes in response to HBV infection, through retinoic acid-inducible gene-I (RIG-I)-mediated sensing of the 5'-ε region of HBV pregenomic RNA. In addition, RIG-I could also counteract the interaction of HBV polymerase (P protein) with the 5'-ε region in an RNA-binding dependent manner, which consistently suppressed viral replication. Liposome-mediated delivery and vector-based expression of this ε region-derived RNA in liver abolished the HBV replication in human hepatocyte-chimeric mice. These findings identify an innate-recognition mechanism by which RIG-I dually functions as an HBV sensor activating innate signaling and to counteract viral polymerase in human hepatocytes.


Subject(s)
Gene Products, pol/antagonists & inhibitors , Hepatitis B virus/physiology , Hepatitis B, Chronic/immunology , Hepatocytes/physiology , Liver/physiology , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , RNA, Viral/immunology , Animals , Child, Preschool , Female , Hep G2 Cells , Hepatocytes/transplantation , Hepatocytes/virology , Humans , Immunity, Innate , Interferons/metabolism , Liver/virology , Membrane Proteins/immunology , Mice , Mice, SCID , Nerve Tissue Proteins/immunology , RNA, Viral/genetics , Receptors, Cell Surface , Transgenes/genetics , Transplantation Chimera , Virus Replication/genetics
8.
PLoS Biol ; 19(3): e3001128, 2021 03.
Article in English | MEDLINE | ID: mdl-33750978

ABSTRACT

The scientific community is focused on developing antiviral therapies to mitigate the impacts of the ongoing novel coronavirus disease 2019 (COVID-19) outbreak. This will be facilitated by improved understanding of viral dynamics within infected hosts. Here, using a mathematical model in combination with published viral load data, we compare within-host viral dynamics of SARS-CoV-2 with analogous dynamics of MERS-CoV and SARS-CoV. Our quantitative analyses using a mathematical model revealed that the within-host reproduction number at symptom onset of SARS-CoV-2 was statistically significantly larger than that of MERS-CoV and similar to that of SARS-CoV. In addition, the time from symptom onset to the viral load peak for SARS-CoV-2 infection was shorter than those of MERS-CoV and SARS-CoV. These findings suggest the difficulty of controlling SARS-CoV-2 infection by antivirals. We further used the viral dynamics model to predict the efficacy of potential antiviral drugs that have different modes of action. The efficacy was measured by the reduction in the viral load area under the curve (AUC). Our results indicate that therapies that block de novo infection or virus production are likely to be effective if and only if initiated before the viral load peak (which appears 2-3 days after symptom onset), but therapies that promote cytotoxicity of infected cells are likely to have effects with less sensitivity to the timing of treatment initiation. Furthermore, combining a therapy that promotes cytotoxicity and one that blocks de novo infection or virus production synergistically reduces the AUC with early treatment. Our unique modeling approach provides insights into the pathogenesis of SARS-CoV-2 and may be useful for development of antiviral therapies.


Subject(s)
Betacoronavirus/physiology , COVID-19/therapy , COVID-19/virology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/transmission , Coronavirus Infections/therapy , Coronavirus Infections/virology , Humans , Longitudinal Studies , Middle East Respiratory Syndrome Coronavirus/physiology , Models, Biological , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2/physiology , Viral Load/drug effects
9.
Org Biomol Chem ; 22(11): 2218-2225, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38358380

ABSTRACT

Chronic infection with hepatitis B virus (HBV) is a major cause of cirrhosis and liver cancer. Capsid assembly modulators can induce error-prone assembly of HBV core proteins to prevent the formation of infectious virions, representing promising candidates for treating chronic HBV infections. To explore novel capsid assembly modulators from unexplored mirror-image libraries of natural products, we have investigated the synthetic process of the HBV core protein for preparing the mirror-image target protein. In this report, the chemical synthesis of full-length HBV core protein (Cp183) containing an arginine-rich nucleic acid-binding domain at the C-terminus is presented. Sequential ligations using four peptide segments enabled the synthesis of Cp183 via convergent and C-to-N direction approaches. After refolding under appropriate conditions, followed by the addition of nucleic acid, the synthetic Cp183 assembled into capsid-like particles.


Subject(s)
Hepatitis B , Nucleic Acids , Humans , Capsid/chemistry , Capsid Proteins/metabolism , Hepatitis B virus , Hepatitis B/metabolism , Viral Core Proteins/analysis , Viral Core Proteins/chemistry , Viral Core Proteins/metabolism , Virus Replication , Antiviral Agents/metabolism
10.
J Infect Dis ; 228(5): 591-603, 2023 08 31.
Article in English | MEDLINE | ID: mdl-36892247

ABSTRACT

BACKGROUND: Mpox virus (MPXV) is a zoonotic orthopoxvirus and caused an outbreak in 2022. Although tecovirimat and brincidofovir are approved as anti-smallpox drugs, their effects in mpox patients have not been well documented. In this study, by a drug repurposing approach, we identified potential drug candidates for treating mpox and predicted their clinical impacts by mathematical modeling. METHODS: We screened 132 approved drugs using an MPXV infection cell system. We quantified antiviral activities of potential drug candidates by measuring intracellular viral DNA and analyzed the modes of action by time-of-addition assay and electron microscopic analysis. We further predicted the efficacy of drugs under clinical concentrations by mathematical simulation and examined combination treatment. RESULTS: Atovaquone, mefloquine, and molnupiravir exhibited anti-MPXV activity, with 50% inhibitory concentrations of 0.51-5.2 µM, which was more potent than cidofovir. Whereas mefloquine was suggested to inhibit viral entry, atovaquone and molnupiravir targeted postentry processes. Atovaquone was suggested to exert its activity through inhibiting dihydroorotate dehydrogenase. Combining atovaquone with tecovirimat enhanced the anti-MPXV effect of tecovirimat. Quantitative mathematical simulations predicted that atovaquone can promote viral clearance in patients by 7 days at clinically relevant drug concentrations. CONCLUSIONS: These data suggest that atovaquone would be a potential candidate for treating mpox.


Subject(s)
Mefloquine , Monkeypox virus , Humans , Atovaquone/pharmacology , Atovaquone/therapeutic use , Mefloquine/pharmacology , Mefloquine/therapeutic use , Monkeypox virus/drug effects
11.
Biochem Biophys Res Commun ; 675: 139-145, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37473528

ABSTRACT

Given that the current approved anti-hepatitis B virus (HBV) drugs suppress virus replication and improve hepatitis but cannot eliminate HBV from infected patients, new anti-HBV agents with different mode of action are urgently needed. In this study, we identified a semi-synthetic oxysterol, Oxy185, that can prevent HBV infection in a HepG2-based cell line and primary human hepatocytes. Mechanistically, Oxy185 inhibited the internalization of HBV into cells without affecting virus attachment or replication. We also found that Oxy185 interacted with an HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP), and inhibited the oligomerization of NTCP to reduce the efficiency of HBV internalization. Consistent with this mechanism, Oxy185 also inhibited the hepatitis D virus infection, which relies on NTCP-dependent internalization, but not hepatitis A virus infection, and displayed pan-genotypic anti-HBV activity. Following oral administration in mice, Oxy185 showed sustained accumulation in the livers of the mice, along with a favorable liver-to-plasma ratio. Thus, Oxy185 is expected to serve as a useful tool compound in proof-of-principle studies for HBV entry inhibitors with this novel mode of action.


Subject(s)
Hepatitis B , Symporters , Humans , Mice , Animals , Hepatitis B virus/physiology , Virus Internalization , Hepatitis B/metabolism , Hepatocytes/metabolism , Hep G2 Cells , Hepatitis Delta Virus/metabolism , Symporters/metabolism , Organic Anion Transporters, Sodium-Dependent/metabolism
12.
PLoS Pathog ; 17(3): e1008866, 2021 03.
Article in English | MEDLINE | ID: mdl-33720996

ABSTRACT

As an intracellular pathogen, the reproduction of the hepatitis B virus (HBV) depends on the occupancy of host metabolism machinery. Here we test a hypothesis if HBV may govern intracellular biosynthesis to achieve a productive reproduction. To test this hypothesis, we set up an affinity purification screen for host factors that interact with large viral surface antigens (LHBS). This identified pyruvate kinase isoform M2 (PKM2), a key regulator of glucose metabolism, as a binding partner of viral surface antigens. We showed that the expression of viral LHBS affected oligomerization of PKM2 in hepatocytes, thereby increasing glucose consumption and lactate production, a phenomenon known as aerobic glycolysis. Reduction of PKM2 activity was also validated in several different models, including HBV-infected HepG2-NTCP-C4 cells, adenovirus mediated HBV gene transduction and transfection with a plasmid containing complete HBV genome on HuH-7 cells. We found the recovery of PKM2 activity in hepatocytes by chemical activators, TEPP-46 or DASA-58, reduced expressions of viral surface and core antigens. In addition, reduction of glycolysis by culturing in low-glucose condition or treatment with 2-deoxyglucose also decreased expressions of viral surface antigen, without affecting general host proteins. Finally, TEPP-46 largely suppressed proliferation of LHBS-positive cells on 3-dimensional agarose plates, but showed no effect on the traditional 2-dimensional cell culture. Taken together, these results indicate that HBV-induced metabolic switch may support its own translation in hepatocytes. In addition, aerobic glycolysis is likely essential for LHBS-mediated oncogenesis. Accordingly, restriction of glucose metabolism may be considered as a novel strategy to restrain viral protein synthesis and subsequent oncogenesis during chronic HBV infection.


Subject(s)
Hepatitis B virus/pathogenicity , Hepatitis B, Chronic/virology , Hepatocytes/virology , Liver Neoplasms/virology , Pyruvate Kinase/metabolism , Antigens, Surface/metabolism , Carcinoma, Hepatocellular/metabolism , Hepatitis B/metabolism , Hepatitis B Surface Antigens/immunology , Humans , Protein Isoforms/metabolism
13.
PLoS Biol ; 18(7): e3000562, 2020 07.
Article in English | MEDLINE | ID: mdl-32730280

ABSTRACT

Virus proliferation involves gene replication inside infected cells and transmission to new target cells. Once positive-strand RNA virus has infected a cell, the viral genome serves as a template for copying ("stay-strategy") or is packaged into a progeny virion that will be released extracellularly ("leave-strategy"). The balance between genome replication and virion release determines virus production and transmission efficacy. The ensuing trade-off has not yet been well characterized. In this study, we use hepatitis C virus (HCV) as a model system to study the balance of the two strategies. Combining viral infection cell culture assays with mathematical modeling, we characterize the dynamics of two different HCV strains (JFH-1, a clinical isolate, and Jc1-n, a laboratory strain), which have different viral release characteristics. We found that 0.63% and 1.70% of JFH-1 and Jc1-n intracellular viral RNAs, respectively, are used for producing and releasing progeny virions. Analysis of the Malthusian parameter of the HCV genome (i.e., initial proliferation rate) and the number of de novo infections (i.e., initial transmissibility) suggests that the leave-strategy provides a higher level of initial transmission for Jc1-n, whereas, in contrast, the stay-strategy provides a higher initial proliferation rate for JFH-1. Thus, theoretical-experimental analysis of viral dynamics enables us to better understand the proliferation strategies of viruses, which contributes to the efficient control of virus transmission. Ours is the first study to analyze the stay-leave trade-off during the viral life cycle and the significance of the replication-release switching mechanism for viral proliferation.


Subject(s)
Genome, Viral , Hepacivirus/genetics , Host-Pathogen Interactions/genetics , Aging/physiology , Cell Line, Tumor , Cell Proliferation/genetics , Hepatitis C , Humans , Models, Biological , Virus Replication/genetics
14.
Liver Int ; 43(8): 1677-1690, 2023 08.
Article in English | MEDLINE | ID: mdl-37312620

ABSTRACT

BACKGROUND AND AIMS: The future development of hepatocellular carcinoma (HCC) in patients after sustained virologic response (SVR) is an important issue. The purposes of this study were to investigate pathological alterations in organelle of the liver of SVR patients and to characterize organelle abnormalities that may be related to carcinogenesis after SVR. METHODS: The ultrastructure of liver biopsy specimens from patients with chronic hepatitis C (CHC) and SVR were compared to cell and mouse models and assessed semi-quantitatively using transmission electron microscopy. RESULTS: Hepatocytes in patients with CHC showed abnormalities in the nucleus, mitochondria, endoplasmic reticulum, lipid droplet, and pericellular fibrosis, comparable to those seen in hepatitis C virus (HCV)-infected mice and cells. DAA treatment significantly reduced organelle abnormalities such as the nucleus, mitochondria, and lipid droplet in the hepatocytes of patients and mice after SVR, and cured cells, but it did not change dilated/degranulated endoplasmic reticulum and pericellular fibrosis in patients and mice after SVR. Further, samples from patients with a post-SVR period of >1 year had significantly larger numbers of abnormalities in the mitochondria and endoplasmic reticulum than those of <1 year. A possible cause of organelle abnormalities in patients after SVR could be oxidative stress of the endoplasmic reticulum and mitochondria associated with abnormalities of the vascular system due to fibrosis. Interestingly, abnormal endoplasmic reticulum was associated with patients with HCC for >1 year after SVR. CONCLUSIONS: These results indicate that patients with SVR exhibit a persistent disease state and require long-term follow-up to detect early signs of carcinogenesis.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C, Chronic , Hepatitis C , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/pathology , Antiviral Agents/therapeutic use , Liver Neoplasms/pathology , Hepacivirus , Hepatitis C/drug therapy , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , Sustained Virologic Response , Liver Cirrhosis/complications , Organelles/pathology , Carcinogenesis/pathology
15.
Chem Pharm Bull (Tokyo) ; 71(8): 650-654, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37245988

ABSTRACT

Although aryl hydrocarbon receptors (AhRs) are related to the metabolic pathway of xenobiotics, recent studies have revealed that this receptor is also associated with the life cycle of viruses and inflammatory reactions. For example, flutamide, used to treat prostate cancer, inhibits hepatitis C virus proliferation by acting as an AhR antagonist, and methylated-pelargonidin, an AhR agonist, suppresses pro-inflammatory cytokine production. To discover a novel class of AhR ligands, we screened 1000 compounds derived from fungal metabolites using a reporter assay and identified methylsulochrin as a partial agonist of the aryl hydrocarbon receptor. Methylsulochrin was found to inhibit the production of hepatitis C virus (HCV) in Huh-7.5.1 cells. Methylsulochrin also suppressed the production of interleukin-6 in RAW264.7 cells. Furthermore, a preliminary structure-activity relationship study using sulochrin derivatives was performed. Our findings suggest the use of methylsulochrin derivatives as anti-HCV compounds with anti-inflammatory activity.


Subject(s)
Antiviral Agents , Receptors, Aryl Hydrocarbon , Male , Humans , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Antiviral Agents/pharmacology , Flutamide/pharmacology , Anti-Inflammatory Agents/pharmacology , Ligands
16.
Chem Pharm Bull (Tokyo) ; 71(11): 843-845, 2023.
Article in English | MEDLINE | ID: mdl-37914261

ABSTRACT

Juglorubin is a natural dye isolated from the culture of Streptomyces sp. 3094, 815, and GW4184. It has been previously synthesized via the biomimetic dimerization of juglomycin C, a plausible genetic precursor. In this study, the derivatives of juglorubin, 1-O-acetyljuglorubin dimethyl ester and juglorubin dimethyl ester, were found to exhibit antiviral activity against hepatitis C virus (HCV) without exerting any remarkable cytotoxicity against host Huh-7 cells. They also inhibited liver X receptor α activation and lipid droplet accumulation in Huh-7 cells. These findings suggest that 1-O-acetyljuglorubin dimethyl ester and juglorubin dimethyl ester targeted the host factors required for HCV production.


Subject(s)
Hepacivirus , Hepatitis C , Humans , Hepacivirus/genetics , Cell Line , Esters , Virus Replication , Antiviral Agents/pharmacology
17.
Int J Mol Sci ; 24(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36768585

ABSTRACT

N6-methyladenosine (m6A) is a post-transcriptional modification of RNA involved in transcript transport, degradation, translation, and splicing. We found that HBV RNA is modified by m6A predominantly in the coding region of HBx. The mutagenesis of methylation sites reduced the HBV mRNA and HBs protein levels. The suppression of m6A by an inhibitor or knockdown in primary hepatocytes decreased the viral RNA and HBs protein levels in the medium. These results suggest that the m6A modification of HBV RNA is needed for the efficient replication of HBV in hepatocytes.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Viral Regulatory and Accessory Proteins/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Virus Replication/genetics , RNA, Viral/genetics , RNA, Viral/metabolism
18.
Antimicrob Agents Chemother ; 66(6): e0207321, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35604213

ABSTRACT

Novel neplanocin A derivatives have been identified as potent and selective inhibitors of hepatitis B virus (HBV) replication in vitro. These include (1S,2R,5R)-5-(5-bromo-4-methyl-7H-pyrrolo[2,3-d]-pyrimidin-7-yl)-3-(hydroxymethyl)cyclopent-3-ene-1,2-diol (AR-II-04-26) and (1S,2R,5R)-5-(4-amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)-3-(hydroxylmethyl)cyclopent-3-ene-1,2-diol (MK-III-02-03). The 50% effective concentrations of AR-II-04-26 and MK-III-02-03 were 0.77 ± 0.23 and 0.83 ± 0.36 µM in HepG2.2.15.7 cells, respectively. These compounds reduced intracellular HBV RNA levels in HepG2.2.15.7 cells and infected primary human hepatocytes. Accordingly, they could reduce HBs and HBe antigen production in the culture supernatants, which was not observed with clinically approved anti-HBV nucleosides and nucleotides (reverse transcriptase inhibitors). The neplanocin A derivatives also inhibited HBV RNA derived from cccDNA. In addition, unlike neplanocin A itself, the compounds did not inhibit S-adenosyl-l-homocysteine hydrolase activity. Thus, it appears that the mechanism of action of AR-II-04-26 and MK-III-02-03 differs from that of the clinically approved anti-HBV agents. Although their exact mechanism (target molecule) remains to be elucidated, the novel neplanocin A derivatives are considered promising candidate drugs for inhibition of HBV replication.


Subject(s)
Hepatitis B virus , Hepatitis B , Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , DNA, Viral , Hepatitis B/drug therapy , Humans , RNA , Virus Replication
19.
J Virol ; 95(24): e0093821, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34613794

ABSTRACT

Sodium taurocholate cotransporting polypeptide (NTCP) is a receptor that is essential for hepatitis B virus (HBV) entry into the host cell. A number of HBV entry inhibitors targeting NTCP have been reported to date; these inhibitors have facilitated a mechanistic analysis of the viral entry process. However, the mechanism of HBV internalization into host cells after interaction of virus with NTCP remains largely unknown. Recently, we reported that troglitazone, a thiazolidinedione derivative, specifically inhibits both HBV internalization and NTCP oligomerization, resulting in inhibition of HBV infection. Here, using troglitazone as a chemical probe to investigate entry process, the contribution of NTCP oligomerization to HBV internalization was evaluated. Using surface plasmon resonance and transporter kinetics, we found that troglitazone directly interacts with NTCP and noncompetitively interferes with NTCP-mediated bile acid uptake, suggesting that troglitazone allosterically binds to NTCP, rather than to the bile acid-binding pocket. Additionally, alanine scanning mutagenesis showed that a mutation at phenylalanine 274 of NTCP (F274A) caused a loss of HBV susceptibility and disrupted both the oligomerization of NTCP and HBV internalization without affecting viral attachment to the cell surface. An inhibitor of the interaction between NTCP and epidermal growth factor receptor (EGFR), another host cofactor essential for HBV internalization, impeded NTCP oligomerization. Meanwhile, coimmunoprecipitation analysis revealed that neither troglitazone nor the F274A mutation in NTCP affects the NTCP-EGFR interaction. These findings suggest that NTCP oligomerization is initiated downstream of the NTCP-EGFR interaction and then triggers HBV internalization. This study provides significant insight into the HBV entry mechanisms. IMPORTANCE Hepatitis B virus (HBV) infection is mediated by a specific interaction with sodium taurocholate cotransporting polypeptide (NTCP), a viral entry receptor. Although the virus-receptor interactions are believed to trigger viral internalization into host cells, the exact molecular mechanisms of HBV internalization are not understood. In this study, we revealed the mode of action whereby troglitazone, a specific inhibitor of HBV internalization, impedes NTCP oligomerization and identified NTCP phenylalanine 274 as a residue essential for this oligomerization. We further analyzed the association between NTCP oligomerization and HBV internalization, a process that is mediated by epidermal growth factor receptor (EGFR), another essential host cofactor for HBV internalization. Our study provides critical information on the mechanism of HBV entry and suggests that oligomerization of the viral receptor serves as an attractive target for drug discovery.


Subject(s)
Hepatitis B virus/physiology , Organic Anion Transporters, Sodium-Dependent/metabolism , Protein Multimerization , Receptors, Virus/metabolism , Symporters/metabolism , Virus Internalization/drug effects , Biological Transport , ErbB Receptors/genetics , ErbB Receptors/metabolism , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/genetics , Troglitazone/pharmacology , Virus Attachment/drug effects
20.
J Virol ; 95(16): e0240120, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34076480

ABSTRACT

Entecavir (ETV) is a widely used anti-hepatitis B virus (HBV) drug. However, the emergence of resistant mutations in HBV reverse transcriptase (RT) results in treatment failure. To understand the mechanism underlying the development of ETV resistance by HBV RT, we analyzed the L180M, M204V, and L180M/M204V mutants using a combination of biochemical and structural techniques. ETV-triphosphate (ETV-TP) exhibited competitive inhibition with dGTP in both wild-type (wt) RT and M204V RT, as observed using Lineweaver-Burk plots. In contrast, RT L180M or L180M/M204V did not fit either competitive, uncompetitive, noncompetitive, or typical mixed inhibition, although ETV-TP was a competitive inhibitor of dGTP. Crystallography of HIV RTY115F/F116Y/Q151M/F160M/M184V, mimicking HBV RT L180M/M204V, showed that the F115 bulge (F88 in HBV RT) caused by the F160M mutation induced deviated binding of dCTP from its normal tight binding position. Modeling of ETV-TP on the deviated dCTP indicated that a steric clash could occur between ETV-TP methylene and the 3'-end nucleoside ribose. ETV-TP is likely to interact primarily with HBV RT M171 prior to final accommodation at the deoxynucleoside triphosphate (dNTP) binding site (Y. Yasutake, S. Hattori, H. Hayashi, K. Matsuda, et al., Sci Rep 8:1624, 2018, https://doi.org/10.1038/s41598-018-19602-9). Therefore, in HBV RT L180M/M204V, ETV-TP may be stuck at M171, a residue that is conserved in almost all HBV isolates, leading to the strange inhibition pattern observed in the kinetic analysis. Collectively, our results provide novel insights into the mechanism of ETV resistance of HBV RT caused by L180M and M204V mutations. IMPORTANCE HBV infects 257 million people in the world, who suffer from elevated risks of liver cirrhosis and cancer. ETV is one of the most potent anti-HBV drugs, and ETV resistance mutations in HBV RT have been extensively studied. Nevertheless, the mechanisms underlying ETV resistance have remained elusive. We propose an attractive hypothesis to explain ETV resistance and effectiveness using a combination of kinetic and structural analyses. ETV is likely to have an additional interaction site, M171, beside the dNTP pocket of HBV RT; this finding indicates that nucleos(t)ide analogues (NAs) recognizing multiple interaction sites within RT may effectively inhibit the enzyme. Modification of ETV may render it more effective and enable the rational design of efficient NA inhibitors.


Subject(s)
Drug Resistance, Viral/genetics , Guanine/analogs & derivatives , Hepatitis B virus/drug effects , RNA-Directed DNA Polymerase/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Binding Sites , Crystallography, X-Ray , Deoxycytosine Nucleotides/metabolism , Deoxyguanine Nucleotides/metabolism , Guanine/metabolism , Guanine/pharmacology , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Hepatitis B virus/chemistry , Hepatitis B virus/enzymology , Inhibitory Concentration 50 , Kinetics , Lamivudine/metabolism , Lamivudine/pharmacology , Mutation , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Reverse Transcriptase Inhibitors/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL