Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38617315

ABSTRACT

In profiling assays, thousands of biological properties are measured in a single test, yielding biological discoveries by capturing the state of a cell population, often at the single-cell level. However, for profiling datasets, it has been challenging to evaluate the phenotypic activity of a sample and the phenotypic consistency among samples, due to profiles' high dimensionality, heterogeneous nature, and non-linear properties. Existing methods leave researchers uncertain where to draw boundaries between meaningful biological response and technical noise. Here, we developed a statistical framework that uses the well-established mean average precision (mAP) as a single, data-driven metric to bridge this gap. We validated the mAP framework against established metrics through simulations and real-world data applications, revealing its ability to capture subtle and meaningful biological differences in cell state. Specifically, we used mAP to assess both phenotypic activity for a given perturbation (or a sample) as well as consistency within groups of perturbations (or samples) across diverse high-dimensional datasets. We evaluated the framework on different profile types (image, protein, and mRNA profiles), perturbation types (CRISPR gene editing, gene overexpression, and small molecules), and profile resolutions (single-cell and bulk). Our open-source software allows this framework to be applied to identify interesting biological phenomena and promising therapeutics from large-scale profiling data.

2.
Nat Commun ; 15(1): 347, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184653

ABSTRACT

The morphology of cells is dynamic and mediated by genetic and environmental factors. Characterizing how genetic variation impacts cell morphology can provide an important link between disease association and cellular function. Here, we combine genomic sequencing and high-content imaging approaches on iPSCs from 297 unique donors to investigate the relationship between genetic variants and cellular morphology to map what we term cell morphological quantitative trait loci (cmQTLs). We identify novel associations between rare protein altering variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi confirms their role in cell morphology. Analysis of common variants yields one significant association and nominate over 300 variants with suggestive evidence (P < 10-6) of association with one or more morphology traits. We then use these data to make predictions about sample size requirements for increasing discovery in cellular genetic studies. We conclude that, similar to molecular phenotypes, morphological profiling can yield insight about the function of genes and variants.


Subject(s)
Induced Pluripotent Stem Cells , Quantitative Trait Loci , Chromosome Mapping , Quantitative Trait Loci/genetics , Cell Nucleus , Cell Shape , Mutant Proteins
3.
Cancer Epidemiol Biomarkers Prev ; 33(8): 1114-1125, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38780898

ABSTRACT

BACKGROUND: High-grade serous carcinoma (HGSC) gene expression subtypes are associated with differential survival. We characterized HGSC gene expression in Black individuals and considered whether gene expression differences by self-identified race may contribute to poorer HGSC survival among Black versus White individuals. METHODS: We included newly generated RNA sequencing data from Black and White individuals and array-based genotyping data from four existing studies of White and Japanese individuals. We used K-means clustering, a method with no predefined number of clusters or dataset-specific features, to assign subtypes. Cluster- and dataset-specific gene expression patterns were summarized by moderated t-scores. We compared cluster-specific gene expression patterns across datasets by calculating the correlation between the summarized vectors of moderated t-scores. After mapping to The Cancer Genome Atlas-derived HGSC subtypes, we used Cox proportional hazards models to estimate subtype-specific survival by dataset. RESULTS: Cluster-specific gene expression was similar across gene expression platforms and racial groups. Comparing the Black population with the White and Japanese populations, the immunoreactive subtype was more common (39% vs. 23%-28%) and the differentiated subtype was less common (7% vs. 22%-31%). Patterns of subtype-specific survival were similar between the Black and White populations with RNA sequencing data; compared with mesenchymal cases, the risk of death was similar for proliferative and differentiated cases and suggestively lower for immunoreactive cases [Black population HR = 0.79 (0.55, 1.13); White population HR = 0.86 (0.62, 1.19)]. CONCLUSIONS: Although the prevalence of HGSC subtypes varied by race, subtype-specific survival was similar. IMPACT: HGSC subtypes can be consistently assigned across platforms and self-identified racial groups.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/ethnology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/mortality , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/ethnology , Cystadenocarcinoma, Serous/mortality , Middle Aged , White People/genetics , White People/statistics & numerical data , Neoplasm Grading , Aged , Black or African American/genetics , Black or African American/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL